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Since COVID-19 emerged in 2019, significant levels of suffering and disruption have been caused on a glo-
bal scale. Although vaccines have become widely used, the virus has shown its potential for evading
immunities or acquiring other novel characteristics. Whether current drug treatments are still effective
for people infected with Omicron remains unclear. Due to the long development cycles and high expense
requirements of de novo drug development, many researchers have turned to consider drug repositioning
in the search to find effective treatments for COVID-19. Here, we review such drug repositioning and
combination efforts towards providing better handling. For potential drugs under consideration, aspects
of both structure and function require attention, with specific categories of sequence, expression, struc-
ture, and interaction, the key parameters for investigation. For different data types, we show the corre-
sponding differing drug repositioning methods that have been exploited. As incorporating drug
combinations can increase therapeutic efficacy and reduce toxicity, we also review computational strate-
gies to reveal drug combination potential. Taken together, we found that graph theory and neural net-
work were the most used strategy with high potential towards drug repositioning for COVID-19.
Integrating different levels of data may further improve the success rate of drug repositioning.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction breathing and low blood oxygen levels, potentially leading to res-
Beyond its first discovery in 2019, COVID-19 has become a glo-
bal pandemic. It is caused by Severe Acute Respiratory Syndrome
Coronavirus 2 (SARS-CoV-2) [1]. People with COVID-19 exhibit a
range of symptoms ranging from mild to severe. For the latter,
acute respiratory distress syndrome (ARDS) is of particular con-
cern. As triggered by nonspecific inflammatory cell infiltration
and a local cytokine storm, it is characterized by difficulty in
piratory failure. ARDS is listed as the cause of death for 70 % of
directly fatal COVID-19 cases. In addition to attacking the lungs,
COVID-19 related uncontrolled inflammation can also inflict
multi-organ damage, especially cardiac, hepatic, and renal systems,
which incorporate the primary causes of death for nearly all (28 %)
of the remaining 30 % of directly fatal cases [2].

To consider drugs that may target the virus and/or disrupt its
various stages of invasion and propagation within the body, it is
important here to give a brief overview of the SARS-CoV-2 virus
itself and its invasive strategy. The SARS-CoV-2 consists of the gen-
ome and the membrane that envelops it. It exists in a roughly
spherical shape where prominent club-shaped surface projections
represent its spike protein (S protein) and give it its characteristic
’crown-like’ appearance [3,4]. These spikes are tools for the virus to
invade the human body. When the spikes contact the target cell,
the S protein will attach to angiotensin-converting enzyme 2
(ACE2, an import modulator involved in blood pressure regulation
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[5]) on the respiratory tract cell surface, triggering endocytosis of
SARS-CoV-2 virus and the formation of an endosome. Endosome
encapsulation therefore enables the virus to escape from the
immune system. Within the endosome, the S protein can then be
cleaved by the proprotein convertase furin at the S1/S2 site, and
the transmembrane serine protease 2 (TMPRSS2) at the S20 site,
thus enabling the protein to refold and change its conformation.
The newly exposed part then fuses with the endosome membrane
for subsequent release [6]. Virus RNA is then able to be translated
into a polypeptide to synthesize RdRp under the action of 3CL pro-
tein. RdRp is RNA polymerase that allows RNA to replicate in the
body. Concurrently, as the virus genome begins to replicate, the
invaded host cell is now active in the production of virus proteins
instead of cellular proteins. These newly produced proteins and
viral genome are soon assembled to form the new virus which then
escapes from the host cell to invade other cells [7,8] (Fig. 1).

On November 26, 2021, the WHO designated Omicron
(B.1.1.529) as the fifth ‘‘Variant of Concern” (VOC) after the Alpha,
Beta, Gamma, and Delta Variants. Delta has 13 mutations, of which
nine are on the spike protein and two are on the receptor-binding
domain. Compared to Delta, Omicron is by far the most heavily
mutated variant. It has 50 mutations overall, with at least 32 vari-
ants on the spike protein, 10 of which are on the receptor-binding
domain. Omicron is highly contagious with only a three-day
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Fig. 1. The virus invasion of the human host cell. Following SARS-Cov-2 entering the cel
under the action of TMPRSS2 and Furin. The virus RNA is translated into a polypeptide to
allows RNA to replicate in the body. The replicated RNA and translated protein reassemb
further infect other cells.
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incubation period. Although vaccines are becoming popular, the
ability of Omicron to facilitate immune escape seems to be stron-
ger than that of previous variants, with existing infected and vac-
cinated people increasingly likely to become reinfected. The
process of drug discovery for SARS-CoV-2 therefore must aim to
be as adaptive as the virus itself, and to evolve continually to keep
up with the virus’ own evolution. A comparison of the features of
Omicron and other VOCs is shown in Table 1.

Because of the high probability of mutation of the SARS-CoV-2
virus, researchers are focusing on the development of antiviral
agents against the more conserved proteins among multiple coro-
naviruses [7,9–11]. Conserved proteins include RdRp, and the main
protease (Mpro). Remdesivir, authorized for emergency use by the
Food and Drug Administration (FDA), works by limiting a virus’
ability to replicate itself within the body. It has shown to have
antiviral activity against SARS-CoV-2 in vivo in rhesus monkeys
through its targeting of RdRp. However, one other clinical study
initially concluded that Remdesivir had no statistically significant
clinical benefits for severe COVID-19 patients [12]. Other studies
have viewed host protease as a drug target, including the targeting
of the cell surface proteases TMPRSS2 and furin. Bromehexine is an
oral mucolytic that has been identified as a TMPRSS2 inhibitor in a
high-throughput screening study. Its former use is to primarily
treat prostate cancer. However, in a recent biochemical study it
otein (S)
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l, SARS-CoV-2 binds to the cell receptor ACE2, then promotes cell membrane fusion
synthesize RdRp under the action of 3CL protein. RdRp is the RNA polymerase which
le into a new virus. This new virus is released outside the cell through exocytosis to



Table 1
The comparison of different VOC of SARS-CoV-2.

Variants of concern Alpha Beta Gamma Delta Omicron

Lineage B.1.1.7 B.1.351 P.1 (B.1.1.28.1) B.1.617.2 B.1.1.529
Emergence First detected in

United Kingdom in
November 2020

First detected in South Africa
in October 2020

First detected in January
2021 and tracked to Brazil

First identified in
India in December
2020

Emerged in South Africa’s
Gauteng province in mid-
October 2021

Mutations One or more
mutations in the
virus’ spike protein

Three mutations of particular
interest in the spike region

10 defining mutations in its
spike protein

Overall 13
mutations: 9 on
spike protein and 2
on RBD

� 32 variants on spike protein
and 10 on RBD

Transmission 40–80 % more
transmissible than
wild-type SARS-
CoV-2 by
estimation

– About 2.0 times (50 % CrI,
1.7–2.4 times) more
transmissible

One person infects
about six people,
more than original
virus (original- two
or three people)

High transmissibility

Incubation Six days on average – – Four-day
incubation period;
faster than the
original virus
(original- six days
on average).

