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Abstract

Heterogeneity is commonplace in meta-analysis. When heterogeneity is

found, researchers often aim to identify predictors that account for at least

part of such heterogeneity by using mixed-effects meta-regression models.

Another potentially relevant goal is to focus on the amount of heterogeneity

as a function of one or more predictors, but this cannot be examined with

standard random- and mixed-effects models, which assume a constant

(i.e., homoscedastic) value for the heterogeneity variance component across

studies. In this paper, we describe a location-scale model for meta-analysis

as an extension of the standard random- and mixed-effects models that not

only allows an examination of whether predictors are related to the size of

the outcomes (i.e., their location), but also the amount of heterogeneity

(i.e., their scale). We present estimation methods for such a location-scale

model through maximum and restricted maximum likelihood approaches, as

well as methods for inference and suggestions for visualization. We also pro-

vide an implementation via the metafor package for R that makes this model

readily available to researchers. Location-scale models can provide a useful

tool to researchers interested in heterogeneity in meta-analysis, with the

potential to enhance the scope of research questions in the field of evidence

synthesis.
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Highlights
• The observed effects or outcomes to be combined in a meta-analysis are often

more variable than would be expected based on their sampling variability alone.
This suggests that the underlying true effects or outcomes are heterogeneous.

• Via appropriate meta-regression models, one can examine whether the size
of the effects or outcomes tends to be larger under certain circumstances.

• Standard meta-analytic models assume that the amount of heterogeneity is
constant across circumstances. In the present paper, we describe a location-
scale model for meta-analysis that allows researchers to examine not only
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whether the size of the effects or outcomes varies across circumstances, but
also the amount of heterogeneity.

• The model allows applied researchers to address entirely new research
questions (e.g., for what types of studies are treatment effects more
consistent?).

1 | INTRODUCTION

When a phenomenon of interest (e.g., the effectiveness of
a treatment, the size of a group difference, or the associa-
tion between two variables) has been examined across
multiple studies, a meta-analysis can be conducted to
synthesize the various findings. For this, we quantify the
relevant results of each study in terms of an outcome or
effect size measure (e.g., as raw/standardized mean dif-
ferences, log risk/odds ratios, or raw or Fisher's r-to-z
transformed correlation coefficients), so that the resulting
observed outcomes or effects provide commensurable
evidence about the phenomenon of interest and then
apply appropriate statistical techniques to analyze these
values.1

Due to sampling variability, the observed outcomes
will differ across studies even if they estimate a common
underlying parameter. However, in many cases, the
observed outcomes are more variable than would be
expected based on their sampling variability alone. This
is typically interpreted as evidence for the presence of
variability in the underlying true outcomes, a phenome-
non commonly referred to as “heterogeneity”.2 Random-
effects models are then often used to estimate the amount
of heterogeneity in the true outcomes, which is then
incorporated into the analysis when estimating the aver-
age true outcome.3,4

When heterogeneity is found, one can also try to
examine if some predictor variables (also known as mod-
erators or effect modifiers) are able to account for at least
part of the heterogeneity in the outcomes. A subgroup
meta-analysis can be used for this purpose by stratifying
the observed outcomes according to a factor of interest.5

However, mixed-effects meta-regression models provide a
more flexible approach, as they allow researchers to
examine multiple predictors, both continuous and cate-
gorical, within a single modeling framework.6,7

In a standard mixed-effects meta-regression model,
one or more predictors are included in the model and
their association with the size of the outcomes is exam-
ined. The “residual heterogeneity” (i.e., the heterogeneity
not accounted for by the predictors) is assumed to be
homoscedastic. However, this assumption may be vio-
lated in practice. Moreover, the amount of heterogeneity
might actually vary systematically as a function of one or

more predictors (which may be a different set of predic-
tors than those related to the size of the outcomes) and
this is something that cannot be examined by means of
standard meta-regression models.

Regression models that allow for the error variance to
depend on predictor variables have been studied exten-
sively in the past.8,9 These so-called “location-scale
models” are also increasingly popular in the field of mul-
tilevel modeling,10,11,12 and a tutorial for their implemen-
tation in R and SAS in this context is available.13 In the
meta-analytic context, location-scale models are seldom
used, although their merits have been discussed and
illustrated before using the sample sizes of the studies as
a predictor for the amount of heterogeneity,14 and a
Bayesian variant for categorical scale moderators with
regularized parameters has also been proposed.15

As an illustration, consider a meta-analysis on the
effectiveness of a psychological intervention that can be
delivered either in groups or in an individual format. A
common research question is whether both delivery for-
mats yield similarly effective results. This question is
related to the “location” part of the model (i.e., the out-
come magnitude or size of the average effect) and is rou-
tinely examined using meta-regression models. However,
we could also raise the question whether both delivery
formats lead to equally consistent results. For instance,
individual therapy might achieve relatively similar
(i.e., homogeneous) results across studies, regardless of
the types of patients included or other contextual factors
that might vary across studies. On the other hand, group
therapy might be very effective for certain types of
patients and circumstances, but less so for others, which
would imply more heterogeneous findings for studies
examining this delivery format. The latter question is
related to the “scale” part of the model (i.e., outcome var-
iability), which cannot formally be examined with stan-
dard meta-regression models. Both outcome magnitude
and outcome variability constitute relevant information
for decision making, and this warrants the implementa-
tion of location-scale models in meta-analysis.

The purpose of the present paper is to describe the
extension of the standard mixed-effects meta-regression
model to a location-scale model and to illustrate the use of
such a model with several examples with different types of
predictor variables. The methods described are also
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implemented in the R package metafor16 and we provide
the data and code to replicate the illustrative analyses.

The structure of the paper is as follows. In the next
section, we present the model. We then provide some
technical details about the estimation procedures and
methods for making inferences about the parameters in
the context of such models. We then present an illustra-
tive example and conclude the paper with a general
discussion.

2 | META-ANALYTIC MODELS

Below, we briefly review the standard random- and
mixed-effects models and then describe their extension in
terms of the location-scale model.

2.1 | Standard Random- and Mixed-
Effects Models

For a set of i¼ 1,…,k independent studies, let yi denote
the observed value of the outcome measure of interest in
the ith study. The standard random-effects model in
meta-analysis is given by

yi ¼ μþuiþ ei, ð1Þ

where μ denotes the average true outcome in the popula-
tion of studies, ui �N 0,τ2ð Þ is a normally distributed ran-
dom effect that allows for heterogeneity in the
underlying true outcomes (with τ2 denoting the between-
study variance), and ei �N 0,við Þ is the normally distrib-
uted sampling error of the ith estimate. The sampling
(or within-study) variances (i.e., vi values) are assumed to
be known constants.*

The random-effects model is actually a special case of
the more general mixed-effects meta-regression model
given by

yi ¼ β0þβ1xi1þ…þβpxipþuiþ ei, ð2Þ

where xi1,…,xip are the values of p moderator variables
that may be related to the size of the average true
outcome as specified by the model, β1,…,βp are the
model coefficients that indicate how the average true out-
come changes for a one-unit increase in the corr-
esponding moderator variable, and β0 is the model
intercept. Assumptions about ui and ei are the same
as before, except that τ2 now denotes the amount of resid-
ual heterogeneity, that is, variability in the true outcomes
not accounted for by the moderator(s) included in the
model.

