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Abstract

The clonal weed Solanum carolinense exhibits plasticity in the strength of its self-incompatibility (SI) system and suffers low
levels of inbreeding depression (d) in the greenhouse. We planted one inbred and one outbred plant from each of eight
maternal plants in a ring (replicated twice) and monitored clonal growth, herbivory, and reproduction over two years. Per
ramet d was estimated to be 0.63 in year one and 0.79 in year two, and outbred plants produced 2.5 times more ramets than
inbred plants in the spring of year two. Inbred plants also suffered more herbivore damage than outbred plants in both
fields, suggesting that inbreeding compromises herbivore resistance. Total per genet d was 0.85 over the two years,
indicating that S. carolinense is unlikely to become completely self-compatible, and suggesting that plasticity in the SI
system is part of a stable mixed-mating system permitting self-fertilization when cross pollen limits seed production.
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Introduction

Self-fertilization is common in plants—it has been estimated

that half of all flowering plant species self-pollinate 20% or more of

the time [1]—and has pronounced effects on fitness. Because

inbreeding reduces heterozygosity, thereby exposing deleterious

recessive alleles to selection while decreasing the contribution of

over-dominance to fitness, most species show a significant loss of

fitness with inbreeding (see reviews by [2–4]). Consequently,

inbreeding depression, defined as the reduction in fitness of selfed

progeny relative to outbred progeny, is a major factor influencing

the evolution of plant mating systems: most models of mating

system evolution predict a threshold level of inbreeding depression

(0.5 in the simplest cases) below which the transmission advantage

of selfing favors alleles that increase the selfing rate and above

which the reduced fitness of inbred offspring favors alleles that

promote outcrossing (e.g., [5–8]). Accurate estimates of inbreeding

depression are therefore necessary in order to predict the

evolutionary trajectory of mating systems.

However, the few studies that have examined the effects of

inbreeding at broader spatial and temporal scales (see [2–5,9])

indicate that the magnitude of inbreeding depression is not a fixed

property of species or individual populations. Moreover, studies

that examined inbreeding depression under both greenhouse and

field conditions have generally reported higher levels of inbreeding

depression in the field (e.g., [10–12]), suggesting that inbred plants

may exhibit increased vulnerability to a variety of biotic and

abiotic stresses that exhibit considerable natural variation. Despite

the apparent need for further investigation in this area, little work

to date has examined multi-year estimates of inbreeding

depression in perennial plants and no studies have examined the

effects of inbreeding on clonal spread in herbaceous perennials.

Insect herbivory is a key biotic stressor in natural plant

populations that likely has important interactions with inbreeding

(e.g., if inbreeding depression compromises plant resistance or

tolerance). Foliar herbivory is ubiquitous in terrestrial ecosystems

[13,14] and has been shown to decrease fitness in a wide variety of

species (e.g., [14–18]). Given the general loss of vigor typically

observed with inbreeding depression, it is reasonable to suspect

that inbreeding will increase vulnerability to insect herbivores:

inbred plants may spend more time in vulnerable stages of their

life cycle; they are likely to have fewer resources to deploy toward

defense; and increased homozygosity may expose deleterious

recessive alleles for any of the hundreds of genes known to be

involved in plant defenses against natural enemies [19]. Recently,

researchers have begun to explore the effects of inbreeding on

herbivory [18,20–26]. In general, these studies indicate that

inbreeding does reduce resistance to herbivores and suggest that

the effects of inbreeding on plant-herbivore interactions may have

widespread implications for the evolution of breeding systems,

herbivore population dynamics, the establishment and transmis-

sion of herbivore vectored plant diseases, competitive interactions

among plants, and tritrophic plant-herbivore-predator interactions

[18,20–24,26,27].
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In the current study, we directly explored the effects of

inbreeding depression on plant fitness under field conditions in

the herbaceous perennial weed Solanum carolinense (horsenettle), a

species that exhibits plasticity in the strength of its self-

incompatibility (SI) system [28,29]. A previous greenhouse study

[30] revealed very low levels of inbreeding depression in horse-

nettle, suggesting strong selective pressure for self-fertility and the

possibility that this species might be in transition from SI to self-

compatibility. To test this hypothesis under real-world conditions

we grew selfed and outcrossed progeny from eight maternal plants

in two replicated field plots over two years and measured the

effects of inbreeding on herbivore damage, reproductive output,

and the number of ramets produced by horizontal (rhizome-like)

roots. In the second year, we manipulated insect herbivory in one

of our two replicate fields (using chemical pesticides) in order to

explicitly measure the influence of herbivory on inbreeding

depression.

