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Introduction

One of the most common forms of cancer and the third most 
cause of death globally is colorectal cancer (CRC).1 Several 
epidemiological studies have shown that dietary fiber intake 
and a western diet are associated with the prevalence of 
CRC, underscoring the significance of the diet-cancer rela-
tionship.1–4 In this regard, the gut environment which 
includes the microbiome has gained attention and shown to 
be a significant risk factor for CRC.5 The collective genes 
and genome of all microorganisms living in the gastrointes-
tinal tract (GIT) is referred to as the gut microbiome.6 The 
human GIT is home to over 100 trillion microbes, most of 
which are found in the colon.7 Metagenomic research has 
revealed that 1952 uncultured bacterial species exist in the 
human gut, many of which have not yet been assigned a 

class, adding to the substantial diversity of the microbial 
ecosystem.8 The relationship between the host and microbe 
can be pathogenic or symbiotic, and the microbial ecosystem 
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is greatly influenced by a number of external factors, includ-
ing diet, medication, and lifestyle.9

The effects of symbiotic relationships between microbes 
and hosts on physiological processes and general health are 
numerous. The advantageous commensals perform a number 
of roles, including supplying vital micronutrients, control-
ling the immune system, altering enterocyte function, affect-
ing metabolism, and halting the colonization of harmful 
microbes. Because the microbes in the gut ecosystem metab-
olize and flourish on the foods that humans eat, the human 
diet and its composition have a significant impact on the eco-
system. Short-chain fatty acids (SCFAs) are produced 
through the metabolism of dietary fibers, certain plant-based 
proteins, and microbiota accessible carbohydrates. SCFAs 
preserve microbial diversity, mucosal integrity, and anti-
inflammatory qualities.10,11 Cancer is one of the many dis-
eases linked to imbalances in the ratios of harmful toxins to 
essential nutrients. The main microbiome-induced mecha-
nisms linked to cancer pathogenesis are altered microbial 
diversity, weakened immune response, and release of geno-
toxic or carcinogenic substances.12–15

The aim of this review is to provide new information 
regarding the dietary factors linked to the emergence of 
CRC. It examines the potential role of the gut microbiome, 
specifically focusing on how it influences the tumorigenesis 
processes linked to CRC. Additionally, we go over CRC 
treatment strategies involving the manipulation of the gut 
microbiota. Furthermore, we investigated how a nutritious 
diet can prevent CRC by reestablishing the colonic epitheli-
um’s ability to function.

Relationship between CRC and gut microbiome

As global dietary patterns shift toward a more Westernized 
style, there is a projected steady rise in the incidence of CRC, 
with an estimated 2.2 million new cases anticipated by 2030.16 
Research indicates that around 90% of CRC cases occur spo-
radically, with the remaining cases attributed to genetic factors 
or exposure to specific environmental influences.17,18 Lifestyle 
choices, including physical inactivity, smoking history, adher-
ence to a Western diet, low fiber intake, alcohol consumption, 
and obesity, play pivotal roles in CRC development.19–22 
Lifestyle factors such as smoking, alcohol consumption, diet, 
and obesity significantly influence cancer risk and the micro-
bial/immune system. Smoking and alcohol impair immune 
function and alter the microbiome, leading to increased cancer 
susceptibility. A diet rich in fruits and vegetables supports a 
healthy immune system and microbiome, reducing cancer 
risk, while high consumption of red/processed meats, sugar, 
and high-fat foods promotes obesity and related cancers. 
Obesity itself contributes to chronic inflammation, immune 
dysfunction, and microbial imbalances, further elevating can-
cer risk.23–26 Notably, these lifestyle factors often trigger alter-
ations in the gut microbiota.27–29 Numerous studies have 
demonstrated that changes in the gut microbiome contribute to 

susceptibility to CRC or impact tumor progression, triggering 
inflammation, DNA damage, or the production of metabolites 
by microorganisms.30,31