Three-day incubation

Immune escape Blunts the potency
of infection-
blocking
‘neutralizing’
antibodies

More resistant to immunity
generated by vaccines or
previous infections than are
other variants, including
Delta

Evading about 32 % (50 %
CrI, 21–46 %) of inherited
immunity from previous
coronavirus diseases,
leading to the possibility of
reinfection

Antibodies created
by older strains
remain effective

Escapes the majority of existing
SARS-CoV-2 neutralizing
antibodies

Severity of Illness May be associated
with a higher
degree of mortality,
(awaiting further
evidence for
confirmation)

People infected with Beta
were 25 % more likely than
those infected with Alpha to
develop severe disease, as
well as 57 % more likely to
die

Greater chance of death
than for B.1.1.28 infections

People in UK with
Delta had double
the hospitalization
risk of those with
of an earlier variant

Compared with Delta virus,
Omicron patients have lower
hospitalization rate, ICU
hospitalization rate, and
machine oxygen absorption
requirement rates

Reference [93] [94 95] [93] [96] [96,97]

Abbreviation: CrI: Credible Interval; RBD: Receptor binding domain.
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failed to inhibit TMPRSS2 [9]. These studies may lead to an
increased urgency to identify more specific and/or novel inhibitors
against the rapid viral evolution of SARS-CoV-2 variants in human
hosts.

Traditional drug development is a difficult, expensive, and
time-consuming process. On average it takes 10 � 15 years
and $1.5 to $2.6 billion to bring a new drug to market [13]. Drug
repurposing provides an effective alternative method for higher-
speed, lower-risk, and lower cost drug development. It aims to
discover new use for existing or abandoned drugs. These drugs
have often previously undergone Phase I of clinical trial, have
already passed certain safety requirements, and have often
already been licensed for human use. These factors considerably
accelerate the drug’s developmental timelines and expense for
repurposing by about 3–6 years and about $300 million, respec-
tively [14].

Alsharif et al [15–17] has reviewed the potential for artificial
intelligence technology to be employed specifically to counter
the COVID-19 virus in three main areas: 1) in rapid diagnosis
and detection using X-ray and CT scans; 2) in prediction of out-
break virus spread; and 3) in the search for potential treatments.
Santamaría et al [18], similarly discussed the integration of hetero-
geneous biomedical data to aid drug repositioning, suggesting five
different paths in the search repurposable drugs: 1) COVID – symp-
toms – drugs; 2)COVID – symptoms – diseases – drugs; 3)
COVID – symptoms – diseases – genes – targets – drugs; 4) COVID
– genes – diseases – drugs; and 5) COVID – genes – targets – drugs.
Mule et al [19] has also reviewed the biological targets related to
SARS-COV-2, including targets associated with the virus and the
targets associated with the drug. To compliment, rather than
repeat, their commendable efforts, here we incorporate a small
molecule focus, and consider not only artificial intelligence tech-
5715
nology or target-based methods, but also other computational
methods.

This study therefore aims to not just discuss the existing drug
repositioning methods based on recent studies, but also to inspire
new drug repositioning methods for COVID-19. The key contribu-
tions of this work are summarized as follows:

1) Categorizing available data into four groups: sequence data,
expression data, structure data and interaction data;

2) Discussing the available methods for each aspect of the given
data;

3) Highlighting the potential for combination therapies to play
essential roles in antiviral therapies, often providing improved effi-
cacy and reduced toxicity [20], we therefore explore methods for
drug combination discovery.
2. Available data

Since its outbreak in 2019, our understanding of COVID-19 has
increased considerably relating to its virus genome [21,22], its
transcriptomic and proteomic expression profiles [23–25], its pro-
tein structure [26–29], its virus-host protein interactions [30–32],
and its relationship related to other coronavirus variants [33]. A
bundle of related resources has also been collected and summa-
rized by the National Center for Biotechnology Information (NCBI)
(see summary below).

� Virus genome

GenBank: NC045512, MN908947, MN938384, MN975262.

� Transcriptomic and proteomic expression profiles
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GEO: GSE147507, GSE162131, GSE153970; BIG: CRA002390;
NGDC: PRJCA002273; iProX: IPX0002106000, IPX0002171000,
IPX0002393000; PRIDE: PXD017710.

� COVID-19 relevant protein structure

3CLpro (PDB ID: 6LU7), PLpro (PDB ID: 6WX4), RdRp (PDB ID:
7BV2, 6 M71, 7BTF), spike receptor-binding domain (RBD) (PDB
ID: 6M0J), N protein (PDB ID: 6M3M) and ACE2 (PDB ID: 1R42).

� Virus-host protein interactions

332 high-confidence protein interactions between SARS-CoV-2
proteins and human proteins (https://public.ndexbio.org/#/net-
work/43803262-6d69-11ea-bfdc-0ac135e8bacf).

� COVID-19 registry

https://clinicaltrials.gov/ct2/results?cond = COVID-19.

� Other coronavirus variants:
Table 2
Drug-related information.

Resource Type Description

ChEMBL General database Manually curated databas

DrugCentral General database Drug information resource

PubChem General database Database of chemical stru

ZINC15 Chemical 3D structure Database of 3D formats of

DrugBank Drug–target associations Database of drugs and dru

STITCH Drug-target associations Interaction networks of ch
Target Therapeutic

Database
Drug–target associations Database of therapeutic p

pathway information and
targets

BindingDB Drug–target associations Database of measured bin

Guide To
Pharmacology

Drug–target associations An expert-driven guide to
them.

PharmGKB Drug–target associations,
Drug’s indications

A resource assessing the i
variation on drug respons

BindingDB Drug–target associations Interactions of proteins w

cMap Drug perturbations Collection of genome-wid
cells treated with bioactiv

LINCS Drug perturbations Database of gene expressi
agents

CTD Chemical-disease interactions,
Gene-disease interactions,
Chemical-protein interactions

A database of chemical–ge
disease relationships

SIDER Drug’s side effects A database of adverse dru

FAERS Drug’s side effects A database of adverse dru

DynaMed Drug’s indications,
contraindications and adverse
reactions

Database of evidence-base

ATC Drug ontology Medicinal products classifi
active ingredient.

ChEBI Drug ontology Dictionary of molecular en
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SARS-CoV (GEO: GSE1739, GSE33267, AY390556, AY485277,
AY508724, AY278489), MERS-CoV (GEO: GSE122876, KT006149,
KM027262), HCoV-229E (GEO: MN306046) and HCoV-NL63
(GEO: MG77280.

