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ABSTRACT

The constitutive androstane receptor (CAR, NR113) plays
a crucial role in the regulation of drug metabolism,
energy homeostasis, and cancer development through
modulating the transcription of its numerous target
genes. Different from prototypical nuclear receptors,
CAR can be activated by either direct ligand binding or
ligand-independent (indirect) mechanisms both initiated
with nuclear translocation of CAR from the cytoplasm. In
comparison to the well-defined ligand-based activation,
indirect activation of CAR appears to be exclusively
involved in the nuclear translocation through mecha-
nisms yet to be fully understood. Accumulating evi-
dence reveals that without activation, CAR forms a
protein complex in the cytoplasm where it can be func-
tionally affected by multiple signaling pathways. In this
review, we discuss recent progresses in our under-
standing of the signaling regulation of CAR nuclear
accumulation and activation. We expect that this review
will also provide greater insight into the similarity and
difference between the mechanisms of direct vs. indirect
human CAR activation.

KEYWORDS constitutive androstane receptor, nuclear
translocation, phosphorylation, signaling regulation

INTRODUCTION

The constitutive androstane receptor (CAR), a member of
the nuclear receptor superfamily (subfamily 1, group I,
member 3 [NR1i3]), plays an important role in coordinating
cellular responses to the stimulation of both exogenous and
endogenous chemicals by regulating the expression of its
target genes (Qatanani and Moore, 2005; Stanley et al.,

2006; Plant, 2007). Originally cloned as a constitutively
activated receptor without a clearly defined biological func-
tion, the importance of CAR in xenobiotic metabolism was
first appreciated when CAR was functionally linked to the
long-known phenobarbital-mediated induction of hepatic
cytochrome P450 (CYP) 2B gene family (Honkakoski et al.,
1998; Kawamoto et al., 1999). Encouraged by these find-
ings, numerous investigations have been carried out to
explore the role of CAR in xenobiotic metabolism, detoxifi-
cation, and clearance (Maglich et al., 2002; Tolson and
Wang, 2010). In humans, two functional enhancer modules,
namely the phenobarbital-responsive enhancer module
(PBREM) and the xenobiotic-responsive enhancer module
(XREM), have been identified upstream of the CYP2B6 gene
and functionally characterized as the CAR binding sites in
response to chemical stimuli (Honkakoski et al., 1998; Wang
et al., 2003). CAR is also known to control the inductive
expression of other CYP enzymes such as CYP3A4
(Goodwin et al., 2002), CYP2Cs (Ferguson et al., 2002;
Gerbal-Chaloin et al.,, 2002), CYP2A6 (Wortham et al.,
2007), and to a lesser extent CYP1A1 and CYP1A2 (Yosh-
inari et al., 2010), which contribute to the metabolism of
approximately 75% of clinically used drugs and the detoxi-
fication of numerous environmental chemicals (Johansson
and Ingelman-Sundberg, 2010). Further studies have
extended CAR target genes including those encoding phase
Il enzymes such as the uridine diphosphate glucuronosyl-
transferase (UGT) isoforms (i.e., UGT1A1, UGT1A6, and
UGT1A9) (Sugatani et al., 2005; Osabe et al., 2008; Buckley
and Klaassen, 2009), glutathione S-transferases and sul-
fotransferases (Maglich et al., 2002; Yanagiba et al., 2009),
as well as efflux and uptake drug transporters such as
multidrug resistance-associated proteins (MRPs) (Cherring-
ton et al.,, 2002, 2003), multidrug resistance protein 1
(MDR1) (Burk et al., 2005a, 2005b; Cerveny et al., 2007),
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and organic anion-transporting polypeptide 1 (OATP1) (Ding
et al., 2006; Osabe et al., 2008). In addition to its broad
spectrum of target genes, CAR also senses numerous
xenobiotics and endobiotics as activators or deactivators
and translates chemical stimulation into coordinated
metabolism, detoxification, and clearance in the liver. Up-
regulation of these drug-metabolizing enzymes or drug
transporters by CAR activators may accelerate the bio-
transformation of co-administered drugs, usually leading to
decreased therapeutic efficacy, enhanced toxicity, or
increased bioactivation of prodrugs. For instance, recent
studies in our lab have demonstrated that activation of CAR
can enhance the bioactivation of cyclophosphamide (CPA)
and facilitate CPA-based chemotherapeutic activity in leu-
kemia cells (Wang et al., 2013). Understanding the role of
CAR in mediating variable drug responsiveness and drug-
drug interactions has become an intense focus of both
academic and industrial research efforts and may lead to
enhanced prediction of drug-drug interactions and xenobi-
otic-induced cytotoxicity.

