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ABSTRACT

Cancer stem cells play a critical role in disease initiation and insensitivity to chemotherapy in
numerous hematologic malignancies and some solid tumors, and these stem cells need to be
eradicated to achieve a cure. Key to successful targeting of cancer stem cells is to identify and
functionally test critical target genes and to fully understand their associated molecular network
in these stem cells. Human chronic myeloid leukemia (CML) is well accepted as one of the typical
types of hematopoietic malignancies that are derived from leukemia stem cells (LSCs), serving as
an excellent model disease for understanding the biology of LSCs and developing effective, selec-
tive, and curative strategies through targeting LSCs. Here, we discuss LSCs in CML with a focus
on identification of unique biological features of these stem cells to emphasize the feasibility
and significance of specific targeting of LSCs while sparing normal stem cell counterparts in leu-

kemia therapy. STEM CELLS TRANSLATIONAL MEDICINE 2019;8:768-774

SIGNIFICANCE STATEMENT

Molecular mechanisms by which leukemia stem cells (LSCs) survive and self-renew are poorly
understood, and an effective anti-LSC therapeutic strategy for chronic myeloid leukemia is yet to be
developed. In discussing the establishment of anti-LSC methods in the present study, much atten-
tion has been paid to the identification of fundamental biological differences between LSCs and
normal hematopoietic stem cells (HSCs) with a goal of eradicating LSCs specifically to avoid or mini-
mize unwanted cytotoxic side effects on normal HSCs. The authors hope to provide convincing
arguments to emphasize that it is feasible to specifically target LSCs while sparing normal HSCs.

INTRODUCTION

Cancer stem cells are believed to be associated
with cancer initiation and insensitivity to che-
motherapy in numerous hematologic malignan-
cies and some solid tumors involving the breast,
brain, pancreas, colon, lung, and prostate, and
need to be eradicated for achieving a cure
[1-9]. Although the cancer stem cell theory can-
not be used to explain the pathological features
of all types of cancers, it has become clear
that some major forms of human hematopoietic
malignancies such as chronic myeloid leukemia
(CML) and acute myeloid leukemia (AML) are
derived from leukemia stem cells (LSCs) that are
responsible for leukemia initiation, progression,
and relapse [10]. To develop effective and cura-
tive anti-stem-cell strategies, CML and AML are
good model diseases for understanding the
molecular biology of LSCs, and a key initial step
is to identify and functionally test critical target
genes and the molecular pathways they

communicate with in LSCs. In this article, we
intend to focus on CML because we have more
direct evidence showing the biology of LSCs and
their insensitivity to tyrosine kinase inhibitors
(TKIs), the first-line treatments for CML patients.

LSCs are leukemia-initiating cells with the
capacity to self-renew, differentiate, and remain
in a state of quiescence [1, 2]. In CML, a myelo-
proliferative disease that originates from an
abnormal hematopoietic stem cell (HSC) harbor-
ing the Philadelphia chromosome (Ph*) [11], func-
tional LSCs in mice reside in a cell population that
does not express cell lineage markers but express
both c-Kit and Sca-1 (Lin"c-Kit"Sca-1*, LSK) [12],
recapitulating the cell surface markers expressed
on normal HSCs. LSCs in human CML also reside
in the HSC population [13], displaying phenotypi-
cally LinT"CD34°CD38°CD90" with some specific
surface markers such as interleukin-1 receptor
accessory protein (ILLRAP) and CD26 [14, 15].

At a molecular level, gene expression profiling
studies using leukemia mice and human patient
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Figure 1. Biological properties of normal HSCs and LSCs. Normal
HSCs have three major biological features or stem cell properties:
self-renewal, multipotency, and quiescence. After acquiring
genetic lesions, HSCs undergo cellular transformation to become
LSCs that retain the major stem cell properties of HSCs with
enhanced signaling activities and also acquire some unique biolog-
ical features. These biological features define the cellular states of
HSCs and LSCs, and provide opportunities to develop strategies
for specifically targeting LSCs while sparing normal HSCs. Abbrevi-
ations: HSC, hematopoietic stem cell; LSC, leukemia stem cell.