� Bundled resource related to SARS-CoV-2

https://www.ncbi.nlm.nih.gov/sars-cov-2/.
The related knowledge of existing drugs including chemical

structures [34–37], drug-target interactions [34–36,38–42], drug
perturbations [43,44], phenotype effect [36,40,45–47] and drug
classifications [48,49] has been identified and accumulated here.
A brief summary of these related drug resources is provided in
Table 2.
3. Computational techniques for drug repositioning

For different data types, different methods have been used to
relocate relevant drugs. Fig. 2 shows a schematic overview of the
available data sets and corresponding methods. On the left differ-
URL

e of bioactive molecules https://www.ebi.ac.
uk/chembl/
https://drugcentral.
org/

ctures, identifiers, related diseases of molecules https://pubchem.ncbi.
nlm.nih.gov/

compounds https://
zinc15.docking.org/

g targets https://
go.drugbank.com/

emicals and proteins https://stitch.embl.de/
rotein and nucleic acid targets, targeted disease,
the corresponding drugs directed at each of these

https://bidd.nus.edu.
sg/group/cjttd/

ding affinities between drugs and proteins https://www.
bindingdb.org/bind/
index.jsp

pharmacological targets and the substances that act on https://www.
guidetopharmacology.
org/

mpact of genetic
e

https://www.
pharmgkb.org/

ith drug-like molecules https://www.
bindingdb.org/bind/
index.jsp

e transcriptional expression data from cultured human
e small molecules

https://www.
lincsproject.org/

on when cells are exposed to a variety of perturbing https://cancergenome.
nih.gov/

ne/protein interactions, chemical–disease and gene– https://ctdbase.org/

g reactions https://sideeffects.
embl.de/

g reactions https://open.
fda.gov/data/faers/

d drug metadata. https://
www.dynamed.com/

ed according to the main therapeutic use of their main https://www.whocc.
no/atc_ddd_index/

tities focused on ‘small’ chemical compounds https://www.ebi.ac.
uk/chebi/

https://public.ndexbio.org/%23/network/43803262-6d69-11ea-bfdc-0ac135e8bacf
https://public.ndexbio.org/%23/network/43803262-6d69-11ea-bfdc-0ac135e8bacf
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ent data type categories, representing different levels of biological
systems, are presented. On the right side the relevant computa-
tional approaches are shown. Arrows link the different levels of
data to their corresponding methods. For example, for expression
data, signature mapping and neural network can be employed for
drug repositioning. We will now go on to discuss the computa-
tional techniques that have been successfully exploited for each
level of data. Whilst some methods may cross multiple levels of
data, here we simply focus upon the most important or relevant
level of data in our explanations.
3.1. Sequence-based computational techniques

The genome sequence is the basis of viral inheritance. The gen-
ome of SARS-CoV-2 contains a positive-sense and single-stranded
RNA of about 30 kb size [4]. Since its outbreak, the COVID-19 gen-
ome of different regions has been successfully sequenced over
time. The viral nucleotide sequence can be incorporated into a
metabolic network with nodes (representing chemical compounds
or metabolites) and edges (identifying reaction that can be cat-
alyzed by one or more enzymes). In this representation, it is noted
that an excessive concentration of a compound, that has accumu-
lated as result of a particular enzyme, can result in a particular
observed pathology. Thus, these enzymes can be considered as tar-
gets for possible therapies [50]. Here flux balance analysis (FBA),
can be incorporated as a mathematical approach for analyzing
the flow of metabolites in such a metabolic network [51].
Expression Data

Structure Data

Interac�on Data

Sequence Data

Fig. 2. The relationship between available data and corresponding methods. On the left s
sequence data, a common approach is FBA; 2) For expression data, the common method
and molecular docking are generally used; 4) For interaction data, neural network and gra
adopted from https://www.youtube.com/shorts/oeqJo9xYviY
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Renz et al. firstly converted the genome and protein sequences
to counts of nucleotides and amino acids. Then, by incorporating
these nucleotides, amino acids, Adenosine triphosphate (ATP),
and the liberation of pyrophosphate (PPi) of SARS-CoV-2 into an
existing infected alveolar macrophage model, they were able to
build a vital biomass objective function (VBOF). By optimizing
the VBOF growth rate, they found the stoichiometric and metabolic
changes between uninfected and infected host cells and identified
the potential antiviral targets using reaction knock-outs and host-
derived enforcement approaches [52]. As a result, the authors
highlighted guanylate kinase (GK1) for potential use for antiviral
therapies against SARS-CoV-2.

FBA is therefore commonly used for analyzing diseases caused
by pathogens. It represents a rapid repositioning method related
to genome sequences. However, this study also has some limita-
tions: i) the VBOF only considers amino acids, nucleotides, and
energy requirements, and does not consider virus-host cell recog-
nition, viral entry, or lipid envelope production or release; ii) it
uses the genome-scale metabolic model (GEM) of human alveolar
macrophages, rather than that of airway epithelial cells (AEC).

3.2. Gene expression-based computational techniques

Therapeutic interventions need to consider the perturbation of
disease system properties, and have less to do, functionally speak-
ing, with genetic and genomic events alone [53]. We often use gene
expression changes in the primary descriptions of perturbed
disease systems. The COVID-19 expression profiles can be retrieved
Signature Matching

FBA

Neural Network

Graph Theory

Molecular Docking

drug-induced gene profile
disease-induced gene profile

ide are the available data types, with the corresponding methods on the right. 1) For
s are signature matching and neural network; 3) For structure data, neural network
ph theory can be taken. The sub-figure about molecular docking are the screenshot .

https://www.youtube.com/shorts/oeqJo9xYviY
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from GEO or Array Express, which contains raw gene expression
data from hundreds of disease conditions in human and animal
models. Meanwhile, drug perturbations can be derived from Con-
nectivity Map (cMap) [43], which consists of gene expression pro-
files (GEP) generated via the dosing of � 1,300 compounds in five
human cancer cell lines. The next generation of cMap is the L1000
platform, part of The Library of Integrated Network-Based Cellular
Signatures (LINCS) [44]. The first installment of L1000
encompasses � 1,400,000 GEPs generated with � 20,000 com-
pounds upon treatment of � 50 human cell lines. Based on such
gene expression data, signature matching and neural network
methods can be then used for drug repositioning.

� Signature matching

Signature matching, also known as signature reversion, involves
investigation of whether disease expression patterns can be
reversed on a molecular level. This has been applied specifically
for COVID-19 [50], and shown to be of potentially therapeutic ben-
efit. On one hand, COVID-190s signature can be identified by com-
paring the gene expression profiles between COVID-19 patients
and unaffected controls. On the other hand, the molecular signa-
ture can be evaluated by comparing the expression changes before
and after treatment with small molecules. A commonly used
method of signature matching is Gene Set Enrichment Analysis
(GSEA) [54], a computational method that determines whether a
priori defined set of genes shows statistically significant differ-
ences between two biological states. In our scenario, GSEA is used
to determine whether the differentially expressed genes (DEGs)
between COVID-19 patients and unaffected controls are enriched
in the drug perturbed expression profile.

Mahmud et al. performed transcriptomic RNA-seq analysis of
idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary
disease (COPD) and COVID-19, revealing 65 shared DEGs. The hub-
genes of the common DEGs were viewed as drug targets, and drug
molecules were identified using the Drug Signatures database
(DSigDB) [55] via the interactive web tool Enrichr [56–58]. Finally,
they identified 10 potential chemical compounds that have poten-
tial for repurposing against COVID-19 [59].

Furthermore, in GSEA, the DEGs between COVID-19 patients
and unaffected controls can be presented along with a sign indicat-
ing whether up or down-regulation is represented, which is viewed
as a query. In this case the compound molecular signature consti-
tutes the reference database. If the up-regulated query genes
appear towards the bottom of the rank-ordered molecular signa-
ture, and the down-regulated query genes appear towards the
top of the rank-ordered molecular signature, this suggests that
the drug can reverse the disease signature. Based on this hypothe-
sis, Zhou et al. calculated the enrichment score (ES) for each drug
and used this score to validate 135 anti-HCOV drugs. [33].