Other than the well-established roles of CAR in the reg-
ulation of drug metabolism and transport, where it functions
as a xenobiotic sensor, emerging evidence strongly sug-
gests that CAR also modulates various hepatic functions that
control diverse physiological and pathophysiological condi-
tions, including energy metabolism, insulin signaling, cell
proliferation, and tumor development (Fig. 1). In mice,
selective activation of CAR significantly alleviated high fat
diet-induced obesity and type 2 diabetics via a combined
inhibition of lipogenesis, fatty acid synthesis, and gluco-
neogenesis, as well as the increase of energy expenditure in
brown adipose tissues (Dong et al., 2009; Gao et al., 2009;
Masuyama and Hiramatsu, 2012). Particularly, CAR influ-
ences energy homeostasis by suppressing the expression of
phosphoenolpyruvate carboxykinase (PEPCK), glucose-6-
phosphatase (G6Pase) (Kachaylo et al., 2012), sterol regu-
latory element-binding protein 1c (Roth et al., 2008), acetyl-
CoA carboxylase 1, fatty acid synthase (FAS), and stearoyl-
CoA desaturase-1 (SCD-1) (Du et al., 2008). The essential
role of CAR in phenobarbital- and 1,4-bis[2-(3,5-dichloro-
pyridyloxy)] benzene (TCPOBOP)-induced tumor promotion
was initially established by using CAR knockout and wild-
type mice (Yamamoto et al., 2004; Huang et al., 2005). In
this regard, the known tumor promoters stimulated cancer
progression by a CAR-dependent perturbation of the
expression of the growth arrest and DNA damage-inducible
45 beta (GADD45B) (Columbano et al., 2005), the murine
double minute 2 (mdm2) (Huang et al., 2005), as well as the
newly identified tubulin alpha 8 (TUBAS8) (Kamino et al.,
2011a). In contrast to these observed roles of murine CAR in
tumor development, activation of human (h) CAR by the
selective activator, 6-(4-chlorophenyl)imidazo[2,1-b][1,3]
thiazole-5-carbaldehydeO-(3,4-dichlorobenzyl)oxime (CIT-
CO), appears to be associated with cell cycle arrest and
enhanced apoptosis in human brain tumor stem cells,

illustrating an anti-cancer potential (Chakraborty et al.,
2011). Moreover, the enhanced cell proliferation by pheno-
barbital in the liver of wild-type mice was completely abro-
gated in the double-humanized CAR and pregnane X
receptor (PXR) mouse model (Ross et al., 2010). Although
the underlying mechanisms of the significant species differ-
ences of CAR in tumor development are largely unknown,
such variances might be attributed to the divergent regula-
tion of differential genes governing DNA synthesis, cell
proliferation, apoptosis, and migration by hCAR vs. its rodent
counterparts (Ross et al., 2010; Kamino et al., 2011b; Tak-
izawa et al., 2011). Collectively, findings from these initial
basic investigations hold the potential to advance CAR from
a well-known xenobiotic sensor to an endobiotic modulator
that may eventually become a promising drug target for
metabolic disorders as well as cancer therapy.