samples have shown some dramatic changes in gene expression
of LSCs [16]. These findings help to lay a foundation for character-
izing LSCs for the treatment of hematopoietic malignancies. How-
ever, a challenging question still remains: are there fundamental
differences between LSCs and their normal stem cell counterparts
at a molecular level? In other words, can we specifically target
LSCs while sparing normal stem cells when treating leukemias? To
answer this question, we need to identify and test key target
molecules/genes that are solely or more specifically required for
survival and proliferation by LSCs in CML. Although eradication of
LSCs in the treatment of CML patients is yet to be achieved, we
believe that for therapeutic benefit, it is critical to identify unique
biological features of LSCs for developing effective strategies
aiming to kill LSCs while protecting normal HSCs with a hope of
curing CML. In this article, we will pay much attention to dis-
cussing the potential strategies for targeting LSCs more specifically.

BIOLOGICAL FEATURES OF LSCs

With self-renewal and multipotency at the hub of what defines
a LSC (Fig. 1), the major focus of current and future research
should be on studying the biology of LSCs with a goal of fully
understanding the underlying molecular and cellular processes.

Leukemia Stem Cells Display Unique Cellular State

The developmental processes and biological characteristics of
normal HSCs have been extensively investigated in the past
decades. It is commonly accepted that normal HSCs are
largely in a state of quiescence with autophagy-dependent,
glycolytic, and tightly controlled levels of protein synthesis
[17-20]. Leukemogenesis occurs because of the serial genetic
and epigenetic alterations that transform normal HSC/progenitor
cell into LSCs [21, 22]. This transformation changes the steady
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cellular state of normal HSCs. Using CML as an example, the
molecular evolution of CML LSCs initiates from the formation of
reciprocal translocation between chromosomes 9 and 22, lead-
ing to generation of the BCR-ABL oncogene in a HSC and subse-
quent expansion of myeloid progenitors [23]. As a result, kinase
activity of BCR-ABL tyrosine kinase is constitutively activated,
causing uncontrolled activation of some growth-related signaling
pathways such as Wnt/B-catenin [24], hedgehog [25], JAK/STAT
[26], Hifla [27, 28], TGFB-FOXO [29], etc. These intrinsic genetic
and signaling changes increase the abilities of CML LSCs in self-
renewal, resistance to apoptosis, and genomic instability [30].
However, these pathways also play important roles in normal
development, and when searching for potential therapeutic tar-
gets in LSCs, we suggest that we should pay more attention to
the genes that are more specifically required for survival, self-
renewal, and proliferation of LSCs.

Besides inheriting common stem cell characteristics, LSCs
also have some unique functional changes, as exemplified by
LSCs that undergo reprogrammed cellular metabolism, a hall-
mark of cancers [31]. Fatty acid metabolism enzyme stearoyl-
CoA desaturase (Scd1) is an endoplasmic reticulum enzyme in
a family of A9-fatty acid desaturase isoforms and catalyzes the
biosynthesis of monounsaturated fatty acids from saturated
fatty acids, which are the most abundant fatty acids present in
mammalian organisms [32]. Fatty acid synthesis has been
found to be associated with tumorigenesis and tumor progres-
sion [33]. However, we found that Scdl is downregulated in
LSCs and plays a tumor-suppressive role in LSCs with no nota-
ble inhibitory effect on normal HSCs [34], suggesting a cell-
content-dependent role of fatty acid in cancer. In addition,
BCAT1, a cytosolic aminotransferase for branched-chain amino
acids is aberrantly activated and functionally required for AML
LSCs [35]. It also plays an essential role in the progression of
CML chronic phase to blast crisis through induction of cell dif-
ferentiation arrest [36]. Furthermore, a metabolic analysis on
both stem-cell-enriched (CD34* and CD34°CD387) and differ-
entiated cells (CD347) derived from CML patients reveals that
CML LSCs rely on upregulated oxidative metabolism for their
survival [37]. Compared with differentiated CML cells, LSCs show
an increase in glycerol-3-phosphate, carnitine, acylcarnitine deriv-
atives, and a decrease in free fatty acid such as oleic and stearic
acids. Another example for the functional changes in LSCs is
that Alox5, a lipid-metabolic gene encoding the arachidonate
5-lipoxygenase, is required for survival of CML LSCs and essen-
tial for CML development [38].