Methods

The study system
Solanum carolinense L. (Solanaceae) is an herbaceous perennial

weed native to North America that inhabits early successional

habitats, waste places, crop fields, and pastures. Once established,

it spreads via horizontal roots that extend up to 1 m from the

parent stem [31]. The white to violet flowers are visited by pollen-

gathering bees, which vibrate the flowers to remove pollen [32].

Most flowers are perfect and functionally hermaphroditic and are

born on racemes of 1–12 blossoms; a few, however, (usually

located at the tip of the raceme) have reduced pistils and are

functionally staminate [23]. The fruit are yellow or orange berries,

1–2.5 cm in diameter, typically containing 60–100 seeds [33,34].

The reproductive season lasts from early summer until the first

frost, when above-ground plant parts die. Below-ground parts

over-winter, and new ramets emerge in the spring. Both growth

and reproduction are indeterminate.

Horsenettle exhibits a variety of traits that likely play a role in

defense against herbivores. Both leaves and stems are covered by

spines; leaves are also covered with stellate trichomes; and all parts

of the plants contain toxic secondary compounds (e.g., glycoalk-

aloids), especially the fruits [35,36,37]. Despite these defenses,

many insects feed on the leaves, fruits, flowers, or roots of

horsenettle and several herbivore species have been shown to

significantly depress reproductive output (e.g., [33–35,37–44]).

Solanum carolinense exhibits a typical Solanaceous-type RNase-

mediated gametophytic self-incompatibility (GSI) system con-

trolled by the multi-allelic S-locus [29,45]. SI is uncommon in

weedy and invasive species (e.g., [46,47]), presumably because (i)

disturbed habitats require frequent re-colonization (hence popu-

lations are repeatedly founded by one or a few individuals bearing

a limited number of S-alleles), (ii) effective population sizes are

small (supporting few S-alleles, hence compatible cross pollen may

limit fruit and seed production), and (iii) habitats are often short-

lived (providing limited time for the migration of additional S-

alleles into populations). Consequently, each time a population is

founded, weeds with SI must reproduce despite limited availability

of compatible cross pollen or go locally extinct.

Previous studies by our group have investigated the apparent

anomaly of SI in horsenettle (i.e., a weed that is a highly successful

in early successional habitats despite being self-incompatible) and

have found that the SI response in S. carolinense is a plastic trait—its

strength being affected by the age of the flowers [29] and prior

fruit production [30]. Moreover, there are genetic differences

among families in their self-fertility [30,48]. Taken together, these

studies demonstrate that, while all horsenettle genotypes are

capable of setting self seed when outcross pollen is scarce (older

flowers remain unpollinated and/or when few or no outcross fruit

are produced on the first 3–5 inflorescences), these effects are more

pronounced for plants carrying particular S-alleles (plants carrying

these alleles set significantly more selfed seed than others) [48].

The importance of this variation in self-fertility on the ability of

horsenettle to found and establish new populations depends, to a

large extent, on the magnitude of inbreeding depression. We

would predict inbreeding depression to be high in horsenettle, as

selfing should be fairly uncommon in a species exhibiting an

RNase-mediated GSI response. However, a recent greenhouse

study revealed that inbreeding depression (d) for 6 selfed and 6

outcrossed progeny from 16 families was only 0.17 [30].

Plant Materials
Horsenettle plants were collected from a large natural population

located near State College, Pennsylvania. Cuttings were taken from

the horizontal roots of 16 plants located at least 5 m apart (in order

to decrease the possibility of taking rhizomes from the same genet).