Numerous investigations have suggested a strong correla-
tion between the gut microbiome and host physiology in CRC 
development. Utilizing high-throughput microbiome sequenc-
ing, researchers have examined microbial communities in 
both tumor-affected and healthy colon tissues, thereby enhanc-
ing our comprehension of the differences in the gut microbi-
ome between CRC patients and those without the disease. 
Studies have revealed a decrease in the diversity and abun-
dance of the gut microbiome in individuals with CRC. 
Analysis of the gut microbiome in CRC patients has high-
lighted significant alterations in specific microbial groups, 
potentially influencing mucosal immune responses in CRC 
patients compared to healthy individuals. Notably, certain 
operational taxonomic units linked to genera such as 
Enterococcus, Escherichia/Shigella, Klebsiella, Streptococcus, 
and Peptostreptococcus were found to be more prevalent in 
CRC patients’ gut microbiota, while others, including 
Roseburia and other butyrate-producing bacteria from the 
Lachnospiraceae family, were less abundant. Additionally, 
dysbiosis, characterized by microbial imbalance, was observed 
in the gut microbiome of CRC patients. Dysbiosis, coupled 
with heightened intestinal permeability, may incite colonic 
inflammation, potentially exacerbating or accelerating CRC. 
Notably, Fusobacterium nucleatum presence was significantly 
elevated in human CRC compared to healthy counterparts. 
Moreover, discrepancies in microbiome composition were 
noted between early-stage CRC patients (advanced adenoma) 
and those with advanced-stage CRC (established CRC).32–36 
These studies underscore a closely intertwined relationship 
between CRC and the gut microbiome, although further 
research is essential for a comprehensive understanding of the 
gut microbiome’s impact on CRC.

Effect of diet on gut microbiome and CRC 
development

Dietary components such as fibers, fats, and proteins play a 
vital role in fueling bacterial metabolisms in the gut. This not 
only aids in digestion but also results in the synthesis of 
byproducts that hold significant functional importance for 
the host. For example, bacteria residing in the colon play a 
crucial role in synthesizing essential co-factors like B vita-
mins, which are vital for host energy metabolism and gene 
expression regulation. Additionally, these microorganisms 
can biotransform plant-derived polyphenols with beneficial 
properties, such as antioxidant, anticancer, and anti-inflam-
matory effects. This transformation by the gut microbiota 
enhances the absorption of these compounds by the host, 
amplifying their potential health benefits. It underscores the 
importance of maintaining a healthy balance of gut bacteria 
for overall well-being.37–39 However, an imbalance in this 
equilibrium can lead to the generation of toxic metabolites 
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by gut microbes, causing cytotoxic and genotoxic effects. 
Additionally, diets rich in prebiotics and probiotics have the 
potential to enhance the microbiome’s richness by fostering 
microbial diversity and supporting existing microbiota.40,41 
In the contemporary era of increased processed food con-
sumption, gut biodiversity and chemical composition are 
substantially impacted, leading to chronic colonic inflamma-
tion and an elevated risk of CRC.2,30,42–44

Eating processed meat has been associated with a higher 
chance of developing CRC. The chemicals used in process-
ing red meat can combine to form carcinogenic N-nitroso 
compounds. Besides poor dietary habits, factors like obesity, 
heme iron consumption, and changes in the gut microbiota 
contribute to cancer-related changes in the colon lining. 
Notably, consuming emulsifiers like carboxymethylcellulose 
and polysorbate 80 has been linked to changes in the gut 
microbiome, potentially increasing the risk of intestinal 
inflammation and the formation of adenomas. The intake of 
emulsifiers can alter the abundance of specific groups of 
microbes, potentially affecting how the immune system in 
the colon responds in individuals with CRC compared to 
those without the disease.45–48 Moreover, the imbalance 
observed in the gut microbiome of individuals with CRC dis-
turbs the microbial equilibrium, triggering inflammation in 
the colon and facilitating the advancement of CRC. Notably, 
there is a significant increase in F. nucleatum levels in human 
CRC patients compared to those who are healthy, indicating 
its potential involvement in CRC development.49,50