Heterogeneity of LSCs

Cellular heterogeneity is one of well-recognized characteristics
of both normal HSCs and LSCs. With respect to the clonal
heterogeneity of differentiation and self-renewal properties
in normal HSCs, two distinct subtypes of HSCs (lymphoid-
deficient and lymphoid-myeloid-balanced) have been identified
and distinguished by assessing the contributions of individual
HSCs to the circulating cell lineages in serial transplantation
experiments [39, 40]. Also, the post-transplant clonal analysis
of HSC expansion suggests that both HSC subtypes display an
extensive but variable self-renewal activity with occasional
interconversion [40]. Similarly, heterogeneity of LSCs has been
recognized. Using the SCL-tTA/BCR-ABL mouse model of CML, a
recent study reveals that long-term repopulation and leukemia-
initiating capacity of LSCs after transplantation is restricted to
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Figure 2. BCR-ABL kinase activity-dependent and kinase activity-independent pathways. TKls are effective in controlling chronic phase

CML, resulting in clinical remission in the majority of CML patients. However, LSCs are insensitive to inhibition by TKIs, as their survival is
not dependent on BCR-ABL kinase activity. Besides altering signaling pathways in LSCs through its kinase activity, BCR-ABL activates or
inhibits some survival- or growth-related pathways in a kinase-activity-independent manner. In other words, BCR-ABL kinase activity-
independent pathways are not completely shut down by TKIs and must be targeted to inhibit or kill LSCs. In addition, some of these BCR-
ABL kinase activity-independent pathways, including Alox5, Blk, and Scdl, are uniquely required by LSCs for survival and proliferation,
serving as potential targets for eradicating LSCs. Abbreviations: Blk, B lymphocyte kinase; CML, chronic myeloid leukemia; LSC, leukemia

stem cell; Scdl, stearoyl-CoA desaturase 1; TKI, tyrosine kinase inhibitor.

BCR-ABL-expressing long-term HSCs (LT-HSCs) with remark-
able heterogeneity [41]. This heterogeneity of BCR-ABL-
expressing LT-HSCs is determined based on comparing the
global gene expression between leukemic and nonleukemic
LT-HSCs by RNA sequencing. A higher level of MPL expres-
sion is found in some leukemic LT-HSCs with enhanced
JAK/STAT signaling and cell proliferation in response to stimu-
lation of the thrombopopoietin (TPO) receptor MPL [41]. In con-
trast, BCR-ABL-expressing LT-HSCs with low MPL expression
show a reduced response to TPO-induced JAK/STAT signaling
and decreased leukemogenic potential, suggesting that this sub-
type of LSCs may be insensitive to inhibition by JAK inhibitors.
Therefore, this study identifies MPL expression levels as a key
determinant of heterogeneous leukemia-initiating capacity of
LSCs in CML [41]. Importantly, the heterogeneity of LSCs is
thought to contribute to leukemia initiation, progression, and
relapse. It has been reported that residual BCR-ABL" stem cells
persist in some CML patients who have maintained long-term
remission, and after discontinuing the treatment with a TKI,
molecular relapse occurs in a significant number of CML patients
[12, 13, 42-45]. The discrepancies in leukemogenic potential
between MPL-high and MPL-low LSCs could be explained by the
heterogeneity of CML LSCs, which likely reflects uniqueness of
LSCs determined by the intrinsic molecular machinery or extrin-
sic microenvironment.