These cuttings were brought to the greenhouse, planted in 4-L pots,

and allowed to resprout, grow, and flower. After flowering, we cut

the stems and moved the pots to a cold room at 4uC to vernalize for

6–8 weeks. Afterward, the potted plants were returned to the

greenhouse and allowed to acclimate for 1 week. We then created

ramets from each of the 16 plants (genets) by dividing the horizontal

root into 5–6 pieces of similar size. Each root cutting was replanted

in a 1-gallon pot and allowed to re-sprout and grow. Four of the

ramets from each genet were used to produce self (2 ramets) and

cross (2 ramets) seeds via hand pollinations. The resulting seeds were

germinated and grown in the greenhouse, then used for the

greenhouse study of inbreeding depression [30]. The S-alleles for

each plant were determined using S-allele-specific primers in a

PCR-based screening protocol (see [30,48]). After completion of

these studies, the plants were cut back and the roots placed into

plastic bags and returned to the cold room.

For the present study, we selected 1 self progeny and 1 cross

progeny from each of 8 maternal parents. Each of the 16 plants had a

unique S-allele composition that could serve as a marker for clonal

growth under field conditions. A horizontal root from each of these

16 plants was cut into 4 equal-sized (10 cm) pieces; placed into a flat

bed with in a peat-based, general-purpose potting soil (Pro-Mix,

Premier Horticulture, Quakertown, PA); and allowed to re-sprout in

a greenhouse room (16L: 8D; day/night temperatures 25/22uC; 65%

relative humidity, plants watered lightly each day). After 2 weeks,

sprouts were transplanted to 4-L pots (under similar conditions) and

watered daily. At the time of transplanting, plants received a fertilizer

application (50 ppm 8-45-14 N-P-K, plus micronutrients; Scotts,

Marysville, OH) and iron chelate (Sprint 138 at 6%; Becker

Underwood, Ames, IA). When the re-sprouted ramets were

approximately 6 weeks old (in late May 2008), two randomly selected

ramets from each of the 16 genets were transplanted into an

abandoned agricultural field at the Entomological Farm of the

Pennsylvania State University Agriculture Experiment Station at

Rock Springs (planted in barley in the previous year). One ramet of

each of the 16 genets was randomly assigned to a location onto the

perimeter of a circle that was ,10 meters in diameter, so that all

plants were the same distance from its nearest neighbors (,2 m). A

replicate circle of plants was planted ,75 meters from the first circle

using the other ramet of each genet.

Year 1
At the end of the growing season (just after the first frost), we

harvested and counted the mature fruits from each genet and

Inbreeding, Clonal Growth and Herbivory
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counted the seeds from a random sample of 5 fruits from each

genet (if a plant did not produce 5 fruits we counted the seeds in all

of the fruits produced on that plant). Fruits per genet (8 outbred

and 8 inbred), mean seeds per fruit per genet, and total seeds

produced [mean seeds per fruit6fruits per genet] were analyzed

with a mixed effects model ANOVA with replicate, breeding, and

family (random) as the main effects.

Plants remained in the field over the winter, and the following

June we mapped all ramets that emerged. A sample of leaf tissue

was obtained from each ramet, placed in liquid nitrogen, and

stored at 280 C until further processing. In order to determine the

S-genotype of each ramet, we used a modified PCR-based

screening protocol, using allele-specific primers [49]. A detailed

description of these methods was presented by [48]: briefly, total

genomic DNA was extracted from leaf tissue using Plant DNAzol

(Invitrogen) and Ribonuclease A (Invitrogen) and re-suspended in

50 ml of DEPC-treated water. Each plant was screened simulta-

neously for all S-alleles present in the population to ensure proper

genotype determination and to reduce the possibility of false

positive amplification. Selected parental genets comprising all S-

alleles present in the original population were amplified along with

the ramet samples in order to serve as positive controls. The PCR

amplification of S-alleles was carried out in a 20 ml volume

reaction containing 20 ng of DNA, 106 PCR buffer, 0.1 mM of

each dNTP, 10 ng of each forward and reverse allele-specific

primer, and 1 unit of HotStart Taq DNA polymerase. The

reaction was incubated at 95uC for 3 min, followed by 30 cycles of

1 min at 95uC, 1.5 min at 60uC, and 1.5 min at 72uC, and a final

extension step of 5 min at at 72uC. For allele S18, a touchdown

protocol was used, with five cycles of 1 min at 95uC, 1.5 min at an

initial annealing temperature of 60uC with a 1uC decrease per

cycle, and 1.5 min at 72uC, followed by 25 cycles of 1 min at

95uC, 1.5 min at 55uC and 1.5 min at 72uC, and a final extension

step of 5 min at 72uC. PCR products were run in a 1% agarose gel

and scored for their identity.