Compared to the study of Mahmud et al, Zhou et al not only
considered the DEGs, but also took the sign of up or down-
regulation into consideration which enables an improvement in
prediction power. However, the number of perturbation data limits
the application of such methods.

� Neural network

Neural network have developed rapidly over recent years and
have facilitated achievements in natural language processing and
image recognition. In the context of drug repositioning, and based
on expression data, they have been used to learn the embedding
representation of GEP for both COVID-19 and drugs, and then cal-
culate the level of corresponding correlations. The most negatively
related drugs with COVID-19 are then viewed as therapeutic
candidates.
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In this way, Pham et al. used a deep learning framework,
DeepCE, to predict the GEP for novel chemicals. They took L1000
[60] experimental information, which contains the chemical com-
pound, 978 L1000 genes, seven most frequent cell lines, and six
most frequent chemical dosages, as inputs. They then transformed
these into numerical representations and used them in a prediction
network to predict GEP based on these representations. For drug
repositing, they screened drugs in DrugBank using computations
of Spearman’s rank-order correlation scores of GEPs for the drug
and the patient (GEO: GSE147507, NGDC: PRJCA002273) and
selected the drugs that gave the most negative scores as of poten-
tially therapeutic value. In total, they identify 10 potential drugs
for PRJCA002273 and 15 drugs for GSE147507 (Table 3 for details)
[61].

To summarize, changes in gene expression reflect the body’s
response to stimuli, such as from diseases or chemical drugs. The
basic assumption for signature matching and neural network based
on expression data is to seek drugs to treat diseases by reversing
the phenotype of the disease. Compared with signature matching,
neural network can not only utilize known drug expression pro-
files, but also predict expression profiles of de novo chemicals,
which would greatly help to expand the scope for drug screening.

Although expression-based approaches are more unbiased, sev-
eral drawbacks can be found. For example, if a drug or a disease
does not produce a strong perturbation of gene expression, noisy
profiles will be generated, leading to higher levels of false positives
[50].

3.3. Structure-based computational techniques

Structure is the basis of function. The structure of COVID-19-
related proteins and molecular compounds can also be used to
aid in drug repositioning. Information on the structure of proteins
includes the sequence of amino acids (AA) [28], secondary struc-
ture [62], and 3D structure [63]. A compoundmolecule also has lin-
ear representations such as SMILES [64], inChi [65], 2D structure,
and 3D conformations (Table 2). Using structure-based data, neural
network and molecular docking can be exploited for drug
repositioning.

� Neural network

As for 1D structural data, nucleotide and amino acid sequences
are analogous to natural language. Hence, a neural network can be
employed to predict molecular-protein associations.

Ke et al. [66] used a Deep Neural Network (DNN) to identify the
most important molecular descriptors from extended connectivity
fingerprints (ECFPs) [67], functional-class fingerprints (FCFPs) [68],
and octanol–water partition coefficient (also known as an AlogP_-
count) to assign different weightings. They built an artificial intel-
ligence (AI) platform using two independent datasets: one relating
to drugs reported to be against virus, the other the known 3CL pro-
tease (See Fig. 1) inhibitors. As the infection by feline infectious
peritonitis (FIP) virus in cats presented similar features to the sev-
ere acute respiratory syndrome (SARS) infection, all AI predicted
drugs were then tested for activities against the feline coronavirus
in an in-vitro cell-based assay. These assay results were fed back to
the AI system for relearning and thus to generate a modified and
improved AI model that can be subsequently reemployed to search
for drug candidates. Finally, the AI system identified 80 marketed
potential drugs. Among them, eight drugs showed in vitro activi-
ties against FIP, and five other drugs were also found to be active
(Table 3). In this study, the authors used AI to quickly identify
drugs with potential activities inhibiting SARS-CoV-2. However,
their use of an in vitro cell model for feline coronavirus replication
rather than SARS-CoV-2, made the results unreliable.



Table 3
Comparison of studies based on neural network.

Reference Starting Dataset Algorithm Potential drugs Description Advantages Limitations

Pham et al.
[61]

LINCS L1000, STRING,
DrugBank, COVID-19
Patient
Gene Expression

DeepCE Faldaprevir, Alisporivir,
NIM811, Ceftobiprole
medocaril, Anidulafungin,
Oteseconazole, Voclosporin,
Cyclosporine, Valspodar,
Evacetrapib for
PRJCA002273 and Elbasvir,
Zibrentasvir, Velpatasvir,
Ruzasvir, Samatasvir,
Odalasvir, Coblopasvir,
Baloxavir Marboxil,
Metocurine, Dactinomycine,
Laniquidar, Tadalaf1, SD146,
AMG-487 GE-2270A for
GSE147507

Models chemical
substructure–gene and
gene–gene associations for
predicting the DEG profile
perturbed by de novo
chemicals

Predicts chemical-induced
gene expression profiles
from chemical and
biological objects,
especially in a de novo
chemical setting

Little agreement is
present among
the potential
drugs for two
different patients

Ge et al. [85] Drug-target-disease CoV-DTI CVL218 An integrative drug
repositioning framework
including mining
knowledge graphs using
GCN, literature filtering,
signature matching and
wet experiment evaluation

An integrative pipeline
studying the mechanism of
action of CVL218

CVL218 is in Phase
I clinical trial

Zeng et al.
[86]

Global Network of
Biomedical
Relationships (GNBR);
and DrugBank.

CoV-KGE Tetrandrine, Nadide,
Estradiol, Rifampicin,
Idoxuridine, Sirolimus,
Deferoxamine, Prednisone,
Vancomycin, Zidovdine,
Ampicillin, Hydrocortisone,
Etoposide, Methotrexate,
Cyclosporine, Indomethacin,
Etodolac, Ganciclovir,
Ivermectin, Suramin,
Clofazimine, Prednisolone,
Cyclic adenosine,
monophosphate,
Dinoprostone,
Camptothecin,
Dexamethasone, Lopinavir,
Emetine, Thalidomide,
Niclosamide,
Methylprednisolone,
Ribavirin, Umifenovir,
Clomifene, Mefloquine,
Chloroquine, Hydroxychloro
quine, Bazedoxifene,
Toremifene, Azithromycin,
Melatonin

Knowledge-graph-based
deep-learning
methodologies including
KG embedding using
rotation and validation by
gene set enrichment
analysis

Demonstrates a powerful
deep-learning methodology
to prioritize existing drugs
for further investigation

Not robust to
noise in graph
data

Ke et al. [66] Compounds reported
or proven active
against SARS-CoV,
SARS-CoV-2, HIV, and
influenza virus; the
known 3C-like
protease inhibitors

Bedaquiline, Brequinar,
Celecoxib, Clofazimine,
Conivaptan, Gemcitabine,
Tolcapone, Vismodegib,
Boceprevir, Chloroquine,
HomoharrinGtonine,
Tilorone, Salinomycin

Uses two AI models to
learn the most important
descriptors of compounds

Can quickly identify drugs
with potential activities
inhibiting SARS-CoV-2
based on 1D structure of
compounds