While evidence suggests a close relationship between red 
and processed meat consumption, gut microbiota alterations, 
and CRC, epidemiological support is limited. Red meat, rich 
in Neu5Gc, can trigger chronic inflammation, potentially 
contributing to cancers. Nonetheless, the relationship 
between red meat and CRC is not strong, and certain food 
combinations can change how the colonic microbiome influ-
ences this. For example, consuming red meat alongside high 
amylose-resistant starch can change how the gut processes 
food, possibly reducing the risk of CRC. Include alterations 
in the production of SCFAs in the gut. SCFAs, such as 
butyrate, acetate, and propionate, are produced by the fer-
mentation of dietary fiber by gut bacteria. These SCFAs have 
been associated with several beneficial effects, including 
promoting colon health, reducing inflammation, and poten-
tially inhibiting the growth of cancerous cells in the colon. 
Additionally, this dietary combination may also influence 
the composition and activity of the gut microbiota, leading to 
a favorable gut environment that is less conducive to CRC 
development.51–53

Empirical Dietary inflammatory pattern (EDIP) scoring 
system assesses the inflammatory potential of foods, assessed 
by, influences F. nucleatum abundance in CRC patients. 
Higher EDIP scores, indicating inflammatory effects, are 
associated with CRC positivity for F. nucleatum, 
Consumption of anti-inflammatory foods like whole grains 
is associated with a reduced likelihood of developing F. 

nucleatum-positive CRC.54–57 Fermented foods like yogurt 
contribute to colonic mucosal protection and stabilizing 
microbial diversity, potentially reducing CRC.58,59

Antioxidant consumption is crucial for the survival of cer-
tain gut bacterial strains. Supplementation of antioxidants 
enhances the survival of anaerobic microbes, leading to the 
synthesis of protective SCFAs like butyrate that have a positive 
impact on CRC. Additionally, legume consumption by CRC 
survivors increases the production of beneficial metabolites, 
potentially detoxifying carcinogens and reducing oxidative 
stress. This has been linked to heightened production of benefi-
cial metabolites, including piperidine, N-methylpipecolate, 
vanillate, and 2-aminoadipate. These metabolites are generated 
through the metabolism of indigestible substrates present in 
navy beans by gut microbes, resulting in a total of 237 benefi-
cial metabolites. Notably, individuals who consume navy 
beans exhibit a 5.25-fold increase in ophthalmic acid levels, 
which play a pivotal role in glutathione metabolism. Ophthalmic 
acid is crucial for detoxifying xenobiotics such as carcinogens 
and reducing oxidative stress, thereby conferring protective 
effects against cancer. This underscores the significance of 
dietary choices in modulating gut microbiota metabolism and 
subsequently influencing overall health outcomes.60–63

Alcohol consumption alters the gut microbiota and accel-
erates CRC carcinogenesis. The microbiota in alcoholics 
exhibits a decrease in beneficial organisms and an increase 
in harmful ones, potentially contributing to genotoxic insults 
on the colonic mucosa. Restricting alcohol consumption 
could be a preventive measure against such genotoxic effects 
on the colon.64–66

In summary, the combination of specific foods in one’s 
diet plays a crucial role in mitigating toxicity on the colonic 
epithelium, consequently reducing the risk of CRC develop-
ment. Dietary constituents significantly influence chronic 
inflammation by modulating the immune response, and vari-
ous foods have been related with either increased or 
decreased risk of CRC.