© 2019 The Authors. STEM CELLS TRANSLATIONAL MEDICINE published by
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INSENSITIVITY OF LEUKEMIA STEM CELLS TO DRUG THERAPY
AND POSSIBLE IMECHANISMS

BCR-ABL TKIs including imatinib mesylate (Gleevec, Novartis)
are highly effective in controlling chronic phase CML, but they
fail to eradicate leukemia-initiating cells or LSCs in CML mice
[12] and patients [13, 46, 47]. Clinically, a complete and
sustained molecular remission (undetectable levels of BCR-ABL
transcripts) is difficult to attain even after a complete cytoge-
netic remission achieved through imatinib treatment [48-51],
suggesting that imatinib and probably other BCR-ABL kinase
inhibitors can effectively kill highly proliferating leukemia cells
but are incapable of eradicating LSCs for cure. An anti-LSC
strategy other than the use of a TKI alone needs to be devel-
oped to eradicate LSCs, and the success of this approach relies
on uncovering the underlying mechanisms by which LSCs sur-
vive drug therapy (Fig. 2).

LSCs Are Insensitive to Inhibition by TKls

TKIs have become first-line drugs in treating CML, and the
majority of patients achieve a complete hematological response
[52-55]. However, the fact that clinical relapse occurs in a signif-
icant number of CML patients once treatment is interrupted
[56] indicates that CML LSCs are insensitive to drug therapy. In
support of this idea, cells from CML patients in chronic phase
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were labeled with carboxy-fluorescein diacetate succinimidyl dies-
ter to track cell division, and imatinib treatment caused eradica-
tion of almost all dividing CD34" cells, but the nonproliferating
quiescent cells remained [13]. In addition, BCR-ABL'CD34" cells
persisted in CML patients who achieved complete cytogenetic
response with imatinib treatment [57]. Furthermore, although
treatment with TKIs dramatically prolonged the survival of CML
mice, the mice eventually died of this disease [12], indicating the
failure of TKIs to completely eradicate leukemia cells. The incom-
plete therapeutic response of CML cells to TKI inhibition in mice
is related to the inability of imatinib to eradicate LSCs [58].
Together, these studies indicate that CML LSCs are insensitive to
TKI treatment, prompting us to provide a mechanistic explanation
for TKI resistance of LSCs. It should be pointed out that the TKI
resistance of LSCs we discuss here is not relevant to TKI-resistant
BCR-ABL kinase domain mutations.

LSC Survival Is Not Dependent on BCR-ABL Kinase
Activity

The failure of TKls to completely eradicate CML LSCs suggests
that survival of these LSCs is not dependent on BCR-ABL kinase
activity. We provided a biochemical evidence showing that
dasatinib, a second-generation TKI, inhibits BCR-ABL phosphory-
lation in BCR-ABL-expressing HSCs but fails to kill these stem
cells [12], suggesting that LSCs likely use BCR-ABL kinase activity-
independent pathways for survival. Similarly, BCR-ABL kinase
activity is inhibited by TKls in CD34*CD38" and CD34*CD38~ cell
populations from newly diagnosed CML patients, and phospho-
CRKL, which is stimulated by BCR-ABL kinase activity, is reduced
upon inhibition of BCR-ABL kinase activity as detected by immu-
noblots of sorted quiescent (Ki67~) and cycling (Ki67") cells [46].
Additionally, in human CML CD34" cells cultured in serum-free
media and treated with dasatinib, phospho-CRKL is completely
inhibited by dasatinib, but the abilities of proliferation and self-
renewal of the cells are retained [44]. These results demon-
strate that the insensitivity of CML LSCs to inhibition by TKis is
not due to the inability of TKls to inhibit BCR-ABL kinase activity
in LSCs. It is likely that BCR-ABL also activates other signaling
pathways in a kinase activity-independent manner, and it will be
critical to identify and test these pathways in survival regulation
of LSCs.

