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Aim: To determine the etiology of a Chinese family with thrombocytopenia by analyzing the
clinical features and genetic variation.

Methods: Clinical profiles and genomic DNA extracts of the family members were
collected for the study. Whole exome sequencing and Sanger sequencing was used
to detect the associated genetic variation and verify the family co-segregation respectively.
Bioinformatics analysis assessed the pathogenicity of missense mutations.

Results: The study reported a 3-generation pedigree including eight family members with
thrombocytopenia. The platelet counts of the patients were varied, ranging from 38 to
110 × 109/L (reference range: 150–450 x 109/L). The mean volumes and morphology of
the sampled platelet were both normal. The bleeding abnormality and mitochondriopathy
were not observed in all the patients. Clinical signs of thrombocytopenia were mild. A novel
heterozygous missense variant c.79C > T (p.His27Tyr) was identified in CYCS gene
associated with autosomal dominant thrombocytopenia.

Conclusion: We report the first large family with autosomal dominant non-syndromic
thrombocytopenia 4 in a Chinese family, a novel heterozygous missense variant c.79C > T
(p.His27Tyr) was identified. The whole exome sequencing is an efficient tool for screening
the variants specifically associated with the disease. The finding enriches the mutation
spectrum ofCYCS gene and laid a foundation for future studies on the correlation between
genotype and phenotype.
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1 INTRODUCTION

Thrombocytopenia is defined as a haematological condition with blood platelet count below 100–150
× 109/L (Greenberg and Kaled, 2013). It is correlated with inherited hematologic diseases, immune
diseases (e.g.rheumatoid), radiation/chemotherapy injuries, infection, and drug-related
thrombocytopenia (Lee and Lee, 2016; Franchini et al., 2017). At present, more than 20 genes
have been reported to be associated with the incidence of inherited thrombocytopenia, including
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syndromic, and non-syndromic (Nurden and Nurden, 2020).
Hence, understanding the disease from a genetic perspective is a
key of providing effective diagnosis and prognostic risk
assessment.

The CYCS gene encodes the Cytochrome C (Cyt-c), which is a
small and stable heme protein with heme C as its auxiliary group
(Stevens, 2011). The Cyt-c protein is an essential component
anchoring in the inner membrane of the mitochondrion for
multiple bio-functions (Santucci et al., 2019). It is mainly
responsible of transferring electrons from cytochrome b to the
cytochrome oxidase complex (Kagan et al., 2005; Li et al., 2006;
Ow et al., 2008), and also could initiate cell apoptosis as an
antioxidant agent (Wang et al., 2003; Zhao et al., 2003; Lee and
Xu, 2007). It is reported that the heterozygous mutation of CYCS
gene on chromosome 7p15 can caused autosomal dominant non-
syndromic thrombocytopenia-4 (THC4, OMIM: 612004)
(Morison et al., 2008). The clinical features of THC4 were
characterized with mild thrombocytopenia, normal platelet size
and morphology, and no increased bleeding tendency. So far,
there are only 4 pedigrees with nonsyndrome thrombocytopenia
and 1 pedigree with hemophilia A, associated with variants in
CYCS gene (Morison et al., 2008; De Rocco et al., 2014; Johnson
et al., 2016; Uchiyama et al., 2018; Turro et al., 2020). None of the
patients in these reports showed symptoms resulting from cell
apoptosis and abnormal mitochondrial oxidative respiratory
chain, whereas thrombocytopenia was present.

We studied a first pedigree with autosomal dominant non-
syndrome thrombocytopenia 4 in a Chinese family. All

patients in the family were found to carry a heterozygotic
missense variant in CYCS gene by whole exome sequencing
(WES), while the pathogenicity of the genetic variation was
also evaluated. According to the clinical and genetic features
of the patients in the pedigree, thrombocytopenia 4 was
diagnosed. This work could be a scientific evidence to
support on thrombocytopenia diagnosis and its prognostic
management.

2 MATERIALS AND METHODS

2.1 Patient Clinical Information
The probands (IV-2) was the second son of a non-consanguineous
Chinese couple (Figure 1A). He was born at gestational age of
39 + 5 weeks by spontaneous vaginal delivery with normal birth
history (birth weight, 3500 g). Multiple hemorrhagic spots were
found on the facial and back skin of the proband at birth. After
7 days, he was admitted for further treatment. Physical
examination was normal. Brain magnetic resonance imaging
(MRI) showed mild cerebral hemorrhage in the left ventricle
and focal white matter injury near the posterior horn of the left
ventricle. The full blood count test yielded a low platelet count at
54 × 109/L (reference range: 150–450 × 109/L) and the increased
leucocyte count at 30.68 × 109/L (reference range: 10.4–12.21 ×
109/L). After antibiotics and immunoglobulin treatment, the
hemorrhagic spots disappeared with normal leucocyte counts
and improved platelet counts (ranges from 56 to 96 × 109/L).