Unlike PXR, the closest relative of CAR in the nuclear
receptor superfamily tree, CAR is constitutively activated in
nearly all immortalized cells and spontaneously accumulated
in nuclei of these cells prior to chemical stimulated activation
(Kawamoto et al., 1999). Moreover, CAR is featured as a
nuclear receptor that could be transactivated through either
the classical direct ligand binding or a mutedly defined
ligand-independent indirect mechanism (Kawamoto et al.,
1999; Maglich et al., 2003). These characteristics make the
studies of CAR activation extremely challenging and pose
major difficulties for evaluating drug-mediated CAR activa-
tion in vitro. This review is aimed to highlight the recent
advances in our understanding of the molecular mecha-
nisms behind drug-mediated nuclear translocation and acti-
vation of CAR, with a particular focus centered on signaling
pathways that contribute to indirect activation of CAR.

ACTIVATION OF CAR

As a so-called orphan receptor, CAR can be activated by a
broad array of xenobiotic chemicals, often at micromolar
concentrations, which differs from the classical steroid-hor-
mone receptors which respond to endogenous ligands at
nanomolar concentrations (Giguere, 1999; Tzameli and
Moore, 2001). Structurally, however, CAR shares common
functional features with other typical nuclear receptors,
including a highly variable N-terminal AF1 domain, a DNA
binding domain (DBD), a ligand-binding domain (LBD), and a
C-terminal AF2 domain. The highly conserved DBD contains
unique structures that can recognize and bind to specific
promoter regions in target genes, namely xenobiotic
response elements such as the aforementioned PBREM and
XREM in the CYP2B6 promoter. Response elements binding
to CAR are usually composed of two direct repeats of the
consensus hexametric sequence of AG(G/T)TCA spaced by
three to four nucleotides (i.e., DR3 or DR4) (Makinen et al.,
2002). In the nucleus, CAR only binds to its response ele-
ments after forming heterodimers with the retinoid X receptor
(RXR). The X-ray crystal structure of the hCAR/RXR LBDs
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Figure 1. Schematic illustration of biological functions of CAR. The size of hollow arrows indicates the abundance of available
evidence for each function of CAR. Up and down black arrows symbolize increased and decreased gene expression, respectively.

reveals that CAR contains a single-turn Helix X that restricts
the conformational freedom of the C-terminal AF2, and a
relatively small ligand binding pocket (Xu et al., 2004). Such
features permit CAR to interact with co-activator proteins and
maintain a constitutively activated status once translocated
into the nucleus. Importantly, although CAR shares several
common characteristics with classical nuclear receptors,
increasing evidence suggests that CAR can be activated by
both direct ligand-binding and ligand-independent mecha-
nisms (Kawamoto et al., 1999; Maglich et al., 2003). To this
end, it appears that CAR activation is a multi-step process
and most identified CAR activators may not directly bind to
the receptor.

Direct activation

Owing to the constitutive activation of CAR, the initial search
for CAR ligands has resulted with the identification of andr-
ostenol and androstanol as inverse-agonists of CAR (For-
man et al, 1998). Mechanistically, these androstanes
convert CAR from constitutive to basal activity by disrupting
the salt bridge that locks the H12 helix in its active confor-
mation, promoting co-activator release from the LBD without
interfering CAR/RXR dimerization or DNA binding (Shan
et al., 2004). Subsequent studies uncovered TCPOBOP, the
most potent known member of the phenobarbital-like class of
CYP2B inducers, as the first agonist of mouse (m) CAR, in

that TCPOBOP dose-dependently restores mCAR activity
following inhibition by the inverse agonists (Tzameli et al.,
2000). Notably, mutation of key residues inside the mCAR
ligand-binding pocket entirely eliminated the stimulatory
effect of TCPOBOP, as well as the inhibitory effect of an-
drostanes, without affecting the constitutive activity of CAR
(Tzameli et al., 2000). These results clearly establish CAR
as a xenobiotic responsive modular protein that can be
activated/deactivated by binding with agonistic and antago-
nistic ligands, respectively.