Year 2
In order to determine if leaf herbivory increased inbreeding

depression, we randomly chose one of the replicate plots to be

hand-sprayed with a carbaryl insecticide (SevinTM) at two-week

intervals throughout the growing season. (Our analyses of fruit and

seed production in year 1 of this study revealed no effect of

replicate on fruit or seed production). We non-destructively

estimated leaf damage by herbivores on 15 June, 15 July, and

15 August, using a 0–5 index in which 0 = most leaves with no

damage and no leaf with more than 5% of the leaf area removed,

and 5 = all leaves damaged and most leaves with .50% of the leaf

area removed. Three people, blind with respect to plant family

and breeding history, concurrently and independently evaluated

damage on each plant. If two or three of the evaluators agreed on

the score, we recorded that value. If all three assessments differed

(,5% of cases), we recorded the intermediate score. While

estimating leaf damage, we also recorded the types of herbivores

that we observed on the plants. After identifying the S-alleles for

each plant, we assigned each ramet to one of the original 16 genets

(one outbred and one inbred plant from each of 8 maternal plants).

To determine the effects of replicate, breeding, and family

(random) on the production of new ramets in June of year 2, we

used a mixed effects model ANOVA. Because field plot and

treatment were confounded in year two, we performed separate

mixed effect model ANOVAs on the no spray and sprayed fields to

determine the effects of breeding and family (random) on the total

number of seeds produced per genet (we combined all of the seeds

produced by all ramets of each genet). To determine the effects of

herbivore damage on total seeds we performed 4 separate mixed

effects model regressions (inbred spray, outbred spray, inbred no

spray and outbred no spray) of herbivore damage on total seeds

with a random intercept term for each genet. Regressions were

performed using the ‘‘lme’’ function in the ‘‘nlme’’ package in the

R programming language (R foundation for statistical computing,

Vienna). Total seeds were log transformed to approximate

normality.

Finally, we calculated inbreeding depression (d) using the

formula d= (12seeds selfed plants/seeds outcross plants) for plants

growing in year 1 and 2, and for the two year total seed production

per genet. All ANOVAs were performed using Minitab version 16

(Minitab, Inc, State College, PA.).

Results

During year one, outbred genets made significantly more fruits

(30.662.6 vs. 14.362.6; least square means [LSMeans] 6

standard error [SE]), more seeds per fruit (92.464.4 vs.

69.364.4), and more total seeds per plant (27766259 vs.

10286259; d= 0.63) than inbred genets. Family was marginally

insignificant for total fruits per plant and total seeds and

marginally significant for seeds per fruit (Table 1). The replicate

fields did not differ significantly in fruit or seed production

(Table 1).

In the spring of year two, 461 ramets emerged on the two

replicate fields and each ramet was unambiguously assigned to a

genet using S-allele specific primers with PCR. Outbred genets

produced significantly more ramets than inbred genets (20.961.6

vs. 7.961.6; LSMeans 6 SE). No other factor in the model had a

significant effect on ramet production (Table 2).

During the summer of year 2, the outbred genets (all ramets

combined for each genet) on both fields produced significantly

more total seeds (no spray field = 67086401 seeds; spray

field = 2069462784 seeds; LSMeans +/2 SE) than the inbred

Table 1. Variance analysis for reproductive output in year 1.