2.2 | Location-Scale Model

Equation (2) defines a model that describes the relationship
between one or multiple moderators and the size of the out-
comes. Hence, in this model, moderators are assumed to be
related to the “location” of the outcomes. Accordingly, we will
refer to xi1,…,xip as “location variables” and to β0,…,βp as
the corresponding “location coefficients”. However, there
may also be a relationship between the moderators and
the amount of heterogeneity in the outcomes. Hence, the
“scale” (i.e., variance) of the outcomes may also be func-
tion of one or multiple moderator variables. Accordingly,
we will refer to the latter as “scale variables”.

The standard random- and mixed-effects models do
not allow for this possibility, since they assume that the
amount of (residual) heterogeneity is constant
(i.e., homoscedastic) across studies. This assumption can
be relaxed by letting τ2 be a function of one or more scale
variables. In particular, let

τ2i ¼ α0þα1zi1þ…þαqziq, ð3Þ

where zi1,…,ziq are the values of q scale variables that
may be related to the amount of heterogeneity and
α1,…,αq are the corresponding “scale coefficients”, with
α0 again denoting the intercept.

A problem with (3) is the possibility that τ2i can be
negative for certain combinations of values for the scale
variables and scale coefficients. To enforce that the vari-
ance cannot become negative for any of the studies, we
can use a model with a log link, so that

ln τ2i
� �¼ α0þα1zi1þ…þαqziq: ð4Þ

Then τ2i is given by exp α0þα1zi1þ���þαqziq
� �

, which is
guaranteed to be positive (or possibly indistinguishable
from zero if the values of the scale variables and scale
coefficients lead to a very negative value of ln τ2i

� �
for a

particular study). Note that the standard random- and
mixed-effects models are just special cases of the
location-scale model where the scale part of the model
only includes an intercept term, so that τ2 ¼ α0 or τ2 ¼
exp α0ð Þ, depending on the link function used.

2.3 | Maximum Likelihood Estimation

The log-likelihood for the location-scale model with a log
link is given by

ll β,αð Þ¼�k
2
ln 2πð Þ�1

2
ln jM j �1

2
y�Xβð Þ0W y�Xβð Þ,

ð5Þ
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where M¼V þdiag exp Zαð Þð Þ, W ¼M�1, y is the k�1
vector with the observed outcomes, V is the k�k diago-
nal matrix with the sampling variances, X is the k�
pþ1ð Þ model matrix containing the location variables
(with the first column equal to a vector of 1's for the
intercept), β is the corresponding pþ1ð Þ�1 vector with
the location coefficients, Z is the k� qþ1ð Þ model matrix
with the scale variables (again with the first column
equal to a vector of 1's), α is the qþ1ð Þ�1 vector with
the scale coefficients, and diag() is a function that turns a
vector into a diagonal matrix. By setting X to only a col-
umn of 1's, we obtain a random-effects model, but with
heteroscedastic between-study variances. By setting Z to
only a column of 1's, we obtain the standard random/
mixed-effects model (with homoscedastic between-study
variance) as a special case. Note that (5) is the straightfor-
ward generalization of the log-likelihood function for the
standard random- and mixed-effects meta-regression
models,17,18 where the only change is that M is no longer
diagonal with elements viþ τ2, but with elements viþ τ2i :

Maximum likelihood estimates (MLEs) of β and α can
be obtained by maximizing (5) simultaneously over the
pþqþ2 location and scale coefficients. The optimization
problem can be simplified by noting that

bβ¼ X 0WXð Þ�1X 0Wy ð6Þ

is the MLE of β for a given vector of α. Hence, after
substituting bβ for β in (5) and some algebraic simplifica-
tion, we can construct the profile log-likelihood

llP αð Þ¼�k
2
ln 2πð Þ�1

2
ln jM j �1

2
y0Py, ð7Þ

where

P¼W �WX X 0WXð Þ�1X 0W : ð8Þ

Now (7) only depends on α (through M, W, and hence
P), which reduces the optimization problem to one
involving only the qþ1 scale coefficients. Quasi-Newton
or Nelder–Mead type algorithms can be used for this
purpose,19 which avoids the need to compute the Hessian
or information matrix, as would be needed for the
Newton–Raphson or Fisher scoring algorithms.

The approach described above yields the MLE of α for
model (4), which we denote as bα. Once bα has been
obtained, we can compute the MLE of β with (6), with
W ¼M�1 as before where M¼V þdiag exp Zbαð Þð Þ.

The same approach can also be used to obtain the
MLE of α for model (3) that uses an identity link by

letting M ¼V þdiag Zαð Þ. However, then extra steps
must be taken when optimizing (7) over α to ensure non-
negativity for all of the Zα values.† Linearly constrained
optimization algorithms can be used for this purpose.19

Here, the feasible region for α is that set of values for
which Zα≥ 0. Again, once bα has been obtained, we can
compute the MLE of β with (6), where W ¼M�1 and
now M¼V þdiag Zbαð Þ.

2.4 | Restricted Maximum Likelihood
Estimation

MLEs of variance components are known to be negatively
biased, while restricted maximum likelihood (REML) esti-
mation yields approximately unbiased estimates.20,21,22,23

The same has been found for the ML and REML estima-
tors of τ2 in the standard random-effects model.17 Accord-
ingly, it may also be preferable to use REML estimation
to estimate the scale coefficients for the location-scale
model. The restricted log-likelihood is given by

llR αð Þ¼�k�p�1
2

ln 2πð Þþ1
2
ln jX 0X j �1

2
ln jM j �1

2
ln

jX 0WX j �1
2
y0Py,

ð9Þ
with all elements as defined previously. Note that
(9) depends on α through M, W, and P, but no longer
involves the location coefficients. However, once llR has
been maximized over the the qþ1 scale coefficients
(either for the log or identity link model), we can again
obtain estimates of the elements in β with (6).

2.5 | Inference

Once the ML or REML estimates bα and bβ have been
obtained, making statistical inferences about the location
and scale parts of the model is typically the next step in
the analysis. Wald-type methods and methods based on
the likelihood ratio of nested models can be used for this
purpose and are described below.

2.5.1 | Inference about the Location Part of
the Model

The variance–covariance matrix of the elements in bβ can
be estimated with

Var bβh i
¼ X 0WXð Þ�1

: ð10Þ
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Hence, we can conduct a Wald-type test of the null
hypothesis H0 : βj ¼ 0 (with j¼ 0,…,p) by computing

z¼
bβj

SE bβjh i , ð11Þ

where SE bβjh i
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var bβjh ir

and Var bβjh i
is the corres-

ponding (i.e., jth+ 1) diagonal element of (10). Under H0,
(11) follows asymptotically a standard normal distribu-
tion based on which we can compute the p-value for the
test. An approximate 95% confidence interval (CI) for βj

can also be obtained with bβj�1:96�SE bβjh i
:

Multiple coefficients in bβ can be tested simulta-
neously by computing

Qβ ¼bβ02½ � Var bβh i
2½ �

� ��1bβ 2½ �, ð12Þ

where bβ 2½ � includes the set of location coefficients to be

tested and Var bβh i
2½ �
contains the corresponding rows and

columns from (10). Under H0 : β 2½ � ¼ 0, (12) follows

asymptotically a chi-square distribution with degrees
of freedom equal to the number of coefficients
tested. A common application of (12) is to test all
location coefficients except for the model intercept

i:e:, bβ 2½ � ¼ bβ1,…,bβph i0� �
, yielding an omnibus test of the

location part of the model.