FIGURE 1 | (A) Familial pedigree of CYCS-mutated thrombocytopenia. The red arrow indicates the proband. (B)Optical microscopy of bonemarrow cells from the
proband showed the number of platelets were reduced. The red arrow on the left (Ba) showed a single platelet was sporadically visible, and the blue arrow points to
promegakaryocytes (Bb), the green arrow points to granular megakaryocytes (Bb), and the yellow arrow points to thromocytogenic megakaryocytes (Bb). (C) Sanger
sequencing of CYCS gene c.79C > T (p.His27Tyr) variant in genomic DNA from the family.
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At 16 days of age, the patient showed no signs of hemorrhage
with normal abdominal ultrasound and urine organic acids.
Blood tandem mass spectrometry analysis showed camitine
deficiency. Optical microscope of bone marrow showed
megaloblasts and toxic granules below the stage of myelocyte
and metamyelocyte, indicating as bone marrow infection. In
addition, the whole bone marrow smear showed 550
megakaryocytes, among which promegakaryocytes accounted
for 30%, granular megakaryocytes accounted for 62%,
thromocytogenic megakaryocytes accounted for 8%. These
abnormal proportions of megakaryocytes indicate that
megakaryocytes maturation problem leaded to a decrease in
platelet count (Figure 1B). Subsequently, he was instructed to
continue antibiotics therapy and oral administration of
levocarnitine. At 34 days of age, the patient showed no signs
of hemorrhage. The results of the secondary MRI and blood
tandem mass spectrometry analysis were normal. The platelet
counts maintained at decreased levels in multiple regular
examinations, one of which showed normal level at 108 × 109/
L (reference range: 150–450 × 109/L).

Clinical features of his family members were summarized
in supplemental Table 1, which details a history of
thrombocytopenia in the proband’s maternal family
member. The patient’s father is healthy. Of the 11 subjects,
8 presented low platelet counts (IV-2, IV-1, III-4, II-4, II-5,
III-5, IV-4, IV-5), and the remaining subjects showed normal
platelet level (III-3, III-6, IV-3). The platelet counts of IV-2,
IV-1, III-4, and II-4 were examined multiple times, while the
rest examined once. The studied family members, including
the proband, had platelet counts ranging from 38 to 110 × 109/
L with a reference interval of 150–450 × 109/L. The mean
volumes and morphology of the sampled platelet were normal.
Most studied patients had mild bleeding of skin mucosa,
except IV-5 with epistaxis, and the proband showed the
spontaneous skin bleeding (Supplemental Table 1). All the
patients had no symptom of mitochondrial disease such as
neurodegeneration, diabetes, myopathy, eye, and kidney
diseases.

2.2 Sample Collection
This study was approved by the Ethics Committee of Xi’an
Children’s Hospital, and written informed consent was
obtained from each participant or their guardian(s). The

peripheral blood (3 ml) was individually sampled from the
proband and his family members and collected in EDTA
anticoagulant tube.

2.3 Whole Exome Sequencing
1 μg genomic DNA was extracted from 200 µL peripheral blood
using a Qiagen DNA Blood Midi/Mini kit (Qiagen GmbH,
Hilden, Germany) following the manufacturer’s protocol.
Library preparation was performed using NanoWES (Berry
Genomics, China) according to the manufacturer’s Protocol.
Novaseq6000 platform (Illumina, San Diego, United States)
was used for sequencing. The exome sequencing was
performed with a minimum median coverage of 80X. The
sequencing reads were aligned to the human reference genome
(hg38/GRCh38) using Burrows–Wheeler Aligner tool. Verita
Trekker® Variants Detection System by Berry Genomics and
the third-party software GATK were employed for variant
calling. Variants with lower quality (read depth < 10×, allele
fraction < 30%) were eliminated. Variant annotation and
interpretation were conducted by ANNOVAR (Wang et al.,
2010) and the Enliven® Variants Annotation Interpretation
System authorized by Berry Genomics. All variants were
filtered through population databases including the 1,000
Genomes Project (1000G), Exome Aggregation Consortium
(ExAC), and gnomAD, only those variants with population
frequencies less than 1/1,000 in all databases were counted.
Variant pathogenicity/deleteriousness prediction was evaluated
using SIFT, Poly-Phen_2, Mutation Taster, REVEL, FATHMM,
CADD. Prediction of variant impact on splicing was evaluated by
dbscSNV, Human Splicing Finder (HSF), and SpliceAI. To
maximize clinically diagnostic yield, the known pathogenic
variants from Human Gene Mutation Database and ClinVar
(Landrum et al., 2016; Stenson et al., 2020) were also retained
for further evaluation. The variants were classified to five
categories “pathogenic,” “likely pathogenic,” “uncertain
significance,” “likely benign,” and “benign”--according to the
American College of Medical Genetics and Genomics
(ACMG) guidelines for interpretation of genetic variants
(Richards et al., 2015). The suspected SNV/Indels were
validated using Sanger sequencing.