The impact of dietary measure on CRC

Dietary fibers derived from diet rich in plant foods undergo 
minimal digestion by human intestinal enzymes, reaching the 
colon in an unchanged state. Enzymes that metabolize and fer-
ment soluble dietary fibers into beneficial metabolites like 
SCFAs possessed by colonic bacteria, which play a crucial role 
in reducing inflammation in the colonic mucosa, consequently 
lowering the risk of CRC.67,68 Butyrate, a prominent SCFA, 
inhibits histone deacetylases (HDAC) enzymes, promoting the 
expression of genes that arrest the cell cycle.69 Furthermore, 
butyrate functions as a fuel source for healthy enterocytes, 
whereas CRC cells, which proliferate rapidly, prioritize glyco-
lysis over utilizing butyrate for their energy requirements.70 
Co-cultivating specific bacterial strains in animal models has 
been shown to enhance butyrate production, offering SCFA-
mediated protection against CRC. For instance, when 
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Faecalibacterium prausnitzii ATCC 27768 strain is co-cultured 
with Bifidobacterium catenulatum KCTC 3221 and supple-
mented with fructooligosaccharides in anaerobic conditions, 
there is a significant increase in butyrate production, suggest-
ing potential protective effects.70 This co-culture’s superna-
tant, when exposed to colon cancer cells and macrophages, 
exhibited anti-inflammatory effects in vitro, and when admin-
istered in a dextran sodium sulfate (DSS)-induced colitis mice 
model, it increased SCFA levels and decreased gene expres-
sion of pro-inflammatory cytokines.71 Butyrate was observed 
to enhance the abundance of tight junction protein complexes 
in an Apcmin/+ mice model, underscoring its potential in 
lowering CRC risk. Phytochemicals obtained from dietary 
sources, like polyphenols and flavonoids, also play a role in 
safeguarding the colonic mucosa.72,73 Most polyphenols 
ingested through plant-based diets reach the colon unaltered 
and are metabolized by intestinal bacteria into more active sub-
stances that decrease oxidative stress, inflammation, and tumo-
rigenesis.74 Polyphenols also interact with the gut microbiota, 
promoting the growth of beneficial strains like Lactobacillus 
and Bifidobacterium, which inhibit inflammation, alleviate 
colitis, and reduce CRC risk.75 Examples include epigallocate-
chin-3-O-gallate and theaflavins from tea extracts, which 
exhibit anti-inflammatory effects on F. nucleatum-induced 
inflammatory bowel disorders, consequently lowering CRC 
risk.76 Berries, rich in polyphenols, act as prebiotics, enhancing 
microbial richness and decreasing CRC growth. Mango pulp, 
containing gallotannins and gallic acid, demonstrates anti-
inflammatory effects on the intestinal mucosa, reducing pro-
inflammatory cytokines and increasing the abundance of 
beneficial bacteria like Lactobacillus.77 Date palms, another 
source of polyphenols and fibers, may not significantly alter 
gut microbiota but decrease genotoxicity and fecal ammonia 
levels, contributing to a decreased risk of CRC.78,79 Green tea 
extracts rich in polyphenols enhance the Firmicutes to 
Bacteroidetes ratio and the presence of SCFA-producing gut 
microbes. Polyphenols, therefore, play a crucial role in reshap-
ing the gut microbiome and potentially decreasing CRC risk. 
Curcumin, a polyphenol from the Curcuma longa plant, sig-
nificantly decreases inflammation, oxidative stress, and altera-
tions in the gut microbiome.80,81 The breakdown of curcumin 
by gut bacteria yields beneficial metabolites that offer protec-
tion against CRC, as indicated by enhanced taxonomic profiles 
of gut microbiota observed in IL-10-deficient CRC mice mod-
els fed a diet rich in curcumin. This enhancement was linked to 
a decrease in both tumor size and visible macroscopic lesions. 
Additionally, a combination of essential turmeric oil-curcumin 
and tocotrienol-rich fraction of vitamin E isomers demon-
strated antiproliferative effects on colon cells in vitro studies 
and suppressed the growth of mice xenografts formed of colon 
cells in vivo studies. The intervention increased the abundance 
of anti-inflammatory bacterial genus and decreased harmful 
microbes, supporting curcumin’s potential role in reducing 
CRC risk.82–85 Flavonoids, which are another set of beneficial 
polyphenols found abundantly in fruits and vegetables, are 

transformed by gut microbiota into active compounds with 
anti-inflammatory, antioxidant, and anticancer properties.86 
For example, neohesperidin, a flavonoid plentiful in citrus 
fruits, demonstrates cancer-killing effects in models of CRC in 
mice, altering the composition of gut microbiota and reducing 
the formation of tumors in the colon.87 Likewise, anthocyanins 
found in black raspberries, which are a type of flavonoid, 
reduce tumor formation in mice with colitis-associated CRC 
by prompting epigenetic alterations. These flavonoids, com-
monly present in plant-centered diets, enhance the diversity of 
gut microbes and inhibit the growth of CRC.88