The predicted average outcome for a particular com-
bination of values for the location variables can be com-

puted with byh ¼ xhbβ, where xh is either a particular
row from X (yielding the fitted value, byi, for the
corresponding study) or contains some other combi-
nation of values for the location variables. An approxi-
mate 95% CI for a predicted/fitted value is then given

by byh�1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xhVar bβh i

x0h

r
:

2.5.2 | Inference about the Scale Part of the
Model

Estimating the variance–covariance matrix of the ele-
ments in bα is not as straightforward. Although computa-
tionally more demanding, we can make use of numerical
differentiation24 to approximate the matrix of second
derivatives (i.e., the Hessian) of llP αð Þ or llR αð Þ with

respect to the elements in α. Once the Hessian is
obtained, the inverse of the negative Hessian matrix
yields the estimated variance–covariance matrix of the
scale coefficients, which we denote by Var bα½ �: Hence, a
Wald-type test of the null hypothesis H0 : αj ¼ 0 (with
j¼ 0,…,q) can be conducted by computing

z¼ bαj
SE bαj	 
 , ð13Þ

where SE bαj	 

is the square-root of the corresponding

(i.e., jthþ1) diagonal element of Var ba½ �. Under H0,
(13) again follows asymptotically a standard normal dis-
tribution. As before, we can also construct an approxi-
mate 95% CI for αj with bαj�1:96�SE bαj	 


.
Similarly, multiple scale coefficients in bα can be tested

simultaneously by computing

Qα ¼ bα0
2½ � Var bα½ � 2½ �
� ��1bα 2½ �, ð14Þ

where bα 2½ � and Var bα½ � 2½ � again include the rows (and col-
umns) corresponding to the coefficients to be tested.
Under H0 :α 2½ � ¼ 0, (14) follows asymptotically a chi-
square distribution with degrees of freedom equal to the
number of coefficients tested. By including all scale coef-
ficients except for the intercept in this test
(i.e., bα 2½ � ¼ bα1,…,bαq	 
0

), we can conduct an omnibus test
of the scale part of the model.

The predicted amount of (residual) heterogeneity for
a particular combination of values for the scale variables

can be computed with bτ2h ¼ exp zhbαð Þ or bτ2h ¼ zhbα when
using a log or identity link for the scale part of the model,
respectively. Here, zh denotes either a particular row

from Z (yielding bτ2i ) or some other combination of
values for the scale variables. A corresponding app-
roximate 95% CI for τ2h is then given by either

exp zhbα�1:96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zhVar bα½ �z0h

p� �
or zhbα�1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zhVar bα½ �z0h

p
.

Note that when using an identity link, bτ2h is only
guaranteed to be non-negative when zh is a row from Z.
Moreover, even then, the lower bound of the CI may be

negative. While one could set negative bτ2h values or CI
bounds to 0, we can avoid these issues altogether by
using the log link, since exponentiation guarantees non-
negative predicted values and CI bounds in all cases.

2.5.3 | Likelihood ratio tests and confidence
intervals

Likelihood ratio tests (LRTs) can also be used to compare
models. For the LRT of one or multiple location/scale
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coefficients, let ll bβ,bα� �
denote the maximized log-

likelihood under the full model and ll bβ0,bα0

� �
the maxi-

mized log-likelihood under the reduced model where the
location/scale coefficients to be tested are constrained to
zero (which is equivalent to fitting a model where we
remove from X and/or Z the columns that correspond to
the location and/or scale coefficients tested). Under the
null hypothesis that the corresponding true values of the
location/scale coefficients are equal to zero, the LRT
statistic

X2 ¼�2� ll bβ0,bα0

� �
� ll bβ,bα� �� �

ð15Þ

then follows asymptotically a chi-square distribution with
degrees of freedom equal to the number of coefficients
tested.

It is also possible to test scale coefficients in this man-
ner when using REML estimation. Here, we let llR bαð Þ and
llR bα0ð Þ denote the maximized restricted log-likelihood
under the full and reduced model, respectively. Then

X2
R ¼�2� llR bα0ð Þ� llR bαð Þð Þ ð16Þ

follows asymptotically a chi-square distribution with
degrees of freedom equal to the number of scale coeffi-
cients tested.

For the standard random-effects model, Hardy and
Thompson25 describe how to “invert” the LRT to con-
struct profile likelihood CIs for μ and τ2 (or a confidence
region for both parameters jointly). The same idea can be
generalized to the present model, yielding profile likeli-
hood CIs for particular model coefficients (or a confi-
dence region for multiple coefficients). This approach is
especially advantageous for the scale coefficients, since
their sampling distribution may not be normal (which is
implicitly assumed by (13) and the corresponding Wald-
type CI) and we will therefore focus on the construction
of profile likelihood CIs for this purpose.

Let llP eαð Þ denote the maximized profile log-likelihood
when one or multiple scale coefficients are constrained
not to zero, but to arbitrary values and χ2r,:95 the 95th qua-
ntile of a chi-square distribution with r degrees of free-
dom, where r denotes the total number of scale
parameters that were constrained. Then the set of all eα
values that satisfy

llP eαð Þ≥ llP eαð Þ�χ2r,:95=2 ð17Þ

denotes a 95% CI (or confidence region) for the coeffi-
cients that were constrained. Similarly, letting llR eαð Þ
denote the maximized restricted log-likelihood when one

or multiple scale coefficients are constrained to arbitrary
values, then the set of all eα values that satisfy

llR eαð Þ≥ llR eαð Þ� χ2r,:95=2 ð18Þ

denotes a 95% CI (or confidence region) for the con-
strained scale coefficients under REML estimation.

2.5.4 | Small-Sample Performance

As noted above, the distributional assumptions underly-
ing the inferential methods presented here are based on
asymptotics, that is, they rely on large-sample approxima-
tions. To be precise, “large-sample” in the present context
primarily refers to the number of studies included in the
analysis (although as noted in the footnote in section 2.1,
the within-study sample sizes also need to be sufficiently
large so that the sampling variances can be treated as
approximately known). Moreover, when the model
includes categorical predictors, then the number of stud-
ies within each category needs to be sufficiently large for
the approximations to hold.

The methods described in section 2.5.1 for making
inferences about the location part of the model are identi-
cal to those used in standard mixed-effects meta-
regression models.26,27 However, based on simulation
studies in this context,18 we know that the tests and CIs
may not have nominal properties (i.e., their actual Type I
error and coverage rates can deviate from the chosen
level), especially when k is small. The Knapp-Hartung
method28 is a well known improvement over the stan-
dard Wald-type methods, leading to tests and CIs with
close to nominal performance.18 A generalization of the
method is also possible for location-scale models.

Let s2 ¼Pk
i¼1wi yi�byið Þ2= k�p�1ð Þ where

wi ¼ 1= viþbτ2i� �
. Now using Var bβh i

¼ s2 X 0WXð Þ�1 as the

variance–covariance of the elements in bβ, the test statis-
tic (11) then follows an approximate t-distribution with
k�p�1 degrees of freedom under H0, while the 95% CI

for βj is obtained with bβj� t:975;k�p�1�SE bβjh i
, where

t:975;k�p�1 denotes the 97.5th quantile of a t-distribution
with the same degrees of freedom. The test of multiple
coefficients is then conducted with Fβ ¼Qβ=m, which fol-
lows an approximate F-distribution with m and k�p�1
degrees of freedom under H0, where m denotes the num-
ber of coefficients tested. Finally, to construct the 95% CI
for a predicted average outcome, we then use

byh� t:975;k�p�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xhVar bβh i

x0h

r
. These results follow directly

from those given by Knapp and Hartung.28
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An analogous generalization of the methods given in
section 2.5.2 for making inferences about the scale part of
the model is not currently available. We can, however,
heuristically still compare the test statistic (13) to a t-dis-
tribution, now with k�q�1 degrees of freedom and con-
struct the CI for αj accordingly. Similarly, we can use
Fα ¼Qα=m to test multiple scale coefficients, now letting
m denote the number of scale coefficients tested, and use
an F-distribution with m and k�q�1 degrees of freedom
as a reference. Finally, in the 95% CI for τ2h, we simply
replace 1:96 with t:975;k�q�1. In essence, these are analo-
gous heuristic adjustments that have previously been
considered in the context of standard random-effects and
meta-regression models.29,30

It is currently unknown how well the standard or
adjusted methods perform in small samples and how
large the number of studies needs to be for the methods
to have nominal properties. However, given that accurate
estimation and inferences about the amount of heteroge-
neity in standard random-effects models is already a diffi-
cult endeavor to begin with,17,31,32 we suspect that k will
need to be fairly large for the methods to have nominal
properties. Therefore, at the moment, we would caution
against the application of location-scale models in small
meta-analyses.