Importantly, CAR exhibits remarkable species selectivity
in its ligand binding and activation profiles, which makes
direct extrapolation of findings from mouse to human extre-
mely risky. For example, TCPOBOP and estradiol activate
mouse but not human CAR, and pharmacological concen-
trations of androstanol, progesterone, and testosterone
repress mouse but not human CAR (Handschin and Meyer,
2003; Maglich et al., 2003). The first selective hCAR agonist,
the imidazothiazole derivative-CITCO, came through a
combination of in vitro and cell-based screening in 2003
(Maglich et al., 2003). CITCO selectively binds to hCAR and
activates CAR target genes in human primary hepatocytes
(Maglich et al., 2003; Ferguson et al., 2005; Faucette et al.,
2006). Recent evidence also reveals that CITCO can effi-
ciently enhance recruitment of co-activators to the LBD of
hCAR by competing with antagonists such as PK11195 (Li
et al., 2008) and metformin (Yang et al., 2013). However,
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CITCO only moderately enhances the constitutively acti-
vated hCAR (less than 2-fold), compared with that of
TCPOBOP for mCAR (5- to 10-fold) in cell-based luciferase
reporter assays (Tzameli et al., 2000; Maglich et al., 2003).
Moreover, CITCO also activates human PXR and induces
PXR target genes at higher concentrations, leaving direct
comparison of human CAR and PXR target genes yet
challenging (Maglich et al., 2003). To date, there is no pure
hCAR agonist reported. Other chemicals exhibiting agonistic
effects on hCAR such as the antimalarial artemisinin, the
psychoactive diazepam and the anti-fungal myclobutani, are
also associated with potent activation of hPXR (Burk et al.,
2005b; Li et al., 2009). Overall, ligand-dependent direct
activation of CAR may still rely on its initial step of translo-
cating CAR into the nucleus. Once inside the nucleus, CIT-
CO bound hCAR adopts a conformation similar to the
constitutively active apo-CAR and maintains the intrinsically
high consititutive activity.

Indirect activation

The hallmark feature that differentiates CAR from classical
nuclear receptors lies in its ligand-independent nuclear
accumulation and constitutive activation once expressed
inside the nucleus of cells. To date, numerous CAR activa-
tors have been identified, including clinically used drugs,
environmental chemicals, and endogenous steroid metabo-
lites (Qatanani and Moore, 2005; Li and Wang, 2010; Molnar
et al., 2013). Most of these activators however do not bind
directly to CAR; instead activating CAR by stimulating its
nuclear translocation in a ligand-independent manner (Li
et al.,, 2009). For example, the typical CYP2B inducer and
CAR activator phenobarbital does not bind directly to CAR
but induces CAR transcriptional activition exclusively via
nuclear translocation (Kawamoto et al., 1999; Moore et al.,
2000). Notably, constitutive activation of CAR is not always a
beneficial feature. In this regard, CAR activation can
enhance the metabolism and toxicity of some drugs, such as
acetaminophen (Zhang et al., 2002), and potentially increase
tumor propensity by stimulating cell proliferation (Takizawa
et al., 2011). To accommodate such potential adversity, CAR
is primarily located in the cytoplasm prior to activation in
primary hepatocytes and intact liver in vivo (Kawamoto et al.,
1999; Li et al., 2009). In this native hepatocyte environment,
CAR is spontaneously sequestered in the cytoplasm as a
multi-protein complex including the heat shock protein 90
(Hsp90), cytoplasmic CAR retention protein, protein phos-
phatase 1 regulatory subunit 16A, and potentially other yet
unidentified proteins (Kobayashi et al., 2003; Yoshinari et al.,
2003; Sueyoshi et al., 2008). Upon the stimulation of phe-
nobarbital-type indirect activators or CITCO/TCPOBOP-like
direct ligand-binding, CAR disassociates from the cytoplas-
mic localized protein complex and moves into the nucleus. It
was believed that this process is regulated by protein kinase-
mediated phosphorylation/dephosphorylation of CAR. A

major breakthrough came with the identification of the con-
served threonine (Thr)-38 of human CAR as the primary
residue that governs nuclear translocation and activation of
CAR (Mutoh et al., 2009). Dephosphorylation of the Thr-38
appears to be essential for CAR translocation regardless of
exposure to direct or indirect activators (Mutoh et al., 2009).
The exact molecular mechanisms controlling Thr-38 CAR
phosphorylation/dephosphorylation remain to be fully
understood. However, several kinase signaling pathways
have recently been suggested to be important in the phos-
phorylation of CAR.