Olive oil, a prominent element of the Mediterranean diet, 
containing abundant monounsaturated fatty acids, squalene, 
phytosterols, and phenols, exhibits favorable effects on 
mucosal cells in comparison to other oils. Consumption of 
extra virgin olive oil (EVOO) has been linked to reduced 
levels of harmful microbes and disruptions in gut microbi-
ota, along with inflammatory alterations, highlighting its 
potential in preventing CRC. N-3 polyunsaturated fatty acids 
(PUFA), when combined with fermentable dietary fibers, 
play a protective role in pathways associated with pro-
grammed cell death and epigenetic irregularities observed in 
CRC. However, careful selection of dietary lipids, particu-
larly EVOO and n-3 PUFA, is essential for optimizing a 
healthy colonic mucosa, as the benefits of n-3 PUFA may 
only be significant when sourced from marine origins and 
consumed alongside dietary fibers. Overall, a combination 
of dietary fibers and various diet-derived components such 
as phytochemicals, essential fatty acids, as well as prebiot-
ics, probiotics, and postbiotics collectively forms a multifac-
eted protective strategy against CRC.89–91

Generally, in vitro studies highlight that the diet can influ-
ence the gut microbiome by regulating molecular events in 
the colonic mucosa through controlled experiments with cul-
tured cells. In vivo studies further show that these dietary 
effects translate into significant changes in gut health in ani-
mal models. Human studies have confirmed these findings, 
demonstrating that dietary habits significantly impact the gut 
microbiome and CRC risk in human populations.

Impact of the gut microbiome on CRC formation

While much remains unknown about the development of 
CRC, the onset of CRC is often associated with chronic 
inflammation, with around 20% of colon malignancies 
thought to be preceded by prolonged inflammation. 
Throughout the process of carcinogenesis, cancer cells 
release inflammatory proteins known as cytokines and 
chemokines. These molecules attract immature myeloid cells 
and pro-inflammatory helper T cells, fostering a microenvi-
ronment conducive to tumor growth. This environment is 
marked by the production of growth factors and angiogenic 
factors, the activation of enzymes involved in tissue remod-
eling, and the suppression of the body’s antitumor T-cell 
responses.92,93
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The role of the gut microbiome in the development of 
CRC was initially acknowledged in the early 1970s. Studies 
involving germ-free mice exposed to the carcinogen 
1,2-dimethylhydrazine showed a notable decrease in CRC 
occurrence. Further investigations utilizing different CRC 
models consistently highlighted the substantial impact of 
intestinal microbes, whether present or absent, on the forma-
tion of colon cancer. Advanced techniques such as high-
throughput microbiome sequencing have pinpointed specific 
microorganisms within the intestines that exert influence 
over the development of CRC.94–97

Streptococcus bovis has been identified as a CRC risk fac-
tor, with its proinflammatory proteins playing a role in colon 
carcinogenesis.98 F. nucleatum is associated with CRC tumor 
formation and early carcinogenesis, producing a protein, 
Fusobacterium adhesin A (FadA), that activates the onco-
genic b-catenin signaling pathway. Enterococcus faecalis 
increases CRC risk by inducing DNA damage to intestinal 
epithelial cells.99–103

Enterotoxigenic Bacteroides fragilis (ETBF) accelerates 
tumor growth by upregulating signal transducer and activa-
tor of transcription 3 (STAT3) and stimulating the Th17 
immune response during the development of colon tumors. 
Peptostreptococcus anaerobius fosters a proinflammatory 
environment and facilitates tumor formation in the intestine 
by heightening levels of reactive oxygen species (ROS) and 
promoting cholesterol synthesis.15,104–106

Salmonella and Campylobacter jejuni have been linked to 
chronic infections that increase the risk of gastrointestinal dis-
eases, including CRC. Sulfate-reducing bacteria can stimulate 
CRC progression by producing hydrogen sulfide (H2S), induc-
ing DNA damage and disrupting the gut barrier.73,107–110

Current research endeavors are focused on unraveling 
the connections between additional intestinal microorgan-
isms and the development of CRC, highlighting the intri-
cate interplay between the gut microbiome and CRC 
formation.

