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Abstract

Cellular processes are ‘‘noisy’’. In each cell, concentrations of molecules are subject to random fluctuations due to the small
numbers of these molecules and to environmental perturbations. While noise varies with time, it is often measured at
steady state, for example by flow cytometry. When interrogating aspects of a cellular network by such steady-state
measurements of network components, a key need is to develop efficient methods to simulate and compute these
distributions. We describe innovations in stochastic modeling coupled with approaches to this computational challenge:
first, an approach to modeling intrinsic noise via solution of the chemical master equation, and second, a convolution
technique to account for contributions of extrinsic noise. We show how these techniques can be combined in a streamlined
procedure for evaluation of different sources of variability in a biochemical network. Evaluation and illustrations are given in
analysis of two well-characterized synthetic gene circuits, as well as a signaling network underlying the mammalian cell
cycle entry.
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Introduction

Cellular processes are ‘‘noisy’’. In each cell, concentrations of

molecules (e.g., mRNAs, proteins) are subject to random

fluctuations (noise) due to the small numbers of these molecules

and to environmental perturbations [1,2]. Cellular noise impacts

on information transmission involved in cell signaling dynamics

[3–5], while cells may take advantage of such variability in

adapting to changing environments or for cell-fate decisions [6–

15]. Improved understanding of how noise influences and is

modulated by cellular processes will greatly benefit from efficient,

streamlined computational tools to quantify noise, and to use noise

to probe properties of the underlying regulatory networks [16–19].

To date, stochastic modeling of gene expression has typically relied

on forward simulations of time courses, for example via Gillespie

algorithms [20,21] or numerical solution of stochastic differential

equations (SDEs) [4,22,23].

Flow cytometry and fluorescence microscopy currently allow for

access to increasingly rich data on approximately steady-state

distributions of gene expression. These distributions arise biolog-

ically when a set of reactions proceeds much faster than

environmental changes, and observing such data provides a step

towards understanding some aspects of the underlying cellular

network. To assess how such data can be informative, we need to

compute or simulate aspects of the steady-state distribution.

Forward simulation can be time-consuming, and new approaches

are needed. Approaches such as umbrella sampling [24] and

coupling-from-the-past [25] have been introduced, but the

sampling biases of the former and substantial computational

expenses of the latter leave areas for improvement.

Mechanistic modeling of noise is complicated by its diverse

sources, which have been classified as intrinsic or extrinsic [26,27].

Intrinsic noise results from the stochasticity of chemical kinetics

when the numbers of interacting molecules are sufficiently small; it

can be described by the chemical master equation (CME). In

essence, intrinsic noise represents deviation of known reactions

with known rates from their results as predicted by classical

chemical kinetics [28]. In contrast, extrinsic noise results from

other reactions and from fluctuations in rate constants, and it is

often the dominant source of variability in a system [26,29].

Extrinsic noise may result from any process not represented in the

network model itself.

A direct route to model intrinsic noise is to calculate steady-state

solutions to the CME, often by using an approximation. An

analytical solution based on a continuous master equation

describing protein production in bursts has been formulated by

Friedman and colleagues [30], while Fourier and colleagues [31]

present analytical solutions for several other networks. Walczak

and colleagues [32] investigate another solution approach based

on using an eigenbasis from a simpler system to solve the massive
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linear equation resulting from setting the CME to steady-state.

The approximation here lies in the difference between each

system’s eigenbases, and its suitability for a specific system needs to

be determined on an ad hoc basis. More general methods have been

investigated as well. The Hartree approximation [33] assumes

probabilistic independence of molecule numbers for each species;

this approximation greatly reduces the dimensionality of the

system, but tends to break down seriously in multimodal systems,

unless the joint distribution has a mode at each combination of the

one-dimensional distributions’ modes (this is frequently not the

case). Cao and colleagues [34,35] investigate accurate though

computationally costly numerical solution methods for the CME,

such as efficient exhaustive enumeration of microstates. Munksy

and Khammash [36], focusing on the application of methods for

solving the master equation, investigate the necessary data for

obtaining reaction parameters in a system dominated by this type

of noise.

A related approach is to calculate an ‘‘energy landscape’’ for a

network. Ao [37] assumes an SDE model and derives a potential

that yields the probability distribution as its Boltzmann distribu-

tion. Wang and colleagues [38] also use an SDE model and then

construct a potential landscape based on a Hodge decomposition

of the flux vector in the system. Both approaches are useful for a

wide range of SDEs, including the chemical Langevin equation.