2.6 | Profile Likelihood Plots

Fitting location-scale models is a non-trivial optimization
problem, especially when the model includes a large
number of scale variables. The qþ1 dimensional surface
of the profiled log-likelihood (7) or the restricted
log-likelihood (9) may involve ridges, local optima, and
saddle points, which can lead to convergence to a non-
optimal solution. To obtain some reassurance that llP bαð Þ
or llR bαð Þ really does correspond to its respective global
maximum, we can make use of profile likelihood plots
for each of the scale coefficients in the model.

To construct such a plot for a particular scale coefficient
αj, we fix the coefficient to some value near bαj and maxi-
mize (7) or (9) over the remaining scale coefficients. By
repeating this process for a range of values around bαj, we
can examine how llP αð Þ or llR αð Þ changes as a function of
αj (i.e., we construct a profile of (7) or (9) along the dim-
ension corresponding to αj). Note that this is in essence
the same process that is involved in finding a profile like-
lihood CI for αj as described in the previous section.

The profile likelihood function constructed in this
manner should have a peak at bαj, indicating that llP αð Þ or
llR αð Þ is really maximized along the dimension
corresponding to αj within the range of αj values exam-
ined. By constructing such profiles for each scale

parameter, we can check that the respective likelihoods
are maximized along each dimension, at least within the
vicinity of bα.‡ See Raue et al.33 for further details on the
use of profile likelihoods for checking on the
identifiability of parameters in complex models.

2.7 | Prediction Intervals

For the standard random-effects model (1), Raudenbush26

suggested to compute bμ�1:96bτ as a “plausible value
interval” that should contain approximately 95% of
the true outcomes. A similar type of interval, referred to
as a “credibility interval”, was proposed by Hunter
and Schmidt34 to quantify the degree to which the
underlying true outcomes may vary over studies. How-
ever, these intervals ignore the uncertainty in bμ and
hence an improved interval could be computed with

bμ�1:96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibτ2þSE bμ½ �2

q
.§ Intervals of this type have also

been referred to as “prediction intervals” (PI),35 as they
can also be interpreted as the range for the predicted true
outcome in a new study. Given that this term has also
found its way into popular textbooks on meta-analysis36

and is based on similar concepts in regression
modeling,37 we will adopt the same terminology below.

To compute PIs in the context of a location-scale
model, we need to specify the values of the location and
scale variables. In particular, recall that the predicted
average outcome for a particular combination of values

for the location variables is given by byh ¼ xhbβ, while bτ2h ¼
exp zhbαð Þ (or bτ2h ¼ zhbα when using an identity link) yields
the predicted amount of (residual) heterogeneity for a
particular combination of values for the scale variables.
Hence, an approximate 95% PI for the true outcomes of
studies (or a future study) at the chosen values of xh and

zh is given by byh�1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibτ2hþxhVar bβh i
x0h

r
, with bτ2h as

defined above. When using the generalization of the
Knapp-Hartung method described earlier, we replace
1:96 with t:975;k�p�1.

2.8 | Visualization

The results of a meta-regression model involving a
numerical/quantitative predictor can be visualized by
plotting the observed outcomes on the y-axis against the
values of the predictor on the x-axis and adding the
regression line based on the model (with or without
corresponding CI and/or PI bands) to such a plot.38,39

Typically, the outcomes are drawn proportional in size to
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some measure of their precision (e.g., 1=vi) or the model
weights (i.e., the diagonal elements of W , which are
equal to wi ¼ 1= viþbτ2i� �

for location-scale models). Given
their appearance, such scatter plots are also at times
referred to as “bubble plots”. This type of graph is equally
applicable to visualize the results from the location part
of a location-scale model involving a quantitative loca-
tion variable. On the other hand, for a categorical predic-
tor, one can simply add the estimated average outcomes
for the various levels of the predictor (i.e., the subgroups
defined by the predictor) to a standard forest plot.39

For illustrating the results from the scale part of
a model, we suggest the following visualization. First,
let H ¼X X 0WXð Þ�1X 0W denote the hat matrix and
hi the ith diagonal element thereof. Furthermore, let ei ¼
yi�byi denote the observed residual of the ith study
which, under the assumptions of the model, can be
shown to have expectation 0 and variance
Var ei½ � ¼ 1�hið Þ viþ τ2i

� �
. Hence, we can use bτ2i ¼

e2i = 1�hið Þ� vi as an estimate of τ2i (setting negative bτ2i
values to 0). We can therefore plot these estimates against
the values of a quantitative scale variable as an analogue
to the bubble plot described above. As above, the regres-
sion line, now for the predicted amount of heterogeneity
as a function of the predictor, can be added to such a fig-
ure (with or without a corresponding CI band). For a cat-
egorical scale variable, differences in the amount of
heterogeneity across subgroups can again be visualized as
part of a forest plot, for example by showing the different
PIs for the various subgroups defined by the predictor.

2.9 | Model Selection

In practice, one is often faced with a large number of
potentially relevant location and/or scale variables one
could include in a model. The problem of finding those
predictors that are truly related (if any) to the location
and/or scale of the outcomes can therefore be framed as
a model selection problem.40 While it is still common
practice to examine one predictor at a time in a series of
univariate meta-regression models,41 this approach
increases the risk of finding spurious relationships due to
the fact that predictors are often correlated. Fitting models
which include multiple predictors of interest can mitigate
this problem at least to some extent.42 The use of
information-theoretic methods43 for model selection in the
context of meta-regression analyses was also recently
explored and might constitute a promising alternative to
the use of null-hypothesis significance testing.40

For this, we compute, for a set of potentially plausible
models, one of several different information criteria such as
the Akaike Information Criterion (AIC),44 which is given by

AIC¼�2llþ2 pþqþ2ð Þ, ð19Þ

where ll is either llP or llR for ML or REML estimation,
respectively, and pþqþ2 corresponds to the total num-
ber of parameters of the location-scale model. Heuristi-
cally, we can regard the AIC as a measure that penalizes
the fit of a model (as indicated by its [restricted] log-like-
lihood) for its complexity (as indicated by the number of
included parameters). As expressed in (19), models with
lower AIC values strike a better balance between fit and
complexity and are therefore to be preferred.