Uses a feline
coronavirus to
validate the drug
activities, which is
different from
SARS-CoV-2
in vitro cell model

Beck et al.
[69]

Amino acid
sequences; SMILES
representation
of � 1,000,000,000
compounds

MT-DTI Atazanavir, Remdesivir,
Kaletra, Rapamycin,
Tiotropium Bromid

Deep learning-based drug-
target interaction
prediction model

SMILES and AA are 1D
strings. It is possible to
quickly apply target
proteins that do not have
experimentally confirmed
3D crystal structures

Does not consider
the spatial
conformation of
drugs and
proteins

Jin et al. [89] SARS-CoV-2 DTI data;
SARS-CoV-2 targets;
molecular structures

ComboNet Remdesivir + Reserpine,
Remdesivir + IQ-1S

Consists of two
components. The first a
GCN that learns the
representation of a
molecule and the second
that models
target� disease association

Performs significantly
better in synergy prediction
accuracy than previous
methods with limited drug
combination training data
by incorporating additional
biological information

Needs to
incorporate
additional
biological
information

Bold: in clinical trial; italic: in vitro test.
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Beck et al. then viewed AA sequences of SARS-CoV-2 and
SMILES [64] representation of drugs as natural language and used
Molecule Transformer-Drug Target Interaction (MT-DTI) based on
5719
deep learning to predict drug-target interactions (The target is
3C-like proteinase of SARS-CoV-2). As a result, Atazanavir, Remde-
sivir, and Kaletra, were all predicted to inhibit SARS-CoV-2. Rapa-



Table 4
Comparison of studies based on molecular docking.

Reference Starting Dataset Target Potential drugs Description

Jang et al.
[12]

Cocrystal structure of Mpro and RdRp;
cocrystal structure of compounds

Mpro (PDB ID: 6LU7); RdRp (PDB ID:
6 M71)

Blonanserin, Emodin (targeting
Mpro), Omipalisib, Hypericin, NS-
3728, Tipifarnib, LGH-447 (targeting
RdRp)

All 6,218 compounds were
screened against Mpro and
RdRp of SARS-CoV-2 by
docking simulations

Liu et al.
[71]

3CLpro structure, structure of the
compounds

3CLpro (PDB ID: 6LU7) ZINC000118795962 (Itacitinib),
ZINC000003775281,
ZINC000028827350 (Telcagepant),
ZINC000043206238 (Vidupiprant),
ZINC000100472223 (Pilaralisib),
ZINC000095930125 (Poziotinib),
ZINC000043131420 (Fostamatinib),
ZINC000022442861,
ZINC000000538550 (Ziprasidone),
ZINC000009212428 (Folinic Acid),
ZINC000058540931 (ITX-5061)

Uses the SCAR protocol to
identify possible covalent
drugs targeting 3CLpro of
SARS-CoV-2

Shah et al.
[70]

Protein structure of COVID-19 3CLpro
with co-crystallized structure,
structure of 61 reported antiviral
agents

Mpro (PDB ID: 5R7Y, 5R7Z, 5R80, 5R81
and 5R82)

Lopinavir, Asunaprevir, Remdesivir,
CGP42112A, Indinavir, Ritonavir,
ABT450, Marboran (Methisazone)
and Galidesivir

Uses Maestro interface to
perform docking targeting
3CLpro of SARS-CoV-2 and
considers 9 drugs interacting
with > 2 protein structures.

Li et al.
[73]

Compound from ZINC15, The 3D
structures of the indicated proteins

Cathepsin B (PDB ID: 1CSB), cathepsin
L (PDB ID: 5MAE), TMPRSS2
(homology model; PDB ID: 5CE1)

Trapoxin B, domatinostat (4SC-202)
and (targeting CarB);neratinib (HKI-
272), HKI-357 and (Z)-dacomitinib
(targeting CarB and CarL)
;lodoxamide, aceneuramic acid, (S)-
boceprevir and (R)-boceprevir
(targeting TMPRSS2)

Uses molecular docking
towards cathepsin B, cathepsin
L, and TMPRSS2

Chen et al.
[29]

FDA-approved drugs from ZINC15
database and Taiwan NHI-approved
drugs from the website of NHI, 3CLpro,
PLpro, RdRp, spike receptor-binding
domain (RBD), N protein, ACE2

spike receptor-binding domain (RBD)
(PDB ID: 6M0J), 3CLpro (PDB ID:
6LU7), RdRp (PDB ID: 7BV2), PLpro
(PDB ID: 6WX4), N protein (PDB ID:
6M3M), ACE2 (PDB ID: 1R42),
TMPRSS2 (homology model; PDB ID:
5CE1)

Uses molecular docking
towards 5 virus proteins and 2
host proteins

Bold: in clinical trial; italic: in vitro test.
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mycin and tiotropium bromide were also noted as potentially
effective [69].

� Molecular docking

If 3D conformations of related proteins to COVID-19 and drugs
are available, molecular docking can then be used to simulate their
interactions (Table 4). This predicts the binding geometries as well
as binding energy of the drug-target complex (https://wikim-
ili.com/en/Docking_(molecular)#cite_note-pmid8804827-1).
Related studies can be divided into three categories: 1) the target-
ing of SARS-CoV-2 proteins; 2) the targeting of host proteins; and
3) the targeting of both SARS-CoV-2 proteins and host proteins
(Fig. 3). Detailedly speaking,

i) In SARS-CoV-2 proteins, the main protease (Mpro, also called
3Clpro, Fig. 1) is involved in post-transcriptional cleavage of essen-
tial viral polypeptides. Another protein, RNA-dependent RNA poly-
merase (RdRp, Fig. 1) affects the replication of the virus genome.
Mpro and RdRp are both conserved, so are suggested as suitable
drug targets [12].

Shah et al. performed molecular docking targeting of the 3CLpro
complex using Maestro interface and identified 9 antiviral drugs
out of 61 antiviral molecules [70]. Jang et al. proposed a virtual
drug screening strategy comprising pre-docking filtering, docking
simulation, and a post-docking filter processes, to identify drug
candidates targeting Mpro and RdRp. This resulted in 15 and 23
potential repurposed drugs, respectively [12]. Based on molecular
docking, Liu et al. used a computational protocol named SCAR to
identify possible covalent drugs targeting 3CLpro of SARS-CoV-2
[71]. They used AutoDock Vina [72] to dock the small molecules
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to the substrate-binding pocket of the SARS-CoV-2 3CLpro. Eleven
potential covalent inhibitors of the 3CLpro of SARS-CoV-2 were
identified.

ii) Targeting host proteins provides another way to fight SARS-
CoV-2. Li et al. developed covalent inhibitors using the SCAR tool
for TMPRSS2 (see introduction) and CatB/L, which prime the S pro-
tein together with TMPRSS2 [73].

iii) For targeting both SARS-CoV-2 proteins and host proteins,
Chen et al. [29] innovatively developed DockCoV2 (https://co-
virus.cc/drugs/), focusing on the use of AutoDock Vina to predict
the binding affinity of FDA or Taiwan National Health Insurance
(NHI) approved drugs, and seven target proteins. Of the seven tar-
get proteins, five were SARS-CoV-2 proteins: (spike protein,
3CLpro, RdRp, Papain-like protease (PLpro - regulating SARS-CoV-
2 viral spread and innate immunity [74]), and nucleocapsid (N)
protein); and two were host proteins: (ACE2, and TMPRSS2 [29]).
Subsequently, Yu et al. [75] used a plaque reduction assay to eval-
uate the antiviral potency of 12 compounds from DockCoV2 [29]
for multiple-targets including TMPRSS2, 3CLpro and PLpro. Their
strategy revealed that tamoxifen possesses an anti-SARS-CoV-2
property owing to its inhibitory performance for multiple assays.