However, they are thus subject to the inaccuracies of that

equation—most importantly, the inaccuracy at low molecule

numbers—and may also lack computational tractability for

complex systems. Qian and Beard [39], in constructing potential

landscapes for non-equilibrium systems based on chemical

potentials, provide an approximation for the probability distribu-

tion that follows the Hartree approximation.

In contrast to intrinsic noise, extrinsic noise lacks a unique

modeling framework and is often determined by empirical

inference of distributions from data. One approach that accounts

for some of these effects is to perturb the rate constants while

modeling intrinsic fluctuations using a Gillespie algorithm-type

simulation strategy [40]. This approach may also produce extrinsic

fluctuations that could be produced by other sources, such as other

reactions and measurement noise. However, direct steady-state

calculations can instead pool together results from many

extrinsically perturbed distributions, thus preventing the need to

perform calculations for many parameter sets and many time

points. Analytical inclusion of extrinsic noise is also possible, and

indeed the use of exponentially distributed burst sizes in modeling

protein production in [30] amounts to this. In addition, extrinsic

noise can be accounted for by addition of random noise to

molecule numbers in each time step of a timecourse simulation

based on a stochastic differential equation [4,23]. Recent single-

molecule fluorescent measurements have allowed experimental

determination of molecule number distributions in Escherichia coli,

thus measuring both intrinsic and extrinsic noise [41].

Despite these progresses, a major challenge lies in the lack of

well-defined computational framework for thorough, systematic

evaluation of these methods with experimental data. As a step to

address these issues, we have developed an integrated framework

for modeling steady-state distributions in the context of both

intrinsic and extrinsic noise sources. As an illustration, we have

applied these methods to the analysis of two well-characterized

bistable switches and evaluated the methods against experimental

data. Furthermore, we also demonstrated the applicability of these

methods to a more complex signaling network, the Myc/Rb/E2F

network, which underlies the control of mammalian cell cycle

entry.

Results

Overview of the Computational Framework
In general, the observed distribution of molecular counts

(Pobserved) can be treated as the combination of an intrinsic

component (Pintrinsic) and an extrinsic component (Pextrinsic)

(Figure 1A). The intrinsic component is uniquely determined by

the reaction mechanisms and the corresponding rate constants.

Our approach (Figure 1B) takes a list of species, reactions with

known rate information, and known extrinsic noise parameters,

and at the first step calculates the steady-state distribution based on

the chemical master equation. This first step accounts for intrinsic

noise implicitly and can be done analytically for systems with a

sufficiently small number of states. When the CME is too

complicated to solve analytically, it can be solved numerically to

generate the steady-state distributions, up to the size and

dimension limits imposed by computational capabilities. The

CME is of the form MP = 0, where M is a matrix and P is the

steady-state probability vector.

With many reacting species, as the matrix size may imply

prohibitive computation cost, we can rescale the CME or sample

approximately from the solution. For scaling, the dimension of the

space of distributions is reduced by approximating the CME in

terms of directional derivatives and then re-sampling. The scaled

CME is then solved by linear algebra. Even with scaling, however,

the matrix computations needed to solve the CME become

prohibitive when more than a few species are present or when the

distribution is complex. We address these limitations by develop-

ing a modified Gibbs sampling (MGS) method to generate the

steady-state solution to the CME. Gibbs sampling provides a set of

samples from a distribution by sampling one dimension of the

distribution (in this case, the molecule number for a given species)

at a time, using the conditional distribution for that species given

the current molecule numbers of all the other species. In our MGS

method, detailed balance is assumed for different sets of reactions

at each iteration, generating approximate conditional distributions

from which exact sampling is possible. The MGS method scales

much more favorably than the direct CME solution with increased

numbers of species. Its scaling property is similar to that of

Author Summary

Variability from one cell to another is a pronounced and
universal trend in living organisms; much of this variability
is related to varying concentrations of proteins and other
chemical species across the cells. Understanding this
variability is necessary if we are to fully understand cellular
functions, particularly the ways in which cells differ from
each other and in which cells with the same origin behave
in different ways (e.g. in human development and cancer).
When using a chemical model for some aspect of cellular
function, one needs to consider two sources of variability:
intrinsic variability, which results from the reactions
proceeding as in the model but naturally varying because
of the finite number of molecules in the cells and their
random behavior; and extrinsic variability, which results
from other kinds of variation not accounted for in the
specific, deterministic model. We present new methods to
model and compute both kinds of variability, to facilitate
the study of cellular variability as a whole. Our methods
provide advantages in speed, accuracy, and scope of
mechanisms modeled, and we apply them to experimental
data, demonstrating the nature of intrinsic and extrinsic
noise in those systems.