a. Fruits

Effect df MS F P

Replicate 1 36.1 0.34 0.568

Breeding 1 2145.1 19.97 ,0.001

Maternal family 7 242 2.25 0.069

Error 22 107.4

b. Mean seeds/fruit

Effect df MS F P

Replicate 1 7.5 0.02 0.878

Breeding 1 4043.3 12.98 0.002

Maternal family 7 885.3 2.84 0.029

Error 22 311.5

c. Total seeds produced

Effect df MS F P

Replicate 1 767777 0.72 0.407

Breeding 1 24446304 22.78 ,0.001

Maternal family 7 2163867 2.02 0.099

Error 22 1073212

doi:10.1371/journal.pone.0028459.t001

Inbreeding, Clonal Growth and Herbivory

PLoS ONE | www.plosone.org 3 December 2011 | Volume 6 | Issue 12 | e28459



genets (no spray field = 9936401 seeds; spray field = 243762784

seeds). There were no significant effects of family on seed

production (Table 3). The effect of inbreeding on seed production

is due to a combination of both greater ramet production on the

outbred plants (above) and greater total seed production per

outbred ramet (Fig. 1). Inbreeding depression per ramet was

greater on the no spray field (d= 0.79) than on the sprayed field

(d= 0.68). Over both years, the inbred genets on the no spray field

produced only 15% of the seeds produced by the outbred plants

(d= 0.85).

Within both the sprayed field and the no spray field in year

2, the outbred ramets experienced slightly lower levels of

herbivory than inbred ramets (Fig. 2). The most abundant

herbivores observed while obtaining the estimates of herbivore

damage included Flea beetles (Epitrix spp), Colorado potato

beetles (Leptinotarsa decem-lineata), and false Colorado potato

beetles (Leptinotarsa juncta). Less frequently observed were the

tobacco hornworm (Manduca sexta), the flower weevil (Anthonomus

spp.), and larvae of the fruit-infesting moth Frumenta nundinella.

We also observed several predaceous insects on our plants,

including ladybird beetles (Epilachna spp.), big-eyed bugs (Geocoris

spp.) and braconid wasps (Apanteles spp.). Our regression analyses

revealed no significant relationship between our estimates of

herbivore damage and reproductive output for any of the four

field-breeding combinations: inbred plants on the non-sprayed

field, outbred plants on the non-sprayed field, inbred plants on

the sprayed field or outbred plants on the sprayed field (all

p.0.18).

Discussion

Inbreeding depression under field conditions
This study examined the effects of inbreeding on fruit and seed

production of horsenettle (Solanum carolinense) over two years under

field conditions—to our knowledge no previous studies have

examined inbreeding depression in a clonally spreading herba-

ceous perennial over multiple years. Unfortunately, our desire to

track ramet production across years (i.e., to estimate the per-genet

inbreeding depression in this clonal herbaceous perennial) also

necessitated tradeoffs in sample size including the number of

inbred and outbred progeny per family, number of families, and

number of replicate plots.

In the first growing season inbred plants produced only 37% as

many seeds as outbred plants. The resulting estimate of inbreeding

depression (d= 0.63) is much higher than that previously reported

from a greenhouse study that employed a larger set of horsenettle

genets including the 16 used in the present study (d= 0.17) [30,50].

Consequently, this study joins a growing list of reports that

measurements of inbreeding depression under benign conditions

Table 2. Variance analysis for ramet production.

Effect df MS F P

Replicate 1 140.28 3.44 0.078

Breeding 1 1339.03 63.28 ,0.001

Maternal family 7 19.07 0.47 0.847

Replicate6Breeding 1 63.28 1.55 0.226

Error 21 40.75

doi:10.1371/journal.pone.0028459.t002

Figure 1. Mean +/2 SE for the number of total seeds produced
per ramet among inbred and outbred plants on spray (bi-
weekly insecticide applications) and no-spray fields during the
second growing season.
doi:10.1371/journal.pone.0028459.g001

Table 3. Variance analysis for seed production per genet in
year 2.

a) Spray field

Effect df MS F P

Breeding 1 1333230205 21.51 0.002

Maternal family 7 83828241 1.35 0.35

Error 7 61993408

b) No Spray field

Effect df MS F P

Breeding 1 130683765 101.42 ,0.001

Maternal family 7 1925976 1.49 0.304

Error 7 61993408

doi:10.1371/journal.pone.0028459.t003

Figure 2. Mean +/2 SE for the average amount of herbivore
damage on each ramet per genet among inbred and outbred
plants on spray (bi-weekly insecticide applications) and no
spray fields during the second growing season.
doi:10.1371/journal.pone.0028459.g002

Inbreeding, Clonal Growth and Herbivory
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(e.g., those obtained from greenhouse studies) tend to underesti-

mate the intensity of inbreeding depression occurring under more

stressful field conditions (e.g., [6–8]).