Targeting viral proteins has high specificity and involves less
damage to the human body, while targeting human proteins may
detrimentally affect certain functions of the human body as such
proteins may be involved in multiple physiological processes.

In summary, neural network can be used to model 1D data of
structure, such as SMILES presentation of drugs and AA sequences
of protein. The advantage of this is that it can quickly target pro-
teins that do not have experimentally confirmed 3D crystal struc-
tures. However, disadvantages also exist: i) a lot of data is required

https://wikimili.com/en/Docking_(molecular)%23cite_note-pmid8804827-1
https://wikimili.com/en/Docking_(molecular)%23cite_note-pmid8804827-1
https://covirus.cc/drugs/
https://covirus.cc/drugs/


Fig. 3. Main targets of molecular docking. (A-F) SARS-CoV-2 proteins; (G-I) Host proteins. A. 3CLpro (PDB ID: 6LU7), B. RdRp (PDB ID: 7BV2), C. PLpro (PDB ID: 6WX4), D. N
protein (PDB ID: 6M3M), E. spike receptor-binding domain (RBD) (PDB ID: 6M0J), F. ACE2 (PDB ID: 1R42), G. TMPRSS2 (homology model; PDB ID: 5CE1), H, Cathepsin B (PDB
ID: 1CSB), and I. cathepsin L (PDB ID: 5MAE).
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for the training of such a model, and ii) 1D information may not be
sufficient for actual situational application. Compared to neural
network, molecular docking is useful for the rapid identification
of drug candidates for any known target protein, particularly if
only the cocrystal structures of the target protein bounding to
ligands are available [12]. However, molecular docking is deeply
dependent on the cocrystal structures of the target proteins. All
factors considered, structure-based approaches (both neural net-
work and molecular docking) have proved useful and relevant to
be applied to the initial stages of drug discovery.
5721
3.4. Interaction-based computation techniques

In structure-based computational techniques, scientists model
the binding of drugs and the target of proteins for drug reposition-
ing. However, individual proteins do not operate in isolation from
the complex systems, interactions, networks, and pathways incor-
porating many other protein players within the complexities of
molecular machinery. Therefore, each drug-target interaction
needs to be examined in its integrative context. Scientists have
identified many interactions between viral proteins and host pro-
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teins in an in-silico or experimental way [30–32]. Recent research
has revealed interactions between viral RNA (vRNA) and host pro-
teins using genome-wide CRISPR [76,77] and shRNA screening
[78]. By incorporating these virus-human interactions together
with human protein–protein interactions (PPI) [79–81] and drug-
target interactions [82], a heterogenous network can be con-
structed that includes nodes as biological entities (e.g. a drug, a dis-
ease or a protein), and with edges referring to interactions. In fact,
many drugs frequently show additional targets beyond the
intended ones, as they are interacting with differing networks that
share functional protein–protein interactions [83]. To explore the
additional targets of drugs, scientists therefore have used graph
theory and neural network.

� Graph theory analysis

The interplay between the HCoV–host interactome and drug
targets in human protein–protein interaction network has been
now quantified to screen for candidate drugs for HCoVs. In graph
theory analysis, network proximity can be used to measure the dis-
tances between two modules, such as drug–target and disease–
gene modules. Several proximity measures have been defined such
as shortest, closest, separation, kernel, and centre measures. Zhou
et al. utilized network proximity to qualify the interplay of drug
targets and HCoV–host interactions in the human interactome
[33]. Network proximity is measured by the average shortest path
between drug targets and HCoV-associated proteins in the human
protein–protein interactome. To evaluate the significance of the
network distance between a drug and a given disease, they con-
structed a reference distance distribution by permutation tests. A
z-score was used to qualify the significance of the shortest path
length between targets for a drug and proteins associated with
the COVID-19 modules. Finally, they prioritized 16 potential anti-
HCoV potential drugs (Table 5). However, there were some limita-
tions: i) the drugs were anti-HCoV rather than anti-SARS-CoV-2 as
the interactions between SARS-CoV-2 and host had not yet been
sufficiently identified at the time they conducted their study; ii)
due to lack of detailed pharmacological effects of drug targets, this
study could not separate therapeutic from adverse effects; and iii)
the study could not predict antiviral drugs that could targeting
virus proteins directly.

Starting with a selected set of hypothesis-driven seeds (virus
proteins, human proteins, or drugs), it is possible to firstly identify
subnetworks connecting these seeds, then subsequently identify
drug repurposing candidates associated with these mechanisms.
Based on this, Sadegh et al. developed an online platform called
CoVex [84]. In this, they utilized multiple graph theories (including
degree centrality, closeness centrality, betweenness centrality,
TrustRank, Multi-Steiner, KeyPathwayMiner) to find a subgraph
of minimum cost connecting a given a set of seed nodes. Such seed
nodes can be viral proteins, proteins of interest, or drugs of inter-
est. For example, the drugs targeting viral proteins to interrupt
the viral life cycle progression might be discovered from a multi-
Steiner tree computation. Given a list of user-selected human host
proteins, viral proteins, or drugs (referred to as seeds), users can (i)
search the human interactome for viable drug targets; and (ii)
identify potential drug candidates. An additional contribution to
this study given by these researchers is their development of a
freely accessible web server to predict drugs that provides the
opportunity for users to start with their own selected proteins.

� Neural network

Neural network operates on a knowledge graph (KG), which
contains relationships between different kinds of medical entities
(e.g., diseases, drugs, and proteins). By doing so they try to predict
5722
new links between existing approved drugs and diseases. Graph
Neural Network (GNN) refers to the general term for models
applied by neural network to graph. They utilize structural infor-
mation to predict missing links in the KG. Each node in the graph
continually changes its state due to the influence of its neighbors
and of further nodes until the final equilibrium is reached. The clo-
ser the neighbors are, the greater the influence. GNNs have been
widely used in recommender systems, traffic prediction, computer
vision, natural language processing, and in other fields.

Ge et al. [85] used GCN (Graph Convolutional Network, a kind of
GNN)-based CoV-KGE for the initial screening of drugs for COVID-
19. GCN updated the hidden state of all nodes iteratively to pro-
duce useful feature representations of the nodes based on an
aggregate of their neighborhoods. After calculation, they derived
a confidence score for each virus-target-drug pair and obtained
the corresponding P-values by z-test. The drugs with P-
value < 0.05 were selected as the drug candidates for each virus
protein. Following the web-lab validation, they identified poly-
ADP-ribose polymerase 1 (PARP1) inhibitor, CVL218, as a poten-
tially effective drug which is currently at Phase I of its clinical trial
[86]. Whilst this study provides a valuable integrative pipeline for
drug repositioning, one limitation has remained in that it is only
able to target virus proteins.