Steady-State Distributions
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ordinary Gibbs sampling. Importantly, it overcomes some caveats

associated with alternative approximations, especially in multi-

modal systems. In particular, it avoids the restrictions on the

distribution space caused by the Hartree approximation. Also, it

overcomes the difficulties in sampling multiple local minima that

occur with the standard Gibbs sampler.

The second step of our approach is to model extrinsic noise by

convolution. Typically, representing extrinsic noise as perturba-

tions to rate parameters [40] can present significant difficulties in

their application to experimental data. Sampling from a parameter

sample space would lead to high computational cost because of the

need to redo calculations for many different parameter sets.

Methods based on adding noise at each time step similarly bring

the cost of calculation at many unnecessary points in time. To this

end, we have developed a convolution approach to represent

extrinsic noise by averaging many effects, which allows more direct

application to experimental data. It is well suited to combining

analysis of the modes by a deterministic model, allowing rapid and

accurate estimation of reaction parameters, with estimation of

further noise parameters based on the observed distribution.

Derivations
Chemical master equation (CME). The CME describes

temporal evolution of the probability of a given state, as represented

by a set of molecule numbers for all species in the system:

dP(x)

dt
~
X

j

aj(x{vj)P(x{vj){aj(x)P(x)
� �

ð1Þ

where P(x) denotes the probability of the system being in state x as a

function of time, t; vj denotes the change in x resulting from reaction

j, and aj(x) denotes the probability of reaction j per unit time given

that the system is in state x (i.e. the rate in molecular units).

At steady state, the time derivative is 0 for all P(x). This results in

a linear system of equations for the probabilities of states: the

reaction rates define a matrix, and the null vector of this matrix,

normalized so its elements sum to 1, is the vector of probabilities of

states.

Synthesis and degradation of a single molecule. Con-

sider a simple system consisting of n molecules, with synthesis rate

as(n) and degradation rate ad(n). The corresponding CME and its

steady-state solution are:

dP(n)

dt
~as(n{1)P(n{1)zad (nz1)P(nz1){(as(n)zad (n))P(n)

P(n)~

P
n{1

j~0
as(j)

P
n

j~1
ad (j)

P(0) ð2Þ

P(0) is chosen such that the sum of all probabilities is 1. For the

constitutive expression of a single protein, as(n) = ks, ad(n) = kdn,

where ks is the synthesis rate and kd is the decay rate constant. Here

P(n) follows a Poisson distribution with mean ks/kd:

P(n)~

P
n{1

j~0
ks

P
n

j~1
kdn

P(0)~
ks

kd

� �n
e{ks=kd

n!
ð3Þ

This distribution describes the variability resulting from intrinsic

noise. To account for extrinsic noise, one approach is to draw the

parameters from their own probability distributions (assuming that

Figure 1. A framework for combining intrinsic and extrinsic noise. (A) Distribution prediction starts with predicting distributions based on
intrinsic noise only and then adds in extrinsic noise. (B) A schematic for analysis of molecule number distributions in biochemical networks. Predicted
distributions based on a model can be compared to experimental data, and information about parameters can be inferred.
doi:10.1371/journal.pcbi.1002209.g001
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the stochasticity from other cellular processes is manifested in

fluctuations in the rate constants), which need to be empirically

determined:

P(n)~

ð P
n{1

j~0
rs(j)

P
n

j~1
rd (j)

N(k)P(k)dk ð4Þ

where k is the vector of parameters, P(k) is its probability density

function, N(k) is a normalization constant, rs is the synthesis rate

constant, rd is the degradation rate constant, and the integral is

over all values of k with nonzero probability.