The three-dimensional (3D) structure of CYCS protein of the
missense variant was analyzed by Swiss-PDBviewer (PDB:
3ZOO).

TABLE 1 | Clinical features of the family members from the current study.

Case
clinical
features

IV-2
(proband)

IV-1 III-4 II-4 II-5 III-5 IV-4 IV-5 III-3 III-6 IV-3

Brusied more than normal − + + + + − − − − − −

Epistaxis − − − − − − − + − − −

Bleeding spot + − − − − − − − − − −

Mitchondial disease − − − − − − − − − − −

Platelet counts 150–450 × 109/L) 54–108 89–110 41–45 50–70 60 38 98 76 200 205 217
MPV N N N N N N N N N N N
Variant CYCS: NM_018947.6:c.79C > T (p.His27Tyr), heterozygous Wild-type

N, normal; MPV, mean platelet volumes.
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3 RESULTS

3.1 Genetic Analysis and Co-Segregation in
the Family
A heterozygous variant in the CYCS (NM_018947.6: c.79C > T
(p.His27Tyr) was identified for the proband by WES. Sanger
sequencing further confirmed that all affected members (IV-2,
IV-1, III-4, II-4, II-5, III-5, IV-4, IV-5) carried the same
heterozygous variant, while other studied members (III-3, III-
6, IV-3) did not carry it (Figure 1C). So, the variant segregated
with the disorder in this family (PP1_Strong). This novel variant
has not been reported in previous literature, and the c.79C > T
substitution was not seen in gnomAD database
(PM2_Supporting). Sequence alignment of CYCS protein
among multiple species showed that p.His27 is highly
conserved across evolution (Figure 2A), suggesting that His27
could play a vital role in maintaining the stability and function of
proteins. The results of multiple statistical methods (REVEL)

predicted that the variant could cause detrimental effect on gene
function (PP3). According to the ACMG guidelines, c.79C > T
(p.His27Tyr) is defined as “Likely Pathogenic”. This novel variant
has been submitted to ClinVar with the variation ID: 1210164.

3.2 Structure-Function Correlations of
CYCS Variants
The impact of this missense variant was also evaluated by
examining the 3D structural viewpoint of the variant protein.
Our study mapped the mutation position onto the crystal
structure of human cytochrome c (PDB:3ZOO). As shown in
Figure 2B, p.His27Tyr variant is located in the random coil
domain of CYCS (Figure 2Ba), which may affect the global
conformation and activity of protein. When His27 is replaced
by Tyr, the hydrogen bonds of His27 interacting with Asn32 and
Pro45 were broken, and the amino acid side chain is changed
from imidazole to benzene (Figures 2Bb,Bc).

FIGURE 2 | (A) Conservation of the p. His27Tyr variant across various species. (B) Amino acid and conformation changes of the p.His27Tyr polypeptide wild-type
and mutant type. His27 is located in the random coil domain of CYCS by colored green (Ba); Stick models shows the amino acids around His27 and the selected side
chains, wild-type His27 forms a hydrogen bond (green dotted line) with Asn32 and Pro45 (colored yellow) respectively (Bb), and the hydrogen bond was lost in mutant
type Tyr27 (Bc). (C) Schematic presentation of linear CYCS protein (NM_018947.6) with all variants, red font indicate reported variant in the present study. The dark
blue indicates three Ω-loops.
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4 DISCUSSION