An alternative is the Bayesian Information Criterion
(BIC),45 which is given by

BIC¼�2llþ2 pþqþ2ð Þln k�ð Þ, ð20Þ

where k� ¼ k for ML and k� ¼ k�p�1 for REML estima-
tion. When k� ≥ 8, the BIC imposes a greater penalty for
the model complexity compared to the AIC and therefore
tends to favor simpler models. Similarly, the corrected
AIC is given by

AICc¼�2llþ2 pþqþ2ð Þ k�

k� � pþqþ2ð Þ�1

� �
, ð21Þ

where k� ¼max k,pþqþ4ð Þ for ML and k� ¼
max k�p�1,pþqþ4ð Þ for REML estimation, which
ensures that the additional multiplicative term is ≥ 1 and
hence again implies a greater penalty for the number of
parameters compared to the AIC.46

Strictly speaking, models that differ in terms of their
fixed effects (i.e., location variables) should not be com-
pared with respect to their restricted log-likelihoods,47,48

which would imply that information criteria computed
based on REML estimation would only be valid for model
selection when comparing models including different
scale but the same set of location variables. However,
recent evidence suggests that information criteria com-
puted based on REML estimation may even serve as a
model selection tool when their fixed effects differ.40,49

Regardless of this issue, further research is needed to
examine the performance of information-theoretic
methods for model selection in the present context.

2.10 | Implementation Details

The option to fit location-scale models was recently
added in an update to the metafor package16 for R50

as part of the rma() function. Maximization of the pro-
filed log-likelihood (7) or the restricted log-likelihood
(9) (for ML and REML estimation, respectively) is accom-
plished by default using the quasi-Newton algorithm
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implemented in the nlminb() function,51 but the user also
has the option to choose from a wide variety of alterna-
tive optimization routines should convergence issues
arise. When using an identity link, constrained optimiza-
tion using the Nelder–Mead (downhill simplex) method52

is used in combination with an adaptive barrier algo-
rithm53 as implemented in the constrOptim() function to
ensure non-negativity of Zα. The numDeriv package,54

which provides accurate methods for numerical differen-
tiation using Richardson extrapolation, is used to obtain
the Hessian matrix of the scale coefficients, from which
their variance–covariance matrix is estimated. The output
for a fitted model includes Wald-type tests and CIs for
the location and scale coefficients,¶ while LRTs and pro-
file likelihood CIs (the latter only for the scale coeffi-
cients) can be obtained using the anova() and confint()
functions, respectively. Model identifiability can be
checked by drawing profile likelihood plots with the pro-
file() function and fit statistics (including the AIC, BIC,
and AICc) can be obtained with the fitstats() function.
Finally, the predict() function can compute the predicted
average outcome (with CI and PI) for a particular combi-
nation of values for the location variables and the
predicted amount of (residual) heterogeneity for a partic-
ular combination of values for the scale variables.

3 | ILLUSTRATIVE EXAMPLE

In this section, we demonstrate the application of location-
scale models using a dataset readily available in the met-
afor package. In this illustration, we model the scale part
using a log link, use REML estimation (except when
otherwise noted), and report Wald-type CIs for both the
location and scale parts of the models (using the Knapp-
Hartung generalization we described in section 2.5.4 for
drawing inferences about location coefficients and the
approximate t- and F-distributions for inferences about
scale coefficients). We also illustrate the use profile likeli-
hood plots and CIs for the scale coefficients. The analysis
code can be found at https://osf.io/53mtg/.

Bangert-Drowns et al.55 integrated the results from
48 studies examining the effectiveness of school-based
interventions to improve educational achievement. Each
study compared an experimental group of students who
received an intervention focused on writing tasks (experi-
mental group) against another group receiving conven-
tional instruction (control group) with respect to some
measure of academic achievement (e.g., final grade, an
exam/quiz/test score). The outcome measure was the
standardized mean difference (with positive scores favor-
ing the intervention group),56 which we corrected for its
small-sample bias.**

The standard random-effects model yields an esti-
mated overall effect of bμ¼ 0:22 (95% CI: 0:12 to 0:32,
p<0:001), suggesting that intervention groups obtained
on average higher academic achievement scores than
control groups. However, the between-study variance
estimate of bτ2 ¼ 0:050 leads to a 95% PI around bμ from
�0:24 to 0:68, which reveals substantial heterogeneity in
the effectiveness of such interventions across studies.
Figure 1 shows a forest plot of the individual effect size
estimates with the results from the random-effects model
at the bottom (the dotted interval around the summary
polygon indicates the PI bounds). The results from the
location-scale model will be discussed further below.

As a quick check of the routines, we can also fit the stan-
dard random-effects model as a location-scale model by setting
X and Z both to column vectors of 1's. Doing so yields
the same estimate and CI for μ and an estimate of bα0 ¼
�2:997 (with SE bα0½ � ¼ 0:4603) and therefore the model
implies bτ2 ¼ exp �2:997ð Þ¼ 0:050 as above. An interesting
feature of this approach is that a 95% CI for τ2 can be
readily constructed with exp �2:997�2:01�0:4603ð Þ¼
0:020,0:126ð Þ (where t:975;47 ¼ 2:01), although it remains
to be examined how this CI compares (in terms of cover-
age and width) to other methods for constructing CIs for
τ2 in the context of the random-effects model.32,57

Next, we explored the association of two predictors
with the size (i.e., location) and amount of heterogeneity
(i.e., scale) of the outcomes. As an example of a quantita-
tive predictor, we included the total sample size of each
study (range 16–542, with a mean and median of 116 and
68 participants, respectively) in the model, which we
rescaled for interpretation purposes for the analyses
(keeping the original scale for graphical display), so that
the location and scale parts of the model can be written
as yi ¼ β0þβ1 ni=100ð Þ and ln τ2i

� �¼ α0þα1 ni=100ð Þ,
respectively. We also examined a categorical predictor,
namely the subject matter that was taught in each study
(mathematics: 28 studies; science: 9 studies; social sci-
ence: 11 studies). This predictor was incorporated into
the model as two dummy variables, one for science and
the other for social science subjects (and hence using
math as the reference category), resulting in the model
yi ¼ β0þβ1sciiþβ2soci for the location part and ln τ2i

� �¼
α0þα1sciiþα2soci for the scale part. We first fitted
two separate models testing the association of each pre-
dictor with both the location and scale of the outcomes,
and then ran an additional analysis incorporating
both into a model with multiple predictors, that is,
yi ¼ β0þβ1 ni=100ð Þþβ2sciiþβ3soci for the location part
and ln τ2i

� �¼ α0þα1 ni=100ð Þþα2sciiþα3soci for the
scale part.

The model with sample size as predictor provided evi-
dence of a negative association with the size of the
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outcomes (bβ1 ¼�0:055, 95% CI: �0:095 to �0:015,
p¼ :008) and weaker evidence of a negative association
with the amount of heterogeneity (bα1 ¼�0:917, 95% CI:
�1:952 to 0:117, p¼ 0:081). Therefore, studies with larger
sample sizes tended to yield smaller (and maybe more

homogeneous) outcomes. These associations are shown in
the bubble plots in Figure 2. In Figure 2a, we included both
the CI and PI bands around the regression line, the latter
illustrating the shrinking of the amount of heterogeneity for
larger studies. This is also what Figure 2b shows, in terms

FIGURE 1 Forest plot of the studies from Bangert-Drowns et al.55 with the results from the random-effects model and the location-scale

model (including the study subject as predictor) shown.
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of the predicted value of τ2 as a function of the sample size
(with corresponding CI for the predicted values).