In the simple example above, the distribution is determined by

the parameter y = ks/kd, so drawing y from a gamma distribution

with parameters a and h,

P(n)~
1

n!haC(a)

ð?
0

ynza{1e{y(1z1=h)dy~
C(nza)

n!haC(a)(1z1=h)nza ð5Þ

Here, we chose the gamma distribution because positive real

values of k are needed and the gamma distribution draws values

from this set and allows the integral to be performed analytically.

Choosing separate distributions for ks and kd is not necessary here

because only the corresponding distribution of y would affect the

final distribution of n.

Scaling of the CME. Excessive matrix size can present a

major challenge for solving the CME, both as a result of high

dimensionality and of high individual molecule numbers (though

not high enough for classical reaction rate equations to be used).

The size of this equation may be reduced by approximating it in

terms of derivatives and then resampling it,

dP(x)

dt
~
X

j

aj(x{vj)P(x{vj){aj(x)P(x)
� �

&
X

j

vj

�� ��D{v̂vj
(ajP)

&
X

j

vj

�� ��
Svj

�� �� aj(x{Svj)P(x{Svj){aj(x)P(x)
� �

~
X

j

aj(x{Svj)P(x{Svj){aj(x)P(x)

S

ð6Þ

where S ($1) is a scale factor (S = 1 denotes no scaling) and D is a

directional derivative, allowing general use of this formalism

regardless of what reactions are in the system; the sums in the first

and third lines are finite-difference approximations of the

directional derivative in the second line.

Several scales may be used for the same problem: the unscaled

equation can be used for small molecule numbers while less dense

sampling may be used for larger ones where the linear

approximation applies better. If computer memory is a greater

barrier than computation time in solving the steady-state CME, it

may be appropriate to choose S as small as possible without

running out of memory, since the maximum molecule numbers

that need to be included in an analysis are essentially independent

of scaling. A discrete, rescaled CME avoids the numerical error

that would likely result from a continuous approximation. Also, it

reduces exactly to the unscaled master equation when S = 1. This

is useful for direct comparison of systems of different sizes. It is also

useful for systems where the molecule numbers for some but not all

species are large enough to require scaling.

The synthesis/degradation system is a useful test case of the

scaling method. Combining Eqs 2 and 6, the scaled master

equation for this system is

0~
dP(n)

dt
~

kd (nzS)P(nzS){kdnP(n)zksP(n{S){ksP(n)

S
ð7Þ

thus completely determining P(n) up to normalization. Provided

sufficiently small variation between each P(n) and P(n2S), the

normalization

X?
m~0

P(mS)&

P?
n~0

P(n)

S
~

1

S
ð8Þ

may be applied.

Eq. 7 gives P(n).P(n2S) if n,ks/kd and P(n),P(n2S) if n.ks/kd;

thus the distribution peaks at n = ks/kd, as is the case without

scaling. Furthermore, for S = 1, it reduces to the ordinary CME, as

is the case in general for Eq. 6.

Modeling intrinsic noise via Gibbs sampling. High

dimensionality can make accurate numerical solution of CME

intractable, even with scaling. One way to effectively reduce the

dimensionality is to use Gibbs sampling [42,43]. Each step in

Gibbs sampling requires constructing only a 1-D distribution. To

sample, one cycles through the d different species, sampling a value

for each molecule number xi in turn from the conditional

distribution P(xi|x1,…,xi21,xi+1,…xd) of the molecule number

being sampled given the other current molecule numbers. This

yields a sample from the entire distribution, (x1,…,xd) at the

conclusion of each cycle. Gibbs sampling for the steady-state

solution of the CME can be performed by assuming detailed

balance for synthesis and degradation of a given species; that is:

P(nz1)

P(n)
~

as(n)

ad (nz1)
ð9Þ

where n is the molecule number of the species; as and ad are its

synthesis and degradation rates.

This equation can be modified to account for reactions with

different stoichiometries by simply replacing n and n+1 with the

states interconverted by the other reactions (e.g. one can replace

n+1 with n+2 if molecules are synthesized and degraded two at a

time).

The sampling algorithm starts with an arbitrary initial value for

all but one of the molecule numbers, calculates the distribution of

the remaining molecule number by assuming detailed balance (Eq.

9) with the other numbers fixed. This sample is then fixed when

other species are being sampled. Each complete sampling cycle

yields a new sampled state. This strategy is similar to the mean-

field method often used with the Hartree approximation

(Figure 2A). However, because it samples from a distribution for

one species that is correct for the current sample’s (rather than the

mean’s) molecule numbers of the other species, it avoids the key

pitfalls in the Hartree approximation when applied to multimodal

distributions (Figure 2B).