Gut microbiome’s impact on CRC progression

The gut microbiome doesn’t just impact the onset of colon 
cancer; it also plays a role in its progression.111,112 Research 
indicates that various bacteria play a role in the development 
and progression of tumors. In CRC patients, F. nucleatum is 
linked to a poorer prognosis, as it facilitates the development 
of colonic tumors by suppressing the adaptive immune 
response mediated by anti-tumor T cells.113–115 ETBF con-
tributes to the advancement of cancer by triggering the 
recruitment and multiplication of CD4+CCR6+IL17A+ 
Th17 cells through the IL-17 signaling pathway. P. anaero-
bius fosters the development of CRC by activating the onco-
genic PI3K-Akt signaling pathway, which boosts the 
proliferation of tumor cells.116–118

Escherichia coli is closely related to CRC growth, with 
pathogenic strains correlating with inflammation, ROS 

production, and tumor infiltration. Colibactin, a genotoxin 
produced by certain E. coli strains, significantly impacts 
tumor growth.119–124

Certain intestinal strains, such as F. prausnitzii, 
Lactobacillus rhamnosus GG, and Bifidobacterium lactis 
Bb12, induce protective effects against CRC by downregu-
lating proinflammatory pathways, preventing abnormal epi-
thelial proliferation, and improving the intestinal epithelial 
barrier. In CRC mouse models, probiotics such as Lactobacilli 
and Bifidobacteria impede tumor advancement and reduce 
tumor size by enhancing the production of SCFAs, promot-
ing apoptosis, and inhibiting tumor cell proliferation.125–129

In conclusion, the gut microbiome plays a multifaceted 
role in both the formation and progression of CRC, with spe-
cific bacterial strains influencing various pathways and pro-
cesses in the complex landscape of CRC development.

Gut microbiome on CRC treatment

The close association between the gut microbiome and CRC 
has prompted extensive research into its impact on CRC 
treatment. This area constitutes a vital component of cancer-
microbiome research, with numerous studies exploring its 
integration with diverse treatment modalities for clinical 
application. Beyond traditional chemotherapy or radiother-
apy, emerging insights reveal synergistic effects of the gut 
microbiome with immune checkpoint inhibitors (ICIs).130,131

Chemotherapy. The gut microbiota plays a crucial role in 
determining the effectiveness of traditional chemotherapy. 
Certain gut bacteria can modulate cytotoxicity by engaging 
in the metabolic pathways of anticancer medications. For 
example, antibiotics-treated mice show reduced efficacy of 
platinum-based chemotherapeutic drugs like oxaliplatin, 
leading to decreased cytokine secretion and ROS production, 
ultimately resulting in diminished tumor necrosis in a mouse 
model of colon tumor transplantation.132 Similarly, gemcit-
abine’s anticancer potency diminishes in the presence of cer-
tain gammaproteobacteria in the tumor, emphasizing the 
microbial influence on chemotherapy effectiveness.133,134 
Antibiotic administration in CRC mouse models also reduces 
the anticancer effect of 5-fluorouracil (5-FU) administration, 
indicating the microbiota’s role in chemotherapy 
response.135,136 F. nucleatum, previously associated with 
both the onset and advancement of tumors, influences treat-
ment responses, as elevated levels of F. nucleatum are asso-
ciated with less-favorable outcomes to 5-FU and oxaliplatin 
treatments in CRC patients.49,137