Protein phosphatase 2A (PP2A)

The role of protein kinase-based signaling pathways in
controlling phenobarbital-mediated induction of CYP450s
had been proposed, even before CAR was recognized as
the fundamental target of phenobarbital. Early studies
showed that both activation of protein kinase A (PKA) by
elevated intracellular cyclic adenosine monophosphate
(cAMP) and the inhibition of protein phosphatases PP1 and
PP2A by okadaic acid (OA) resulted in complete repression
of phenobarbital-inducible CYP gene transactivation in pri-
mary rat hepatocytes (Sidhu and Omiecinski, 1995, 1997).
Although the transcription factor(s) that drive the phenobar-
bital induction event was/were yet to be determined, these
results indicated that both PKA and protein phosphatase
pathways exert marked roles in modulating the signaling of
phenobarbital-mediated CYP induction. After establishing
CAR as the critical DNA-binding protein required for phe-
nobarbital response, Negishi and colleagues demonstrated
that OA pretreatment was sufficient to inhibit phenobarbital-
mediated nuclear translocation of CAR and induction of
Cyp2b10 in primary mouse hepatocytes, suggesting that
CAR nuclear accumulation is most likely regulated by a
dephosphorylation-sensitive signaling cascade (Kawamoto
et al., 1999). Further studies from the same research group
revealed that CAR exists as a complex with Hsp90 in the
cytoplasm of non-induced mouse liver hepatocytes. More
importantly, phenobarbital treatment recruited PP2A to the
protein complex, which led to the dephosphorylation of CAR
(Yoshinari et al., 2003).

Realizing the importance of phosphorylation/depho-
sphorylation in CAR nuclear translocation and activation, the
next significant question to be answered was which amino
acid residue(s) is/are responsible for such chemical-stimu-
lated signaling. Serial-deletion and site-directed mutagene-
sis of CAR led to the identification of a leucine-rich motif
(LXXLXXL) close to the C-terminal region, namely the
xenobiotic response sequence (XRS), as the potential
functional unit which dictates the nuclear translocation of
CAR in response to various phenobarbital-type inducers
(Zelko et al., 2001; Xia and Kemper, 2007). Nevertheless,
these residues were not direct targets of either PP2A or
PKA. A real breakthrough in this regard came with the
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diligent work by Mutoh et al. in 2009, in which the Thr-38
residue of hCAR was established as the primary determinant
for chemical-mediated phosphorylation/ dephosphorylation
of CAR, while dephosphorylation of Thr-38 is a prerequisite
for CAR translocation into the nucleus (Mutoh et al., 2009).
Consistent with earlier observations, treatment with OA
increased the phosphorylation of CAR at Thr-38 and
sequestered CAR in the cytoplasm of mouse primary
hepatocytes (Mutoh et al., 2013).

Extracellular signal-regulated kinase (ERK) and p38
mitogen-activated protein kinase (MAPK)

Accumulating evidence has demonstrated that expression of
various CYP enzymes was significantly repressed during
liver regeneration, infection or inflammation, suggesting
cellular signaling molecules such as growth hormones and
cytokines may play a role in the expression of xenobiotic-
metabolizing CYPs (Bauer et al., 2004; Koike et al., 2007). In
particular, two independent studies provided strong evidence
to show that phenobarbital-dependent activation of the rat
CYP2B1 promoter was repressed by the presence of epi-
dermal growth factor (EGF) but promoted by U0126, a
known inhibitor of the MEK-ERK signaling pathway (Bauer
et al.,, 2004; Joannard et al., 2006). Encouraged by these
observations, Negishi and coworkers provided further
mechanistic evidence suggesting ERK is an endogenous
signal, regulating CAR phosphorylation and nuclear trans-
location, by which U0126-mediated Cyp2b10 induction via
ERK1/2 deactivation was completely abrogated in CAR
knockout mice (Koike et al., 2007). Moreover, co-immuno-
precipitation experiments revealed that activated ERK1/2 co-
precipitated only with the Thr-38 phosphorylated CAR,
where the C-terminal located XRS appears to be essential
for this interaction (Osabe and Negishi, 2011). This interac-
tion was significantly increased after EGF exposure while
treatment with U0126 decreased the level of CAR phos-
phorylation at Thr-38 and eventually released CAR into the
nucleus (Osabe and Negishi, 2011).