With regards to subject type, the estimated aver-
age effects and between-study variances for the three
subject categories are presented at the bottom of
Figure 1. The estimated average effect for studies
focused on social science subjects was bβ0þbβ2 ¼bμsoc ¼
0:08 (95% CI: �0:04 to 0:19, p¼ 0:18), as opposed to bβ0þbβ1 ¼bμsci ¼ 0:22 (95% CI: �0:22 to 0:67, p¼ 0:31) for sci-
ence studies and bβ0 ¼bμmat ¼ 0:25 (95% CI: 0:14 to 0:36,
p< :001) for math studies. The omnibus test for the
location part of the model (i.e., H0 : β1 ¼ β2 ¼ 0) yielded
weak evidence of an association (Fβ 2,45ð Þ¼ 2:43,
p¼ 0:099). However, hypothesis tests for specific location

coefficients showed evidence that social science studies
reported on average effect size estimates of smaller
magnitude than math studies (bβ2 ¼�0:17, 95% CI: �0:33
to �0:01, p¼ 0:034). Similarly, the omnibus test for the
scale part (i.e., H0 : α1 ¼ α2 ¼ 0) provided some evidence
of an association between subject type and the amount
of heterogeneity in the outcomes (Fα 2,45ð Þ¼ 3:32,
p¼ 0:045). In particular, studies focused on science
subjects yielded more heterogeneous outcomes
(exp bα0þbα1ð Þ¼bτ2sci ¼ 0:306, 95% PI around bμsci from
�0:97 to 1:42) than math studies (exp bα0ð Þ¼bτ2mat ¼ 0:030,
95% PI around bμmat from �0:12 to 0:61) and social sci-
ence studies (exp bα0þbα2ð Þ¼bτ2soc ¼ 0:000, 95% PI aroundbμsoc from �0:04 to 0:19).

FIGURE 2 Bubble plots showing

the association between the sample size

and the location and scale parts of the

model in the example of Bangert-

Drowns et al.55
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TABLE 1 Multiple meta-regression results using the data from Bangert-Drowns et al.55

Coefficient bβ 95% CI for bβ bα 95% CI for bα 95% PLCIa for bα
Intercept 0:344 0:210 to 0:478 �3:102 �5:100 to �1:105 < �8 to �1:276

Sample Size �0:058 �0:099 to �0:018 �0:539 �1:682 to 0:604 �7:159 to 0:551

Sciences vs. Math �0:080 �0:487 to 0:327 2:233 0:122 to 4:344 0:332 to > 10

Social Sciences vs. Math �0:109 �0:274 to 0:057 0:401 �2:425 to 3:227 < �10 to > 10

aPLCI = profile likelihood confidence interval.

FIGURE 3 Profile likelihood plots for the scale coefficients in the model with multiple location and scale predictors in the example of

Bangert-Drowns et al.55

708 VIECHTBAUER AND LÓPEZ-LÓPEZ



Of note, the estimates of the average effect and
between-study variance for each subject type from the
previous location-scale model can also be obtained by
fitting separate random-effects models for each category
of the moderator. Doing so leads to estimates of bμmat ¼
0:25 and bτ2mat ¼ 0:030 for math studies, bμsci ¼ 0:22 andbτ2sci ¼ 0:306 for science studies, and bμsoc ¼ 0:08 and bτ2soc ¼
0:000 for social science studies, respectively. This illus-
trates the equivalence between separate random-effects
and location-scale models when a single categorical mod-
erator is considered (but only in this special case).††

Table 1 presents the results of the model including
sample size and subject type as predictors for both the
location and scale of the outcomes. For illustration pur-
poses and due to the increasing complexity of the model,
Figure 3 presents profile likelihood plots for the scale
coefficients in the model, which do not suggest estima-
tion problems.‡‡ Furthermore, in addition to the Wald-
type CIs reported throughout the paper, we also report in
Table 1 profile likelihood CIs for the scale parameters
(calculated with Equation 18). However, due to the flat-
ness of some of the likelihood profiles for values of αj fur-
ther away from bαj (see Figure 3), some of the bounds
cannot be obtained exactly.

Irrespective, both interval types lead to the same sta-
tistical conclusions, and hence for simplicity we focus on
the Wald-type CIs for the result interpretation. The omni-
bus tests of the location and scale coefficients
(i.e., H0 : β1 ¼ β2 ¼ β3 ¼ 0 and H0 : α1 ¼ α2 ¼ α3 ¼ 0)
showed some evidence of associations for both parts
(Fβ 3,44ð Þ¼ 3:44, p¼ 0:025 and Fα 3,44ð Þ¼ 2:70,
p¼ 0:057, respectively). After controlling for subject type,
there was still evidence of an association between the
sample size of the studies and the size of the outcomes
(bβ1 ¼�0:058, 95% CI: �0:099 to �0:018, p¼ 0:006) but
not with the amount of heterogeneity (bα1 ¼�0:539, 95%
CI: �1:682 to 0:604, p¼ 0:35). Tests of H0 : β2 ¼ β3 ¼ 0
and H0 : α2 ¼ α3 ¼ 0 can be used to test for differences
between the subject types after controlling for sample
size. For the location part, the test indicated no evidence
of an association between subject type and the size of the
outcomes (Fβ 2,44ð Þ¼ 0:91, p¼ 0:41), whereas the test

result for the scale part of the model suggested some
weak evidence of an association with the amount of het-
erogeneity (Fα 2,44ð Þ¼ 2:39, p¼ 0:10). When examining
the individual scale coefficients, there was evidence that
interventions focused on science subjects yielded more
heterogeneous outcomes than those focused on math
subjects (bα2 ¼ 2:233, 95% CI: 0:122 to 4:344, p¼ 0:039).

The previous model can be used to make predictions
for μ and τ2 in future studies. For the location part, the
multiple meta-regression model predicts a value of bμ¼
0:32 (95% PI: �0:08 to 0:71) for a study focused on math
subjects with 50 participants, but the predicted effect
decreases to bμ¼ 0:29 (95% PI: �0:06 to 0:63) and bμ¼ 0:26
(95% PI: �0:04 to 0:56) as the sample size increases to
100 and 150 participants, respectively. With regards to
the scale part, keeping the sample size fixed at 100 partici-
pants, the model predicts an amount of heterogeneity ofbτ2 ¼ 0:026 (95% CI: 0.006 to 0.121) for math-focused inter-
ventions, which increases to bτ2 ¼ 0:039 (95% CI: 0.004 to
0.437) for social science and to bτ2 ¼ 0:245 (95% CI: 0:060
to 1:001) for science subjects.

In the models above, the same predictors were used
for the location and scale parts. To illustrate that this is
not a requirement, we fitted a model with sample size as
a location moderator and subject type as a scale modera-
tor, that is, yi ¼ β0þβ1 ni=100ð Þ for the location part and
ln τ2i
� �¼ α0þα1sciiþα2soci for the scale part. Results in

Table 2 show evidence of a negative association between
sample size and the magnitude of the outcomes
(bβ1 ¼�0:062, 95% CI: �0:116 to �0:008, p¼ 0:026). Fur-
thermore, there was evidence that science studies yielded
more heterogeneous outcomes than math studies
(bα1 ¼ 2:597, 95% CI: 0:529 to 4:666, p¼ 0:015), whereas
no significant difference was found between social sci-
ence and math studies (bα2 ¼ 0:520, 95% CI: �2:739 to
3:779, p¼ 0:75).