Radiotherapy. Radiation therapy-induced dysbiosis can 
adversely impact other CRC treatment modalities. After radia-
tion treatment, there is a decline in commensal bacteria and an 
increase in potentially tumor-promoting microbiota, leading 
to impaired gut barrier function and additional inflammatory 
responses. These changes highlight the potential consequences 
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of radiation therapy on the gut microbiome and its subsequent 
impact on CRC treatment outcomes.138–140

Immunotherapy. Certain intestinal microbes play a role in 
regulating the immune response and, consequently, tumor 
growth. Research has aimed to understand how intestinal 
microbes influence the efficacy of immunotherapeutic agents. 
Commensal gut microbiota have been shown to enhance the 
antitumor efficacy of ICIs like programmed death-ligand 1 
(PD-L1) inhibitors. The gut microbiota composition influ-
ences the efficacy of ICIs, including CTLA-4 and PD-L1 
inhibitors, with bacterial species such as Bacteroides, Akker-
mansia, Faecalibacterium, Clostridiales, and Bifidobacte-
rium spp. being associated with improved antitumor 
effects.141–145 The modulation of ICIs extends to direct inter-
actions between host immune cells and specific bacteria, such 
as Akkermansia muciniphila and Bacteroides spp., demon-
strating their role in enhancing the effectiveness of immuno-
therapeutic agents. The microbial metabolites, such as SCFAs 
like butyrate and propionate, have also been implicated in the 
antitumor effects observed in response to ICIs.145–147

Potential clinical utilizations of the gut 
microbiome

The potential roles of the gut microbiome in addressing CRC 
are diverse. It can serve as a screening, prognostic, and/or 
predictive biomarker, and it can also influence CRC preven-
tion and the effectiveness of systemic treatments. As a screen-
ing marker, the gut microbiota acts as a detector for high-risk 
adenomas or CRC in asymptomatic individuals. Specific bac-
terial strains, like F. nucleatum, can act as screening markers, 
with their higher abundance in adenomas and CRC patients 
detectable in fecal samples. Other screening markers, such as 
metabolic and genotoxic by-products of certain strains, may 
aid in the early detection of CRC. As a prognostic and/or pre-
dictive biomarker, the gut microbiome has the potential to 
predict patients’ clinical outcomes, treatment responses, and 
potential treatment-related adverse effects. Potential bio-
markers may include microbial genes, metabolites, and 
microbiota-related serological markers detectable in blood, 
tumor tissue, feces, and samples from the oral cavity. 
Modulating the gut microbiome offers opportunities for pre-
venting CRC in high-risk populations, improving responses 
to chemotherapy and immunotherapy, and reducing potential 
adverse effects. This modulation can be achieved through 
dietary interventions, prebiotics, probiotics, postbiotics, anti-
biotics, and fecal microbiota transplantation (FMT).31,148–150

Gut microbiota modulation

The makeup of the gut microbiome can be changed through 
dietary adjustments, which may involve consuming prebiotics 
such as dietary fiber, cutting back on fat consumption, following 
a plant-based diet, minimizing or eliminating red and processed 
meat intake, or boosting the intake of probiotics and postbiotics 

(microbial fermentation byproducts, like SCFAs). These dietary 
practices should be coupled with weight reduction and regular 
exercise. Probiotics, live microorganisms administered in ade-
quate amounts, play a role in improving or restoring gut flora. In 
CRC, preclinical studies highlight certain bacteria like 
Bifidobacterium and Lactobacillus spp., exhibiting anticancer 
properties. These include inhibiting cell proliferation, inducing 
cancer cell apoptosis, modulating host immunity, deactivating 
carcinogenic toxins, and producing anticarcinogenic compounds 
like butyrate. Although widely used as a food supplement, the 
effectiveness of probiotics in preventing or treating diseases, 
including acute antibiotic-associated diarrhea and Clostridium 
difficile-associated diarrhea, remains inconclusive in both pre-
clinical and clinical studies. Questions persist regarding the 
selection, ratio, activities, colonization, physiological effects, 
interactions with the intestinal microbiome, safety issues, and 
overall impact on the host. Prebiotics defined as nondigestible 
food ingredients that selectively stimulate the growth and/or 
activity of specific bacteria in the colon, can be combined with 
probiotics to induce beneficial changes in the fecal microbiota. 
For instance, inulin, in combination with L. rhamnosus GG and 
B. lactis Bb12 probiotics, increases beneficial Lactobacillus and 
Bifidobacterium strains while decreasing harmful Clostridium 
strains.148–154