An outstanding phenomenon observed was that ectopic
expression of hCAR in HepG2 cells does not convey optimal
induction of CYP2B6 compared to what was observed in
human primary hepatocytes; many other cellular signals
have been shown to regulate the activation of CAR.
Recently, the p38 MAPK was identified as a required factor
optimizing CAR activation and CYP2B6 induction in liver
cells (Saito et al., 2013). In human primary hepatocytes, p38
MAPK is highly activated, which significantly differs from that
in human hepatoma cell lines, including HepG2 cells. Acti-
vation of p38 MAPK by anisomycin robustly potentiated
induction of CYP2B6 mRNA by CAR activators in HepG2
cells to levels that were comparable to what was observed in
ligand-treated human primary hepatocytes. The potential
significance of p38 MAPK in chemical-elicited CAR activa-
tion was also indirectly supported by the facts that

phenobarbital-mediated induction of CYP2B1 was stimu-
lated in the liver of diabetic rats where p38 MAPK was
activated by the disease itself (Yoshida et al., 1996); while
CYP induction by phenobarbital was attenuated in tumor-
bearing rats where p38 MAPK was down-regulated (Nu-
mazawa et al., 2005). Nonetheless, a definite role of p38
MAPK in CAR activation has yet to be established, given that
activation of p38 MAPK appears to enhance some but not all
target genes of hCAR.

Epidermal growth factor receptor (EGFR)

Previous studies have shown that phenobarbital-induced
CYP2B gene transactivation could be effectively repressed
by growth factors, such as EGF and insulin-like growth factor
(IGF) (Bauer et al., 2004; Kietzmann et al., 1999; Thasler
et al., 2006). EGFR is a member of the ErbB family of
receptors that coordinates extracellular signals, such as
EGF, to cellular signaling cascades and eventually promotes
cell proliferation (Di Fiore et al., 1990). Recent studies by
Mutoh et al., identified EGFR as a phenobarbital-responsive
receptor that mediates CAR dephosphorylation and activa-
tion in mouse primary hepatocytes (Mutoh et al., 2013). As
shown in this study, phenobarbital antagonizes EGF-stimu-
lated EGFR phosphorylation and activation; abrogation of
EGFR signaling further induces the dephosphorylation of the
downstream receptor for activated C kinase 1 (RACK1) at
the residue of Tyr-52. The dephosphorylated RACK1 then
directly recruits PP2A to the cytosol localized CAR protein
complex, where it dephosphorylates and releases CAR into
the nucleus (Fig. 2). More importantly, this study provides the
first evidence that phenobarbital can directly bind to EGFR at
pharmacologically relevant concentrations. Given that phe-
nobarbital is often referred to as an “orphan compound”
without a known direct target, EGFR may represent one of
the molecular targets that initiates phenobarbital-mediated
cellular responses, including CAR activation. On the other
hand, phenobarbital may not function as a prototypical
EGFR inhibitor, such as gefitinib and erlotinib, which can
antagonize EGFR-mediated cell proliferation and tumor
development (Nakajima et al., 2012; Shin et al., 2013). In
fact, phenobarbital itself is a potent tumor promoter in rodent
animals via a CAR-dependent mechanism (Huang et al.,
2005; Yamamoto et al., 2004). Therefore, it is reasonable to
speculate that phenobarbital might be an atypical antagonist
of EGFR, which only selectively inhibits certain downstream
events of EGFR signaling.

AMP activated protein kinase (AMPK)

AMPK is an enzyme that functions as an energy sensor by
regulating cellular energy metabolism and homeostasis.
AMPK plays an important role in fatty acid oxidation, glucose
uptake, and hepatic lipogenesis by reacting to the fluctuation
of the cellular AMP:ATP ratio (Hardie et al., 2012; Inoki et al.,
2012). Recent studies suggested that AMPK is involved in
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Figure 2. Antagonistic effect of phenobarbital on EGFR
signaling and CAR activation. Arrows indicate activation and
the blunt arrow represents deactivation. (This figure was
adopted from Mutoh et al., 2013, Science Signaling).