Zeng et al. [86] constructed a KG derived from a combination of
24 million inputs from PubMed publications or DrugBank, includ-
ing 15 million edges across 39 types of relationships connecting
drugs, diseases, genes, anatomies, pharmacologic classes, and
gene/protein expressions, etc. They then utilized a graph embed-
ding model, RotatE, to predict missing links between drug and
HCoV-related genes. Followed by the validation in three gene
expression data sets of SARS-CoV-1-infected human cells and one
proteomics data set of SARS-CoV-2 infected human cells, they
finally identified 41 high-confidence drug candidates for repurpos-
ing (Table 3).

Both graph theory and neural network systematically explore
the entire biological network. Graph theory utilizes network prox-
imity to seek drugs targeting disease modules. However, the real
interactions between biological entities in biological network
may not be as ideal as network proximity of graph theory, and at
the same time, interaction networks in disease states may differ
from those in normal physiological states. By contrast, neural net-
work remains an effective way to predict missing links between
drugs and targets. Despite this, the black box of neural network
makes the network less interpretable. Therefore, both techniques
suffer from significant limitations with the lack of experimentally
validated examples of negative drug targets often resulting in
many false-positive predictions.

3.5. Integrated approaches

The previously described methods repurpose drugs based on
different types of data. However, each type of data represents only
a partial vision of a biological system. For example, PPI networks
identify potential interactions between proteins, but do not cap-
ture responses to stimuli; expression data can accurately capture
stimulus-induced responses, but is of less use to extract potential
interactions from them due to the problem of noise [50]; structure
data considers well the interaction of drug and a single protein, but
lacks any incorporation of an integrative context. For this reason,
the integration of these heterogeneous data types is necessary to
build a systematic view of a biological system that incorporates
multiple angles for consideration and result in more accurate
predictions.

In this way, Tomazou et al. proposed a protocol to multiplex
drug repositioning against COVID-19 based on multi-omics data,
including expression-based data (by signature matching),



Table 5
Comparison of studies based on graph theory.

Reference Graph Algorithm Potential drugs Description Advantages Limitations

Zhou et al.
[33]

Drug-
target-
disease

Network Proximity Irbesartan, Toremifene, Camphor, Equilin,
Mesalazine, Mercaptopurine, Paroxetine,
Sirolimus, Carvedilol, Colchicine, Dactinomycin,
Melatonin, Quinacrine, Eplerenone, Emodin,
Oxymetholone,
Sirolimus + dactinomycin,
Mercaptopurine + Melatonin,
Toremifene + Emodin

Measures the network proximity of
drug targets and HCoV–host proteins in
the human interactome

Systematically identifies repurposable drugs by
specifically targeting HCoV-host proteins and
identifying drug combinations by
complementary exposure

1. Uses HCoV-host PPIs
rather than SARS-
CoV-2-host PPIs;

2. Cannot separate ther-
apeutic and adverse
effects;

3. Cannot predict drugs
that target virus pro-
teins directly

Sadegh
et al.
[84]

Drug-
target-
disease

Degree centrality,
Closeness
centrality;
Betweenness
centrality;
TrustRank;
Multi-Steiner;
KeyPathwayMiner

Aims to find a subgraph of minimum
cost connecting a given set of seed
nodes

It offers an interactive online platform for
SARS-CoV-2 host interactome exploration and
drug (target) identification;

1. Virus-host interac-
tions are still
incomplete;

2. Only includes FDA
approved drugs

Zhou et al.
[88]

Drug-
target-
disease

Network
proximity;
propensity score
(PS) matching

Melatonin, Carvedilol Measures the network proximity of
drug targets and HCoV–host proteins in
a global interactome map.

Builds a global interactome map for SARS-CoV-
2

1. Dataset remains
incomplete;

2. Patient data analysis
is retrospective, may
have selection bias;

3. Limited for com-
monly used drugs
due to patient data
availability

Tomazou
et al.
[87]

Drug-
target-
disease

Signature
matching; GWAS;
taxonomy-based
distances

Dexamethasone, Beta-Estradiol, Atorvastatin,
Cyclosporin A, Remdesivir, Imatinib,
Hydroxychloroquine, Dactolisib, Ofloxacin,
Leflunomide, Simvastatin, Pioglitazone,
Methotrexate,
Cytarabine + Saracatinib,
Dactolisib + Methotrexate,
Hydroquinone + Vorinostat

A network-based integration of multi-
omic data to prioritize the most
important genes related to COVID-19
and subsequently re-rank the identified
candidate drugs

Proposed drug list not only comprises drugs
aiming to reverse COVID-19-induced
perturbations, but also compounds with direct
antiviral activity; Several of these drugs are
already in clinical trials

1. Lack of harmoniza-
tion across selection
criteria applied for
the DEGs across sev-
eral datasets;

2. Selection biases
among drugs might
exist as observed in
their null model
analysis

Cheng
et al.
[90]

Drug-
target-
disease

Complementary
exposure pattern

Melatonin + Toremifene Integrates network proximity and GSEA
for drug repositioning and discovery of
drug combinations by complementary
exposure pattern

Predicts drug combination using
complementary exposure patterns

1. Interaction data is
incomplete;

2. DEP (Differentially
Expressed Proteins)
and DEGs differ sig-
nificantly due to dif-
ferent cell types

Renz et al.
[52]

Metabolities FBA GK1 An integrated host-virus genome-scale
metabolic model (GEM) of human
alveolar macrophages and SARS-CoV-2

Supplies a rapid repositioning method as it can
be conducted with the genome sequence

1. Does not consider
virus-host cell recog-
nition, viral entry, or
lipid envelope pro-
duction or release;

2. Uses a GEM of Human
alveolar macrophages
rather than epithelial
cells and airway
epithelial cells (AEC)

Bold: in clinical trial; italic: in vitro test.
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Table 6
Repositioned drugs for current clinical use.

Drug name Molecular structure Approvals and indications Class Approaches References

Remdesivir Remdesivir is approved for the treatment of
COVID-19 in adults and pediatric patients
(28 days of age and older and weighing at least
3 kg) with positive results of direct SARS-CoV-2
viral testing, who are: hospitalized, or not
hospitalized and have mild-to-moderate COVID-
19 and are at high risk for progression to severe
COVID-19, including hospitalization or death.

RdRp inhibitor Neural network
(based on
structure);
Integrated
approach;Neural
network (based
on interaction
data)
;
Molecular
docking

Beck et al.
[69]
Tomazou
et al. [87]
Jin et al.
[89]
Shah et al.
[70]

dexamethasone An anti-inflammatory 9-fluoro-glucocorticoid.
The NIH COVID-19 Treatment Guidelines Panel
recommends the use of dexamethasone in
patients with COVID-19 who are receiving
mechanical ventilation or in those who require
supplemental oxygen but are not on mechanical
ventilation. It is not recommended the use of
dexamethasone or other corticosteroids in non-
hospitalized patients with mild to moderate
COVID-19 or in hospitalized patients with
COVID-19 who do not require supplemental
oxygen.