We furthermore found that outbred genets produced.2.56 as

many ramets as inbred genets in the spring of year two, and that

inbreeding depression increased both per ramet and per genet

from year 1 to year 2. Only a few previous studies have examined

inbreeding depression in the same population over two or more

years under field conditions (e.g., [5,51,52]). These studies also

found annual variation in the magnitude of inbreeding depres-

sion—presumably due to environmental variation in nutrient

availability, rainfall, and various biotic stresses that can alter the

resources plants are able to allocate to reproduction. Thus, the

magnitude of inbreeding depression appears not to be an intrinsic

property of particular populations (or families) but rather a

context-dependent measure of the enhanced sensitivity of inbred

plants to the challenges posed by variable real-world environments

[52].

Previous studies that have expressly examined the interaction of

environmental stressors with inbreeding have reported that

inbreeding depression increases with competition (e.g., [52–55]),

drought (e.g., [56]), and nutrient stress (e.g., [5,57]). In the current

study, we observed that inbred plants had more herbivore damage

than the outbred plants under field conditions. Consistent with

previous studies of horsenettle (e.g., [34,38,43]), we found that the

plants in our fields were attacked by an array of herbivores that

feed predominantly on Solanaceous species. In another recent

study, we found that tobacco hornworm larvae (Manduca sexta)

preferred to feed on horsenettle leaf disks from inbred versus

outbred plants and also exhibited higher levels of total leaf

consumption and higher relative growth rates on the inbred plants

[58]. Those results, together with the current data, contribute to

the growing body of evidence that inbreeding alters resistance to

herbivores and often improves plant quality as a food source for

herbivores [18,20–26].

We also found that application (every other week) of an

insecticide on one of our two replicate fields yielded small

decreases in overall levels of herbivory that coincided with similar

changes in estimates of inbreeding depression per ramet (from 0.79

to 0.68 in year 2). It must be noted that the lack of treatment

replication in this experiment means that treatment and field

location were confounded, though the absence of significant field

effects on reproductive output or ramet production in year one

mitigates this concern to some extent. Thus, even though there

were no significant differences in seed production between the two

fields during the first year of this study, we cannot unambiguously

attribute the decrease in per ramet inbreeding depression to the

insecticide treatment (and consequent reduction in herbivory).

But, regardless of the underlying causes of variation in per-ramet

inbreeding depression between the two fields in year 2 (the spray

treatment or other environmental differences between the fields),

this study produced three estimates of d in two years, ranging from

0.63–0.79. Although per-ramet estimates of inbreeding depression

could increase or decrease from year to year in the same

population as environmental conditions vary, the dramatic

difference in ramet production that we found in the inbred and

outbred horsenettle plants suggests that per genet estimates of

inbreeding depression are likely to be amplified across subsequent

years of clonal spread.

Few studies have examined the specific mechanisms underlying

the effects of inbreeding on herbivore preference and perfor-

mance, which are known to be influenced by factors such as

variation in plant nutritional quality, constitutive and induced

chemical defenses, and the induced production and release of

volatile compounds that can be attractive to herbivores’ natural

enemies (e.g., [59–64]). As with the vast majority of studies of

inbreeding depression (e.g., [3]), inbred plants in our study

exhibited slower growth (i.e., they produced far fewer ramets) and

reduced reproductive output relative to outbred plants, suggesting

they are likely to linger in vulnerable stages of development and

have fewer resources to devote to chemical defenses and volatile

signaling. In another recent study, we documented broad sense

heritable variation for whole plant volatile production by horse-

nettle and found that outbred plants produce significantly greater

total volatiles than inbred plants under field conditions (natural

herbivory), suggesting that inbreeding may indeed impact volatile-

mediated interactions between herbivores and their natural

enemies [65].

Although inbreeding reduced resistance to herbivores, our

regression analyses revealed no relationship between the amount

of herbivore damage and reproductive output per ramet. This is

somewhat surprising because previous studies have shown that

herbivory reduces reproductive output in horsenettle (e.g.,

[35,39,41]); moreover, our analyses show that plants in the

insecticide-sprayed field had lower levels of herbivory and greater

reproductive output than plants in the unsprayed field and that

inbreeding depression was greater in the no-spray (high-herbivory)

field. It is possible that our non-destructive field estimates of

herbivore damage were simply too crude to detect the effects of

herbivory on plant reproduction. Furthermore, our estimates did

not differentiate among damage caused by different types of

herbivores. Each of the common herbivores that we observed

caused different patterns of damage, and the amount of damage

caused by each type of herbivore varied over time. Several recent

studies have shown that tolerance to herbivory can vary with the

pattern of damage and with ontogenetic stage (e.g., [24,66–68]).