In this study, we firstly reported a 3-generation family with
autosomal dominant non-syndromic thrombocytopenia in China.
The whole exome sequencing identified a novel missense
heterozygous variant c.79C > T (p.His27Tyr) of CYCS gene in
the pedigree with eight patients (IV-2, IV-1,III-4, II-4, II-5, III-5,
IV-4, IV-5). The clinical features of the studied patients were
consistent with that from other reports (Morison et al., 2008; De
Rocco et al., 2014; Johnson et al., 2016). More, they had normal
fertility and longevity, with no evidence of mitochondriopathies
(Finsterer, 2004), while other family members (III-3, III-6, IV-3) of
the study did not carry the variant. It was assumed that the variation
p. His27Tyr of CYCS could be the genetic etiology of autosomal
dominant non-syndromic thrombocytopenia in this family case. The
finding enriches the mutation spectrum of CYCS gene and laid a
foundation for future studies on the correlation between genotype
and phenotype. This conclusion may help patients to prevent the
disease risk associated with thrombocytopenia and help clinicians to
do differential diagnoses including acquired and inherited forms.

In 2008, Morison et al. reported the first variant of the
CYCS gene identified in a family with thrombocytopenia
(Morison et al., 2008). Globally, total five variants have
been reported to be associated with thrombocytopenia,
including four missense variant (p.Gly42Ser, p.Tyr49His,
p.Ala52Val, and p.Leu99Val) and one small deletion variant
p.Lys301del (in-frame) (De Rocco et al., 2014; Johnson et al.,
2016; Uchiyama et al., 2018; Turro et al., 2020). The p.
His27Tyr variant found in this study was the fifth missense
mutation. To date, multiple studies has investigated the
missense mutation effect on physical structure and bio-
function of CYCS protein. Liptak et al. demonstrated that
the proapoptotic Gly42Ser mutation altered the heme
electronic structure and increased the rate of electron self-
exchange, resulting in the enhanced proapoptotic activity of
Gly42Ser (Liptak et al., 2011). De Rocco et al. reported that the
p. Gly42Ser and p.Tyr49His variants in yeast and mouse
cellular models were responsible of the diminished
respiratory level and increased apoptotic rate (De Rocco
et al., 2014). Lei et al. showed that the Ala51Val variant
enhanced peroxidase activity by destabilizing the native
state of Cyt-c, and all three variants Gly42Ser, Tyr49His,
and Ala51Val had reduced global and local stability than
that of wild type Cyt-c (Lei and Bowler, 2019). Moreover,
Uchiyama et al. provided that the mutation of p.Lys301del
could significantly reduced cytochrome c protein expression
and cause functional defects in the mitochondrial respiratory
chain (Uchiyama et al., 2018). The existing findings are not
enough to explain the molecular mechanism of
thrombocytopenia, however, they could be used as scientific
evidence for thrombocytopenia diagnosis.

Cyt-c, a highly evolved protein in different species (St-
evens, 2011), contains three highly conserved Ω-loops
including residues 14–36, 40–57, and 71–85 (Karsisiotis
et al., 2016). Ω-loops play an important role in maintaining
the protein function and stability (Fetrow, 1995). Of the five
reported missense variants, three variants p.Gly42Ser,

p.Tyr49His, and p.Ala52Val were located in the second Ω-
loop domain (residues 40–57), two variants p.Leu99Val, and
p.Lys301del were located in the C-terminal of the protein. The
p.His27Tyr variant found in this study was in the first Ω-loop
(residues 14–36) (Figure 2C), which may affect the stability of
Cyt-c. Previous studies have reported that His27 in the wild
type Cyt-c interacted with Pro45 through an hydrogen bond
which is essential for sustaining the orientation of the heme
conformation and the α-helices, inflicting the cardiolipin
binding to cyt-c and subsequent apoptotic events
(Balakrishnan et al., 2012). Additionally, the 3D structure
of CYCS protein was predicted and it showed that the amino
acid substitution (His27Tyr) could lead to the cleavage of
hydrogen bonds between His27 and Pro45, causing the
instability of the protein structure and destruction of its
biological function. For mutant protein, the positive
charged Histidine was replaced by the neutral Tyrosine,
which negatively influence the electron transport in
mitochondrial oxidative respiratory chain. Hence, we
assumed that the variant p.His27Tyr could be the genetic
etiology of the thrombocytopenia in the family case.
Nevertheless, the genetic effect of this variant needs to be
verified in future study.

In summary, with the rapid development of molecular
biotechnology, genetic analysis has been widely used in
rare disease diagnosis. Our findings demonstrated that a
new missense variant of the CYCS gene was associated with
non-syndromic thrombocytopenia identified byWES. Further
research is required to understand the impact of CYCS
variants on changing platelet production. The outcome
could be beneficial for thrombocytopenia diagnosis and
prognostic management.
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