The basic Gibbs sampling has its own caveat when applied to

multimodal distributions: Once a sample is drawn from one peak

of such a distribution, it is unlikely to cross over to other peaks,

unless the peaks overlap in at least one dimension or if there is

sufficient probability density outside the peaks for the samples to

Steady-State Distributions
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migrate between peaks. If the total probabilities of the two peaks

are known, one can solve this problem by sampling separately

from each peak, at the expense of additional burn-in (samples that

must be discarded because they are biased by the initial values).

To overcome this caveat, our modified Gibbs sampling (MGS)

method changes coordinates between sampling steps (Figure 2C).

An accurate Gibbs sampling scheme needs to accurately draw a

sample x9 given that the previous sample, x, is from the correct

distribution; in other words it must have P(x9) = P(x). This is

achieved when P(x9|x) = P(x|x9), because this condition leads to

P(x9; x)/P(x) = P(x9; x)/P(x9). Changing coordinates between steps

by random rotation of the coordinate system satisfies this

condition. In 2-D, for example, new axes can be created with

slope m (where tan21(m) is uniformly distributed between 290u
and 90u) and 21/m (note that tan21(21/m) and tan(m) have the

same distribution); the axes pass through the previously sampled

point. Since the purpose of constructing the axes is to sample from

points that lie along them, integer lattice points in one coordinate

system must match integer lattice points in the original coordinate

system, so that each state can be represented by integer

coordinates in the new system. This can be achieved by rounding.

In our example, we can let x and y be the new coordinates and u

and v the old ones, and then let the x-axis pass through

u,v0z m(u{u0)½ �ð Þ ð10Þ

for each value of u and the y-axis through

u0z {(v{v0)=m½ �,vð Þ ð11Þ

for each value of v, where the coordinates are given in the u2v

system, brackets denote rounding to the nearest integer, and (u0,v0)

is the previously sampled point. This technique is applied to the

toggle switch below.

The basic Gibbs sampling algorithm may also fail in monomodal

systems when the peak contains a fraction significantly less than 1 of

the probability density and the remaining density is widely

distributed over a much larger space than the peak occupies. For

example, if the peak is at the origin in a high-dimensional state space,

the sampler will remain at the origin for a very large amount of time

once it is there, and likewise will take an extremely large amount of

time to find the origin once it is removed from it in several

dimensions (because it will take many steps for all the dimensions to

reach 0 or sufficiently close to 0 randomly). Switching to a

hyperspherical coordinate system will remove this problem: the

sampler may move from the origin to any other state in one step.

Figure 2. A modified Gibbs sampling method in comparison to previous methods. (A) The Hartree approximation can distort the joint
distribution for multimodal distributions by generating false peaks. (B) Gibbs sampling method: sampling of each molecule number is based on
current values of the other molecule numbers rather than on mean values, to avoid this distortion. This method can result in samples being ‘‘stuck’’ in
one peak of the probability distribution. The blue arrows in (B) and (C) indicate sampling directions, which are used sequentially. (C) A modified Gibbs
sampling method based on coordinate changes can avoid the sampling bias.
doi:10.1371/journal.pcbi.1002209.g002
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Higher accuracy in high-dimensional systems can be achieved

by sampling from a 2-D rather than a 1-D distribution. Gibbs

sampling can use scaling to curtail excessive molecule numbers

too. Overall, MGS provides an efficient way to sample from the

probability distribution associated with a steady-state CME even

when many species are involved. While the detailed balance

approximation introduces some error, this error is mitigated

relative to that found in the Hartree approximation. The change

of coordinates mitigates the error further because detailed balance

for different reactions is chosen for each sample.

Since each iteration of MGS is identical to an iteration of

regular Gibbs sampling in the coordinate system that applies at the

moment, the computational time of the algorithm is essentially the

same as for regular Gibbs sampling. The cost per iteration is

slightly larger because of the coordinate-selection step, but this is

very fast compared to the actual sampling operation. Furthermore,

convergence to the equilibrium distribution occurs on the same

timescale that regular Gibbs sampling would exhibit if the latter

could accurately sample the distribution. That is, the algorithms

should converge similarly as long as the standard Gibbs sampling

performs well.