Evolution of the horsenettle breeding system
Our results have profound implications for the evolution of the

breeding system in Solanum carolinense. Previous work has

demonstrated plasticity in the SI response of horsenettle [28,29].

Horsenettle flowers become more self-fertile with age and when

few or no cross-pollinated fruits are developing on a plant (i.e.,

when cross pollen limits seed production). Moreover, we have

shown that plasticity in SI is enhanced in the presence of the

‘‘leaky’’ S9 allele [48]. It is generally thought that most mutations

that enhance self-fertility are eliminated by genetic drift or by

purifying selection effected by inbreeding depression (e.g., [7,8]).

On the other hand, mutations that enhance self-fertility in a

population exhibiting pollen-limited seed set (e.g., [69]) and/or

low to intermediate levels of inbreeding depression [8,67] may

become fixed, resulting in the loss of SI. Indeed, the transition

from obligate outcrossing via SI to self-compatibility is among the

most common evolutionary pathways in flowering plant genera

[70,71].

Traditionally, populations of SI species with S-allele polymor-

phisms for enhanced self-fertility (or genes that modify the strength

of SI) have been viewed as either temporarily harboring some self-

fertility alleles or in transition to self-compatibility. However, there

has recently been considerable theoretical interest in the possibility

that polymorphisms for enhanced self-fertility could also be the

product of selection for a stable mixed-mating system (e.g., [70,72–

75]). These theoretical studies reveal that the broadest conditions

for the stability of such polymorphisms in natural populations

occur when (1) there are low S-allele numbers and/or high rates of

pollen limitation in the population; (2) there are high levels of

inbreeding depression and/or S-linked/sheltered load (sensu [8]);

(3) the self-fertility enhancing alleles promote delayed self-
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fertilization (and therefore do not decrease opportunities for cross-

fertilization); and (4) the self-fertility enhancing alleles confer only

a small increase in the rate of self-fertilization. Our previous

findings [28,29,48,50] suggest that increases in the rate of self-

fertilization only occur in populations in which seed production is

limited by cross pollen, and that self-fertilization is unlikely to limit

the opportunities for cross-fertilization. Moreover, because horse-

nettle is a weed prone to repeated bouts of colonization and

extinction, the conditions that favor self-fertility are likely to occur

commonly (i.e., few S alleles in a population and reproduction that

is limited by the availability of cross pollen).

The data presented here reveal that inbreeding depression in

horsenettle under field conditions is significant in a given year and

that total inbreeding depression over the lifetime of a genet is likely

to be severe. Consequently, S. carolinense is likely not in transition

from SI to self-compatibility. Rather, the plasticity in the SI system

and the presence of the leaky S9 allele—which is a common and

widespread in the Eastern United States [45,48]—may be part of a

stable mixed mating system that permits the plants to self-fertilize

when cross pollen limits seed production and/or when few S-

alleles are present in the population.

In conclusion, this study clearly demonstrates that (1) estimates

of inbreeding depression for S. carolinense are far greater under field

conditions than under greenhouse conditions; (2) inbreeding

reduces vegetative growth via clonal spread; (3) estimates of

inbreeding depression per ramet can vary with year and local

environmental conditions (e.g., the intensity of herbivory); (4)

inbreeding depression per genet is severe and likely to increase

over time due to the reduced clonal spread of inbred ramets; and

(5) inbred plants suffer more herbivory than outbred plants. These

results, taken together with our previous studies of the plasticity in

the SI system of horsenettle and viewed in light of insights from

recent theoretical investigations, suggest that plasticity in the SI

system of S. carolinense is part of a stable mixed mating system that

favors outcrossing except where cross pollen severely limits seed

production (as might occur when founding new populations).

Future studies should focus on documenting the mechanisms

underlying the increased levels of herbivory observed on inbred

plants and the rates of selfing in small populations with few S-

alleles and larger, established populations with many S-alleles.
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