CAR-regulated CYP2B gene induction by phenobarbital-
type inducers, but the precise role of AMPK in the activation
of CAR remains controversial. Studies from Meyer and col-
leagues showed that AMPK activator 5-AMINO-1-B-Dffff-
ribofuranosyl-imidazole-4-carboxamide (AICAR), or expres-
sion of a constitutively active form of AMPK, mimicked
phenobarbital-mediated induction of CYP2B6 in hepatoma
cell lines (Rencurel et al., 2005). On the other hand, liver-
specific deletion of AMPK catalytic subunits in mice impaired
the inductive expression of Cyp2b10 and Cyp3a11, but did
not inhibit the nuclear accumulation of CAR induced by
phenobarbital (Rencurel et al., 2006). Therefore, the authors
presumed the existence of another control step of CAR
signaling independent of translocation. However, an in vivo
study conversely showed that AICAR and metformin induced
CAR nuclear translocation but failed to induce hepatic
CYP2B genes in mice and rats, suggesting AMPK activation
is not sufficient for CYP2B induction (Shindo et al., 2007).

In another study, AICAR was shown to prevent nuclear
translocation of CAR and repress phenobarbital-induced
CYP2B expression in rat primary hepatocytes (Kanno et al.,
2010). In the same study, metformin and the constitutively
active form of AMPK, however, enhanced PBREM-driven
transactivation by phenobarbital, suggesting AICAR inhibits
CAR ftranslocation in an AMPK-independent manner. Most
recently, we have shown that metformin dramatically
repressed phenobarbital/CITCO-induced CYP2B6 expres-
sion through inhibiting dephosphorylation and nuclear
translocation of CAR (Yang et al., 2013). Consistent with this
observation, our data also demonstrated that AICAR mim-
icked the effect of metformin on CYP2B6 suppression, and
such repression was partially but concentration-dependently
restored by co-treatment with compound C (6-[4-(2-piperidin-
1-yl-ethoxy)-phenyl)]-3-pyridin-4-yl-pyrrazolo[1,5-a]-pyrimi-
dine, a known inhibitor of AMPK. Although sequence align-
ments of the conserved Thr-38 region of CAR revealed no
consensus AMPK site, signaling molecules downstream of
the AMPK pathway such as PKC (He et al,, 2009) may
function as the switch controlling CAR phosphorylation and
its disassociation from the retaining protein complex.

Collectively, these studies implicate rather contradictory
outcomes when connecting CYP2B transactivation and CAR
nuclear translocation to AMPK activation. Some of the dis-
putes however, can be explained at least in part by the
diverse physiological properties of different species or cell
systems used in these studies, such as immortalized cell
lines vs. primary hepatocytes, human cells vs. rodent cells,
and in vivo vs. in vitro. In addition, energy status and nutri-
tional environment of the cells can also influence pheno-
barbital regulation of the CYP2B gene (Yoshida et al., 1996;
Rencurel et al., 2006).

Transcriptional regulation of CAR

Although the biological function of CAR relies predominantly
on chemical-mediated activation/deactivation through direct
or indirect mechanisms, the expression level of CAR in
response to endogenous signals or xenobiotic chemicals
may also influence the downstream regulation of its target
genes. It is well known that dramatic interindividual differ-
ences exist in the expression of hepatic CYP2B6, the pro-
totypical target gene of hCAR (Wang and Tompkins, 2008).
Nevertheless, the molecular mechanism(s) underlying this
large variability remains elusive. In comparison of a panel of
12 individual human liver samples, Chang et al. revealed that
substantial interindividual differences of hCAR expression in
these samples were significantly and positively correlated
with that of CYP2B6, indicating the abundance of this tran-
scription factor may contribute to the varied expression of the
CYP2B6 gene in human liver (Chang et al., 2003). Other
studies highlighted that different from cognate CAR activa-
tion, expression of CAR can be induced by a number of
xenobiotics including the glucocorticoid receptor agonist
(dexamethasone) (Pascussi et al., 2000) and peroxisome
proliferator-activated = receptor (PPAR)-alpha agonists
(WY14643 and ciprofibrate) (Saito et al., 2010). In silico
analysis of the human CAR 5'-regulatory region led to the
identification of a putative glucocorticoid responsive element
located between -4477 and -4410 base pair (Pascussi et al.,
2003), a functional PPAR-alpha responsive element around
-4400 base pair, as well as a conserved hepatocyte nuclear
factor 4 alpha (HNF4a) binding site from upstream of the
transcriptional start site (Ding et al., 2006).