Since this model is nested within the model that
includes both sample size and subject type in the location
and scale parts of the model, we can therefore also con-
duct a LRT, examining if the full model (including both
predictors in both parts) provides a significantly better fit
than the model that only includes sample size as a

TABLE 2 Multiple meta-regression results with different predictors for the location and scale parts, using the data from Bangert-Drowns

et al.55

Coefficient bβ 95% CI for bβ bα 95% CI for bα 95% PLCIa for bα
Intercept 0:319 0:190 to 0:448 �3:957 �5:511 to �2:402 �11:217 to �2:718

Sample Size �0:062 �0:116 to �0:008

Sciences vs. Math 2:597 0:529 to 4:666 0:654 to 9:856

Social Sciences vs. Math 0:520 �2:739 to 3:779 < �10 to 7:700

aPLCI = profile likelihood confidence interval.
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location moderator and subject type as a scale moderator.
Since the two models differ in terms of their location
coefficients, we must refit the two models using ML esti-
mation for the LRT to be meaningful. After doing so,
(15) yields X2 ¼ 4:83 based on 3 degrees of freedom,
resulting in p¼ 0:18 and hence no statistically significant
evidence that the full model provides a better fit.

To illustrate the use of information criteria for model
selection, Table 3 shows the log-likelihood, AIC, BIC,
and AICc values computed based on ML and REML esti-
mation for all models considered above. All criteria favor
the model including sample size in the location and scale
parts of the model regardless of the estimation method
used. The only exception to this was the AIC computed
based on REML estimation, which was lower for the
model including sample size in the location and subject
type in the scale part of the model, although only by a
thin margin.

4 | DISCUSSION

In this paper, we have described a location-scale model
for meta-analysis as an extension of the standard
random- and mixed-effects models that not only allows
an examination of whether predictors are related to the
size of the outcomes (i.e., their location), but also the
amount of heterogeneity (i.e., their scale). Together with
a description of the methods for fitting and drawing infer-
ences based on this model and an example illustrating its
use, we have also provided an implementation via the
metafor package for R that makes this model readily
available to researchers. Of note, the use of this model
does not require any additional information beyond what
is necessary for fitting standard meta-regression models

(except if hypotheses concerning the scale part involve
variables that have not already been collected for the pur-
poses of a standard moderator analysis).

At the same time, we want to emphasize that guide-
lines and caveats related to standard meta-regression
analyses38,41,58 are equally applicable when examining
scale variables. In particular, researchers should formu-
late a priori hypotheses to motivate the examination of
the scale variables and why/how they might be related to
the amount of heterogeneity in the outcomes. For exam-
ple, if the specification of clinical guidelines has led to an
increased consistency in how a particular treatment has
been implemented over time, one could hypothesize that
the results from more recent trials might tend to be more
consistent (i.e., exhibit lower amounts of heterogeneity)
than earlier trials. On the other hand, more recent studies
might explore the generalizability of a treatment effect by
examining its effectiveness in more diverse populations,
which in turn might lead to increased heterogeneity. In
either case, such hypotheses should be formulated before
embarking on such analyses.

Even when the analyses are pre-specified and
hypothesis driven, the potential for making at least one
Type I error increases with the number of predictors
examined. Although not common practice in meta-
regression analyses,41 researchers should consider the
use of corrections for multiple testing to reduce the
number of false positive associations. This, however,
comes at the cost of decreased power to detect true asso-
ciations. In fact, we suspect that the number of studies
required for location-scale models to have sufficient
power to detect associations between scale variables and
the amount of heterogeneity is fairly high to begin with.
This, however, needs to be examined further via simula-
tion studies.

TABLE 3 Log-likelihoods and fit criteria values for the various models fitted using the data from Bangert-Drowns et al.55

Location Scale

Method Sample Size Subject Type Sample Size Subject Type logLik AIC BIC AICc

ML �18.26 40.52 44.27 40.79

✓ ✓ �13.24 34.48 41.96 35.41

✓ ✓ �13.20 38.40 49.62 40.45

✓ ✓ ✓ ✓ �10.08 36.16 51.13 39.86

✓ ✓ �12.50 35.00 44.35 36.43

REML �18.49 40.99 44.69 41.26

✓ ✓ �14.65 37.30 44.62 38.28

✓ ✓ �13.99 39.97 50.81 42.18

✓ ✓ ✓ ✓ �11.89 39.78 54.06 43.90

✓ ✓ �13.55 37.10 46.24 38.60
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It is also important to emphasize that such analyses
(whether they concern location or scale variables) are
purely observational and hence any associations found
could be confounded by other variables not controlled for
in the analyses.42 Hence, as is the case for standard meta-
regression analyses,59 “synthesis-generated evidence”
about scale variable associations should be treated with
due caution.

Finally, any associations found, either with respect to
location or scale variables, reflect relationships that exist
at the study level which does not imply that similar

relationships exist at the participant level. For example, if
the mean age of the participants is found to be positively
related to the size of a treatment effect across studies,
then this indicates that studies including on average older
participants tended to find larger effects, but this does
not imply that the treatment tended to be more effective
for older participants within studies (this may or may not
be true). We illustrate this idea schematically in
Figure 4a, showing the results from 50 trials where
indeed such a relationship at the study level is present
(i.e., the points correspond to the mean age values and
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FIGURE 4 Schematic illustrations of the between- and within-study relationship between the (mean) age of study participants and the

treatment effects in a set of 50 hypothetical trials (see text for explanations).
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the corresponding observed effects), but within studies,
there is no relationship between the age of the partici-
pants and the treatment effectiveness (i.e., the ovals rep-
resent envelopes containing the raw data). In contrast,
Figure 4b illustrates the opposite scenario, where no rela-
tionship exists at the study level, but within studies the
treatment is more effective for older participants.

Similarly, if the mean age of the study participants is
found to be positively associated with the amount of het-
erogeneity in the studies, then this indicates that studies
including older participants tended to yield more hetero-
geneous results. We illustrate this scenario in Figure 4c,
where we see increased between-study variance in the
effects for studies with older participants. However, such
a finding does not imply that the treatment effect varies
more strongly for older participants within studies. This
case is shown in Figure 4d, where treatment effectiveness
indeed varies more strongly for older participants within
studies (note the increase in variance in the raw data as a
function of age).

To properly examine such within-study relationships,
studies would need to quantify these types of associations
directly, for example by reporting the correlation between
the age of the study participants and the observed treat-
ment effects or their variability. Alternatively, one may
be able to quantify within-study differences in treatment
effects or their variability if the studies report subgroup
results (e.g., for younger versus older participants). Ide-
ally, if the raw data of the individual studies are available,
then an individual participant data meta-analysis could
also be conducted where between- and within-study rela-
tionships can be properly disentangled.60 This would be
equally true for relationships involving scale variables, in
which case multilevel location-scale models10,11,12 would
need to be used for the meta-analysis.

On a related note, there has been an increased inter-
est recently in meta-analyzing not only outcome mea-
sures that quantify the central tendency (i.e., average) of
a quantitative response variable, but also its variability
within groups or group differences thereof.61,62,63 In other
words, while a more “traditional” meta-analysis might
for example synthesize estimates of the difference in
the mean blood pressure of treatment groups receiving
antihypertensive therapy versus control groups, a meta-
analysis could also examine if the within-group variabil-
ity (as measured, for example, by the variance or
standard deviation of the blood pressure measurements)
differs between treatment versus control groups (e.g., by
computing the ratio of the two standard deviations for
each study and, after applying a suitable normalizing and
variance stabilizing transformation, synthesizing these
outcomes). It should be noted that meta-analyses of this
type are addressing a different question than what can be

examined with the location-scale model we have
described in the present paper, which is focused on the
between-study variability of the outcomes (i.e., are the
findings of studies more heterogeneous under certain
conditions than others?).§§ Hence, while there is a differ-
ence in purpose between these different approaches, they
both shift (at least to some extent) attention away from
questions about averages to questions about variances,
opening up avenues for new insights.