Immunosuppressant Neural network
(based on
interaction data)
Integrated
approach

Zeng et al.
[86]
Tomazou
et al. [87]

Umifenovir Although data is limited, in vitro activity against
SARS-CoV-1 and SARS-CoV-2 has been reported.
The drug has been included in COVID-19
treatment guidelines used in China and Russia.

Antiviral agent. Neural network
(based on
interaction data)

Zeng et al.
[86]
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phenotype-based data (by GWAS), and network-based data (mea-
suring taxonomic distance) [87]. Through this multi-omics data
integration, together with processes of drug re-ranking and drug
filtering, they were able to identify a number of recently proposed
drugs (including dexamethasone and remdesivir); inhibitors of Src
tyrosine kinase (osutinib, dasatinib, cytarabine, and saracatinib);
specific immunomodulators and anti-inflammatory drugs (dac-
tolisib and methotrexate); and inhibitors of histone deacetylase
(hydroquinone and vorinostat). Similarly, Zhou et al. build a global
interactome map for SARS-CoV-2, including data of transcriptome,
proteome, human interactome, and a COVID-19 registry. They then
used network proximity measurement to evaluate the drug’s con-
nectivity and closeness with SARS-CoV-2 host proteins. By using
propensity score (PS) matching, a series of retrospective case-
control studies were conducted to test the drug–outcome relation-
ships for COVID-19. This resulted in melatonin usage (OR = 0.48,
95 % CI 0.31–0.75) being associated with a 52 % reduced likelihood
of a positive laboratory test in African Americans [88]. Such results
will be useful for further academic studies and towards the devel-
opment of effective medicines for the treatment of COVID-19.

Table 6 lists out the in silico repositioned drugs which have
been used in a clinical setting. From the table, we can see that neu-
ral network has played a particularly important role in drug repo-
sitioning, either based on interaction data or structure data. More
importantly, integrated approaches covering different levels of bio-
logical systems are shown to significantly improve prediction
performance.
4. Drug combinations for COVID-19

In many disease cases, but perhaps with HIV as the most nota-
ble example, combination therapies are often more effective and/or
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less toxic than single drugs [89]. However, our ability to identify
and validate effective combinations is limited by a combinatorial
explosion of rapidly increased complexity when attempting large
number of drug pairs and dosage combinations. Computational
approach methods can be employed to counter this issue and what
follows are two examples of computational approaches based on
interaction data for drug combinations that have been applied to
COVID-19.

4.1. Interaction-based computational techniques

� Network-based approach
Zhou et al. developed a network-based approach to identify

potential drug combinations for COVID-19 based on interaction
data. They found that a drug combination was therapeutically
effective only if it could be both captured by the complementary
exposure pattern (i.e. the targets of a drug combination hit the dis-
ease module made of SARS-CoV-2 host genes/proteins but target
separate neighborhoods). In their research, they identified three
potential drug combinations (Sirolimus plus Dactinomycin, Tore-
mifene plus Emodin, and Mercaptopurine plus Melatonin) （see
Fig. 4)for COVID-19 [20,33]. Cheng et al. used the same methods
and discovered the combination of anti-inflammatory (Melatonin)
and antiviral (Toremifene) drugs (see Fig. 4) to rescue pulmonary
and cardiovascular conditions [90].

� Neural network

Due to the lack of high-quality training data of drug combina-
tions, Jin et al. proposed neural network architecture that jointly
learns drug � target interaction and drug � drug synergy. Firstly,
they predicted the antiviral effect using a neural network based
on a Drug Target Interactions (DTI) network and target–disease
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association network. They then took a list of antiviral effects of
drug combinations as inputs and their synergy information as
labels (synergistic or non-synergistic) to train a ComboNet model.
They finally discovered two drug combinations, i) remdesivir and
reserpine, and ii) remdesivir and IQ-1S (see Fig. 4), for COVID-19
[89].
5. Conclusion

Here, we have reviewed the available public data and the exist-
ing computational methods for drug repositioning and drug combi-
nations for COVID-19. Disease-relevant data ranges from the virus
genome sequence to the transcriptomic and proteomic expressions
of patients; from the structure of COVID-19 related proteins to
virus-host protein interactions; and from the COVID-19 registry
to those of other related coronaviruses. The available drug data
includes drug chemical structures, drug-target interactions, pheno-
type effects, and classification. Many computational methods have
been implemented for drug repositioning based on such data.
These include network-based methods, neural network methods,
molecular docking, and signature matching. Neural network has
been one of the most widely used methods across the expression
data, structure data, interaction data, and have played an impor-
tant role in discovering repositionable drugs for clinical use. For
example, Remdesivir, as identified by MT-DTI, is a FDA-approved
drug repurposed for mild-to-moderate COVID-19. Umifenovir, as
predicted by CoV-KGE, has been included in COVID-19 treatment
guidelines used in China and Russia. With the availability of big
data, including biological, clinical, and open data (scientific publi-
cations and databases), the application of neural network will
likely become more and more extensive in the future. Additionally,
integrating different levels of data generates more effective drug
relocation options. For example, dexamethasone, as identified by
integrated tools developed by Tomazou et al., is now indicated
for patients who are receiving mechanical ventilation or require
supplemental oxygen. In addition, personalized medicine based
on patient-specific expression data may also be an increasing trend
into the future. In addition to the small molecule approach dis-
cussed in our paper, monoclonal antibodies and vaccines are two
other sharp swords against the SARS-CoV-2, each case reinforcing
and covering deficiencies in the other. Monoclonal antibodies, for
example, can make up for the deficiencies faced by vaccines and
small molecules can be used in immune-vulnerable populations.
Balancing these three powerful tools, and with a joint global effort,
we hope that COVID-19 will be soon overcome.

It is worth noting that there are some limitations of computa-
tional drug repositioning as discussed in this review. Firstly, we
were unable to directly compare each method because they use
different types of data. Secondly, repurposed drugs also require
validation experiments, some being time consuming, and are not
automatically or immediately available for application. Third, the
tremendous volume and fast pace of published literature on the
treatment of COVID-19 means that research findings and recom-
mendations are constantly evolving as new evidence arises. Finally,
precision medicine is a future trend that exists in addition to drug
repositing and drug combination, for COVID-19. It may be possible
to facilitate precision drug development for each person by testing
the drug responses of different genotypes. With the dramatic
spread of Omicron worldwide, similar methods can also be applied
to the drug repositioning for Omicron. For example, according to
the known sequence of Omicron (GISAID: EPI_ISL_6640916) [91],
the FBA method can be used for drug repositioning. With the anal-
ysis of cryo-EM structure of spike protein–ACE2 complex (PDB ID
7T9J, PDB ID 7T9K, PDB ID 7T9L) [92], molecular docking can be
employed for drug repositioning. This review also highlights the
5726
possibility of incorporating such responses into any future pan-
demics by perfecting the techniques of the mining of virus
sequence data, expression profiles, structures, and data interaction.
Overall, computational methods for drug repositioning will be
highly likely to continue to provide important guidance towards
epidemic disease responses.
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