BCR-ABL Kinase Activity-Independent Pathways in LSCs

As described above, compared with proliferative leukemia cells,
CML LSCs are much less sensitive to inhibition by TKls even in
the absence of BCR-ABL kinase domain mutations that cause
TKI resistance. We believe that when its kinase activity is
suppressed by TKIs, BCR-ABL can still activate some pathways
that render CML LSCs insensitive to TKI inhibition. As a result,
the cells continue to survive, whereas BCR-ABL kinase activity is
inhibited by TKIs, indicating that this TKl-insensitive pathway
activated by BCR-ABL must be targeted to lead to eradication of
LSCs. This idea is supported by the essential role of Alox5 in sur-
vival regulation of CML LSCs [38]. We show that Alox5 is
upregulated by BCR-ABL and essential for CML development,
but this upregulation is not reduced by TKI treatment. These
results provide a mechanistic explanation for why CML LSCs is
insensitive to inhibition of BCR-ABL kinase activity by TKIs even
in the absence of BCR-ABL kinase domain mutations. Thus,
Alox5 represents a unique pathway that cannot be shut down
upon kinase inhibition by TKls in BCR-ABL signaling and plays a
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critical role in mediating TKI resistance in LSCs. Another example
is that B lymphocyte kinase is significantly downregulated by
BCR-ABL in a kinase activity-independent manner, and this path-
way plays a tumor-suppressive role in regulating the survival of
CML LSCs [59]. Again, the abovementioned intrinsic mechanism
provides one explanation for the insensitivity of LSCs to TKIs. It
should be mentioned that some studies also suggest that TKI
resistance of LSCs is related to receiving extrinsic signals from
bone marrow niche with which LSCs interact [60]. Further
research in this area will be beneficial for developing new strat-
egies for eradicating LSCs.

STRATEGIES FOR TARGETING LSCs

It is obvious that one of the best strategies for inhibiting LSCs
is to target the key genes that are required for survival regula-
tion of LSCs but not normal HSCs. It may also be acceptable
that as a potential anti-LSC target, a candidate gene is required
more by LSCs than by normal HSCs, providing a therapeutic win-
dow for inhibiting LSCs more specifically. In other words, the
unique biological features of LSCs provide better opportunities
for specifically targeting LSCs while sparing normal stem cell
counterparts.

Targeting Critical Molecular Pathways of LSCs

In CML, some genes have been shown to be involved in survival
regulation of LSCs, including Wnt/f-catenin [24, 58], Hedgehog
[25], Bim-1 [61, 62], p53 [63], p16™** [64], p19°*F [65], Pten
[66], PML [67], PP2A [68], TGF-/FOXO [29], Musashi [69], Alox5
[38], SIRT1 [70], Alox15 [71], and Hifla [27]. However, only
some of these studies emphasize specific targeting of LSCs,
although it is hoped that the target genes required for both
LSCs and normal HSCs would only produce tolerable side effects
after normal HSCs are inhibited to a certain degree. In fact, sev-
eral chemical inhibitors against these targets have been devel-
oped and studied. For example, pharmacological blockade of
Hedgehog signaling by clinical-grade SMO inhibitors (such as
GDC-0449 and LDE225) [25, 72—74], inhibition of the TGF-FoxO
pathway by Ly364947 [29], inactivation of BCL6 by the retro-
inverso BCL6 peptide inhibitor RI-BPI [75], and suppression of
autophagy by pharmacological inhibitors [76] have been shown
to inhibit CML development by inhibiting LSCs. Inhibition of the
HIFla pathway by echinomycin is also effective in suppressing
LSCs [27, 77]. It will be important to further evaluate these
inhibitors for their clinical benefit in treating leukemia patients.

We have been focusing on identification of target genes
uniquely or more specifically required for cellular functions by
LSCs but not normal HSCs. In fact, we have identified Alox5 as
a key gene that regulates the function of LSCs but not normal
HSCs, because Alox5 deficiency or inhibition of function of this
gene impairs survival and self-renewal of LSCs and prevents
the initiation of BCR-ABL-induced CML with no significant
inhibitory effect on normal HSC function [38]. Additionally,
Scdl plays a tumor-suppressive role specifically in LSCs,
and we and others have tested and shown the inhibitory or
apoptotic effect of PPARy agonists on CML LSCs [34, 78].
Mechanistically, LSC apoptosis induced by the PPARy agonist
rosiglitazone is associated with an increased expression of
Scdl, Pten, and p53 [34]. Furthermore, deficiency of Alox15
and inhibition of Alox15 function lead to remarkable inhibition
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of LSCs with much less effect on normal HSCs in CML mice
[71]. Finally, it has been recently shown that simultaneous
targeting of P53 (by blocking its degradation) and c-MYC
(by suppressing its transcription) has more dramatic inhibitory
effect on CD34" cells from CML patients than on normal
CD34" cells [79]. Taken together, these results support our
belief that it is realistic and approachable to identify and tar-
get critical molecular pathways that play an essential role
more specifically in LSCs. In other words, it is possible to
develop new therapeutic strategies aiming to specifically eradi-
cate LSCs while sparing normal HSCs.