Moreover, as we have demonstrated in the illustrative
example, variables used as predictors for the location and
scale parts of the model do not have to coincide. There-
fore, one could even consider a model containing no loca-
tion variables at all (except for the intercept term,
allowing the average outcome to differ from zero), plac-
ing the focus entirely on an examination of scale vari-
ables to investigate under what conditions the outcomes
of studies are more or less heterogeneous within a partic-
ular meta-analysis.

Questions about differences in heterogeneity have
been raised previously. In particular, a number of prior
studies examined to what extent estimates of heterogene-
ity (or some derivative measure such as I2) differ across
meta-analyses.64,65,66,67,68 However, these studies com-
pared measures of heterogeneity across entire meta-
analyses (differing for example in terms of the effect size
measure used or the types of outcomes or interventions
studied), while the location-scale model described in the
present paper allows for an examination of differences in
heterogeneity across the studies included in a single
meta-analysis.

Conceptually closer to this idea was the study by
IntHout et al.,69 who examined differences in estimates
of τ2 for the larger versus smaller studies within individ-
ual meta-analyses. Across 235 meta-analyses that had
used the standardized mean difference as the outcome
measure, they found that smaller studies (with a total
sample size below roughly 50 participants) tended to
yield an estimate of τ2 that was on average 3.11 times
larger than the estimate of τ2 of larger studies (with more
than 50 participants). This is in line with what we found
in our illustrative example (see Figure 2b), showing a
decrease in the amount of heterogeneity for larger stud-
ies. In fact, the predicted value of τ2 for a sample size of
36 (the mean sample size of the smaller studies with less
than 50 participants) was bτ2 ¼ 0:105, compared to bτ2 ¼
0:035 for a sample size of 156 (the mean sample size of
the larger studies with more than 50 participants), yield-
ing a ratio of 3, which is remarkably close to the ratio
found by IntHout et al.69 By using a location-scale model,
we could however avoid the arbitrary dichotomization of
the studies into “small” versus “large” ones and directly
model the relationship between τ2 and the sample sizes.
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It needs to be emphasized that this finding is
unrelated to what we expect to see in a funnel plot,
namely a decrease in the variability of the estimates for
larger studies (at least when the true outcomes are suffi-
ciently homogeneous). This phenomenon is attributable
to the decrease in the sampling (or within-study) vari-
ance for larger studies and is a natural consequence of
the consistency of the estimators used for calculating the
observed estimates. However, the extent to which the
amount of heterogeneity in the underlying true effects/
outcomes differs across smaller versus larger studies
within a particular meta-analysis is an empirical question
that needs to be examined on a case-by-case basis,
irrespective of the general trend found by IntHout et al.69

The location-scale model we have described in the pre-
sent paper assumes independence between the observed
outcomes or effect size estimates included in the same
analysis. This assumption is often violated in practice, for
example when multiple effect size estimates (e.g., for dif-
ferent response scales) are computed based on the same
group of study participants, when multiple effect size esti-
mates are computed by contrasting several different treat-
ment groups against a common control group within at
least some of the studies, or when the data have some
other hierarchical structure (e.g., when multiple studies
included in the meta-analysis were conducted by the same
author or research lab).70,71,72,73 An appropriate analysis
of such dependent estimates requires the use of more
complex models, possibly including multiple random
effects (e.g., for studies and estimates within studies) while
accounting for potential covariance in the sampling errors
of the estimates. One could extend such multilevel/
multivariate meta-analysis models to also include a scale
model for each variance component (e.g., for the amount
of between- and within-study heterogeneity), although
this would increase the complexity considerably and
require even more nuanced considerations as to the types
of scale variables that may be associated with the various
sources of variability. At the moment, the rma.mv() func-
tion in the metafor package that can be used to fit multi-
level and multivariate meta-analysis models has not been
extended to allow for this possibility, although this could
be considered in a future update. For now, one could cir-
cumvent this issue by using subsets of the data that con-
tain only independent estimates and/or data aggregated to
a level at which the estimates can be assumed to be inde-
pendent to fit location-scale models.

Aside from some interesting applications, we hope
that the present paper will spark further research into the
statistical properties of location-scale models in the pre-
sent context and further extensions. As we alluded to ear-
lier, we suspect that the increased complexity of such
models will require a sufficiently large number of studies

to yield accurate estimates especially for the scale part of
the model. Under the usual regularity conditions, we can
reason that the ML/REML estimates of location-scale
models will be asymptotically fully efficient and that the
size of tests and the coverage rate of CIs will be nominal
when k is large, but the specific conditions under which
such behavior holds will require examination.

Still, we believe that location-scale models are a use-
ful tool for researchers interested in exploring whether
the amount of heterogeneity may differ as a function of
one or multiple predictor variables within a meta-analy-
sis, broadening the research questions that can be
addressed in the field of evidence synthesis.
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ENDNOTES

* For many outcome or effect size measures, the sampling variances
are a function of one or multiple unknown parameters, which in
practice need to be estimated based on the sample characteristics.
In this case, the sampling variances are not really known con-
stants, but estimates themselves. However, as long as the sample
sizes of the studies are not too small, the sampling variances can
be treated as approximately known.

† Technically, we only need to ensure that the diagonal elements of
M (i.e., the viþ τ2i values) are positive, so that M can be inverted.
However, since we may be interested in and want to interpret the
τ2i values themselves, we prefer to enforce non-negativity of the
Zα values directly.

‡ Even if this is indeed the case, it is of course possible that bα only
corresponds to a local maximum and that the global maximum
lies in some region of the likelihood surface even further away
from llP bαð Þ or llR bαð Þ.

§ This interval still ignores the uncertainty in bτ2. As a heuristic sug-
gestion, Higgins et al.35 propose to improve on this further by
using the 97.5th quantile of a t-distribution with k�2 degrees of
freedom in place of 1:96.

¶ To avoid any potential confusion, we note that the omnibus test
statistics Qβ and Qα are denoted as QM and QS, respectively, in
the output, although when using the adjustments described in
section 2.5.4, these omnibus tests are denoted as F statistics.

** Bangert-Drowns et al.55 only report the total sample size of each
study (ni), not the sizes of the experimental and control groups
separately (i.e., n1i and n2i, respectively). We therefore assumed
n1i ¼ n2i ¼ ni=2 for computing the sampling variances of the
(bias-corrected) standardized mean differences.

†† A slight difference will still arise with respect to the inferences
about the location coefficients when applying the Knapp-Hartung
method. In the location-scale model, the method involves a single
scaling factor, s2, to adjust the variance–covariance matrix of the
elements in bβ and the degrees of freedom for the t-distribution
are taken to be k�p�1. On the other hand, when fitting sepa-
rate random-effects models within each level of the categorical
moderator, separate scaling factors are calculated within each
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level and the degrees of freedom are kl�1, where kl denotes the
number of studies within level l of the moderator.

‡‡ However, note that the profile for α0 shows non-monotonic
behavior for low values of α0. Hence, the value of α0 ≈ �4:887
corresponds to a local maximum. Fortunately, this did not pre-
vent the optimization algorithm from finding the (presumably)
global maximum at bα0 ≈ �3:102.

§§ The location-scale model could however also be used to meta-
analyze outcome measures that reflect such between-group dif-
ferences in within-group variability. Location variables would
then be used to examine if the size of such between-group differ-
ences in variability are on average larger under certain circum-
stances than others, while the scale part of the model would be
used to examine if the amount of heterogeneity in such between-
group differences is larger for certain types of studies versus
others.
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