Previous animal studies have demonstrated that fasting
and caloric restriction increase the expression and activity
of CAR which in turn coordinates an adaptive response by
slowing down the energy expenditure. CAR knockout ani-
mals were unable to couple the metabolic adjustment and
lost more weight (Maglich et al., 2004; Qatanani et al,,
2005). Given that fasting typically increases the plasma
level of free fatty acids that are natural ligands of PPARa,
and elevated interaction between PGC-1a and HNF4a is a
hallmark of fasting adaptation, functionally establishing CAR
as a target gene of PPARa and HNF4a provides a novel
mechanistic model for CAR in energy homeostasis (Ding
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et al., 2006). Additional evidence indicated that stress-acti-
vated protein kinase and ERK signaling pathways are also
associated with altered expression of CAR under serum-
starvation stress (Osabe et al., 2009). Most recently, our
own data have unexpectedly revealed that an insulin-like
growth factor-1 receptor (IGF-1R) inhibitor (BMS-665351)
significantly induced the expression of CYP3A4 in human
primary hepatocytes without activation of either CAR or
PXR, instead it selectively induced the expression of CAR
(Li et al., 2012). Intriguingly, BMS-665351 did not activate
either glucocorticoid receptor or PPARa at concentrations
that induced the expression of CYP3A4 and CAR, implying
additional, yet unknown mechanisms may be involved in the
transcriptional regulation of CAR. Collectively, in compari-
son with the heightened focus on the activation and deac-
tivation of CAR, much less is known regarding how the
expression of CAR itself is controlled under the challenge of
both endogenous and xenobiotic chemicals. Clearly, tran-
scriptional regulation of the regulator would represent
another layer of CAR biology.

CONCLUDING REMARKS

It is evident now that CAR has evolved into a sensor of both
xenobiotic and endobiotic chemicals by governing the

transcription of genes associated with drug metabolism and
transport, energy homeostasis, and cell proliferation. Our
understanding of the role of CAR in gene regulation as well as
the mechanisms of its activation has increased remarkably
during the past 15 years. As summarized in this review, an
astonishing number of cellular factors and foreign compounds
intertwine in the regulation of CAR biological functions.
Although CAR shares several common features with its sister
receptor PXR, where they overlap in a number of target genes
and xenobiotic activators, the mechanisms of CAR activation
have been proven to be relatively unique. To date, mounting
evidence demonstrates that CAR can be activated through
both classical ligand binding and ligand-independent mech-
anisms, with indirect activation appearing to be predominant.
Seminal works by Negishi and colleagues have shown that
the phosphorylation status of CAR is pivotal for its cellular
localization and activation, which could be influenced by many
protein kinase signals (Mutoh et al., 2009). In the meantime,
the cellular expression of CAR itself appears to be affected by
certain signaling molecules. Together, these data indicate that
CAR may represent a cell signaling-regulated nuclear
receptor rather than a typical ligand-dependent nuclear
receptor (Fig. 3). Given that CAR can be activated both
directly and indirectly, it is essential to keep in mind that the
ligand binding and kinase signaling may interconnect to
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achieve the optimal activation of this receptor. Undoubtedly,
better understanding of the signaling control of CAR activation
will eventually benefit the prediction of metabolism-based
drug exposure as well as the development of CAR modulators
as potential drug candidates.
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