Targeting Epigenetic Properties of LSCs

Besides acquiring genetic lesions, LSCs also undergo epigenetic
changes. Targeting of epigenetic regulators has recently shown
to be effective in eliminating CML LSCs. EZH2, the catalytic sub-
unit of polycomb repressive complex 2, is overexpressed in CML
LSCs [80, 81], which is associated with extensive reprogramming
of H3K27me3 targets in the cells. Genetic inactivation of EZH2
in conventional conditional knockout mice and through CRISPR/
Cas9-mediated gene editing reduces survival of LSCs and pro-
longs survival of CML mice [80]. An EZH2-specific inhibitor pro-
motes apoptosis of LSCs from CML patients without impairing
normal HSCs, which is more predominant when the combined
treatment with an EZH2 inhibitor and a TKI is used [81]. These
findings suggest a promising epigenetic-based therapeutic strat-
egy for more specifically targeting LSCs.

Targeting LSCs Using Antibodies Against Cell Surface
Antigens

Although cell surface markers expressed on CML LSCs and nor-
mal HSCs are similar, the levels of expression for some markers
are much higher in LSCs than in HSCs, providing an opportu-
nity for preferentially targeting LSCs using antibodies. For
example, a gene-expression profiling study in CML CD34" cells
and cord blood CD34" cells transduced with retroviral BCR-ABL
showed that expression of IL1IRAP is upregulated in the cells
[82]. In this study, normal (Ph™) and leukemic (Ph*) cells within
the CML CD34*CD38" cell compartment were distinguished
by fluorescence in situ hybridization, and the results showed
that the CML CD34°CD38~ IL1RAP* cells were Ph*, whereas
CML CD34°CD387IL1IRAP™ cells were almost exclusively Ph™.
Furthermore, a long-term culture-initiating cell assays showed
that Ph* and Ph™ candidate CML stem cells could be prospec-
tively separated based on IL1RAP expression, and an anti-
ILARAP antibody could be used as a target on CML
CD34%CD38™ cells to induce antibody-dependent cell-mediated
cytotoxicity. Another example is CD33 that was found to have
a much higher expression in CD34°CD387CD123" cells from
CML patients than in normal CD34CD38~ stem cells [83]. Inter-
estingly, colony formation and long-term culture-initiating cell

assays showed that the CD33-targeting drug germtuzumab/
ozogamicin produced growth inhibition of leukemic progenitor
cells. These studies support a strong scientific premise for
targeting CML LSCs using antibodies against cell surface anti-
gens. Other examples include expression of cell surface mole-
cules that are linked to signaling pathways in LSCs. In particular,
CD25, a STAT5-dependent cell surface marker, regulates the
growth of CML LSCs, which is associated with the PI3K/mTOR
pathway [84, 85]. It is hopeful that CD25 could be a legitimate
target for eradicating CML LSCs.

CONCLUSION

A full understanding of biology of LSCs allows exploiting the
critical differences between LSCs and normal HSCs at a molec-
ular level. This approach will subsequently lead to identifica-
tion of unique biological features of LSCs for developing
effective therapeutic strategies aiming to target LSCs specifi-
cally while sparing normal HSCs. Although there are still some
difficult hurdles to cross, we believe that we are much closer
to applying anti-LSC strategies for achieving durable disease
remission or even a cure. However, the reality is that an effec-
tive anti-LSC therapy is yet to be developed, implying difficult
challenges we are facing. Based on the recent scientific
advances made in the LSC field, it is hopeful that we begin to
understand how LSCs use unique molecular pathways to main-
tain their abilities of survival and self-renewal, which will lead
to future clinical trails for testing new anti-LSC strategies.
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