Postbiotics, which include microbial fermentation com-
ponents such as metabolites, SCFAs, microbial cell frac-
tions, and functional proteins, enhance the potency of 
prebiotics. Oncomicrobiotics, a potential postbiotic, repre-
sents a mixture of bacteria or bacterial products that enhance 
the immune response.155,156

Selective antibiotics can be pivotal in preventing CRC by 
inhibiting cancer-associated bacteria, boosting beneficial 
microbes to improve cancer therapies, or acting as small mol-
ecule inhibitors to alleviate treatment side effects. Notably, 
targeting cancer-associated F. nucleatum with antibiotics like 
β-lactams, metronidazole, and clindamycin offers a specific 
treatment option, although combining these antibiotics with 
other methods to modulate the gut microbiome is crucial for 
optimal outcomes. FMT, which involves introducing healthy 
microbiota from a donor into a patient’s intestine, represents 
a direct manipulation of the gut microbiome. FMT has shown 
remarkable success in treating C. difficile infection, with a 
cure rate exceeding 90%, and it is governed by stringent 
international guidelines. Its potential applications extend 
beyond intestinal diseases to include metabolic, neurological, 
cardiovascular, and rheumatological conditions. Innovative 
strategies for modulating the gut microbiome encompass bio-
engineering the gut microbiota, developing genetically engi-
neered probiotics, and using bacteriocins or bacteriophages to 
modify the gut microbiota.31,148,149,157–160

Limitation of the study

The review compellingly demonstrates the significant influ-
ence of diet-modulated gut microbiota on CRC development 
and progression through diverse molecular mechanisms, 
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providing an illuminating exposé on this complex relationship. 
However, as a narrative review, it lacks the methodological 
rigor of a systematic review or meta-analysis. Additionally, the 
reliance on preclinical and observational human data makes it 
difficult to infer causality from the reported associations. 
Addressing these limitations in future research will enhance 
the understanding and applicability of the findings.

Conclusion

CRC is a global health concern, with lifestyle choices, particu-
larly dietary habits, playing a pivotal role in its development. 
The gut microbiome, a complex ecosystem of microorganisms 
residing in the GIT, is closely linked to CRC, influencing vari-
ous stages from initiation to progression. Several studies on 
animals and humans have shown that modifications to the gut 
microbiota can influence the emergence of precancerous 
lesions and the advancement of cancer. Research suggests that 
dysbiosis is more common in CRC patients than in healthy 
individuals, suggesting that CRC is particularly affected by 
these alterations. An increase in opportunistic pathogens, 
intestinal inflammation, and a decrease in butyrate-producing 
bacteria are the hallmarks of dysbiosis. According to epide-
miological studies, dietary factors that have been linked to the 
development of CRC include low-fiber intake and a Western 
diet. The gut microbiota plays a part in this process. Dietary 
fiber is fermented by intestinal bacteria into SCFA, such as 
butyrate, which has been demonstrated in animal studies to 
influence the development and spread of cancer. Moreover, 
the gut microbiome may shed light on the association between 
antibiotic use and an increased risk of CRC. Our knowledge of 
this intricate system is still lacking, despite the fact that numer-
ous published studies have demonstrated the importance of 
the gut microbiota in controlling CRC. In order to treat and 
prevent CRC, more research is required to clarify the underly-
ing mechanisms and investigate methods for altering the gut 
microbiota. The goal of this review is to give a general over-
view of the mechanisms underlying the various gut microbi-
ome strains implicated in each stage of carcinogenesis. This 
review paves the way for further research into the connection 
between the gut microbiome and CRC by identifying the 
microbiota species most likely linked to CRC.
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