Despite this strong system-dependence, rigorous methods have

been developed to evaluate convergence: see for example the

convergence criteria of Zellner and Min [44] as well as the

convergence analysis of Frigessi and colleagues [45] and the burn-

in analysis of Jones and Hobert [46]. In a d-dimensional system,

each sample requires d one-dimensional sampling procedures; the

time required for each sampling will tend to be O(d1/2) because,

even measuring in the worst dimension, the width of the region of

state space needing to be sampled scales roughly as d1/2. We note

that these estimates are somewhat ambiguous because the

computational cost of the algorithm varies from system to system.

Since each system has a given dimensionality, a generic

comparison of computational cost for different dimensionalities

must be rather approximate. In particular, the convergence time

may depend more on the geometry of the distribution than on the

number of species or other generic information.

Furthermore, the principle behind the standard Gibbs algo-

rithm that allows for accurate sampling from the distribution still

applies. Consider a sample x = (x1, x2, …) from the desired

distribution. One desires to provide another sample y = (y1, y2,…),

also from the desired distribution. This is achieved because

P(yjx)~
P(x,y)

P(x)
~

P(x,y1)

P(x)

P(x,y1,y2)

P(x,y1)
:::

P(x,y1,:::,yn)

P(x,y1,:::,yn{1)

~P(y1jx)P(y2jx,y1):::P(ynjx,y1,:::,yn{1)~P(y1,:::,yn)~P(y)

ð12Þ

Sampling from the molecule number distribution rather than

calculating it explicitly is advantageous when a model has many

dimensions but only a few are needed in the output distribution.

Since the observed convergence rate of the distribution will

depend primarily on the dimensionality of the observed joint

distribution rather than on the overall dimensionality of the model,

this results in roughly O(d1.5m) computational cost for MGS, where

the model has d dimensions and the output has m. This is much

better than the approximately O(d3) cost for solving the CME by

linear algebra, e.g. by using singular value decomposition,

especially if m%d. Note that for practical applications, even with

large numbers of species, one will often need the distribution of a

single species or the joint distribution of a few, because of the

impracticality of experimentally monitoring all the species in a

complex system.

Convolution representation of extrinsic noise. Mecha-

nistic methods of representing extrinsic noise, such as modeling

perturbations in each parameter, present significant difficulties in

their application to experimental data. Sampling from a parameter

sample space leads to high computational cost because of the need

to redo calculations for many different parameter sets; methods

based on adding noise at each time step, similarly, bring the cost of

calculation at many unnecessary points in time. Also, the variation

in many parameters will result in an excessive number of degrees

of freedom in the extrinsic noise, and still there are likely to be

sources of noise unaccounted for because they are not easily

represented as perturbations in reaction propensities.

To address this limitation, we present a convolution representa-

tion of extrinsic noise based on averaging together many effects and

modeling the distribution of extrinsic noise with a set of parameters

that can be characterized experimentally. In particular, we

represent the total distribution as a weighted integral of shifted

intrinsic-noise-only distributions, i.e. the convolution of the

intrinsic-noise-only distribution with a distribution of shifts. The

rationale for this approach is that most perturbations will induce

some shift in the distribution. For example, a reaction not accounted

for by the model, or an increase in one of the rate parameters, may

affect the concentration of some species. They may also change the

shape of the distributions for these species, but this is a less

important effect and furthermore will result in a distribution that is a

linear combination of shifted versions of the original, intrinsic-noise-

only distribution (with the main shifted distribution dominating this

combination). The distribution of shifts must have the same

dimensionality as the output distribution—note that this is often

much less than the dimensionality of the model, thus greatly

reducing the number of parameters needed relative to the

parameter-variation representation, since there are almost always

more reactions (and thus reaction rate parameters) than species in a

biochemical network model.

The following derivation shows how convolution can result from

parameter-variation descriptions of extrinsic noise. Let P(x;k)

denote the probability of a state vector given a parameter set k.

Based on parameter perturbations as the source of extrinsic noise,

the total probability P(x) of a given state vector is

ð
Q(k)P(x; k)dk, ð13Þ

where the integral is over all possible parameter sets and Q(k)

denotes the probability distribution of them, centered around a

value k0 (i.e. if trying to measure a single set of parameters for the

system, one would be trying to measure k0). We can let

P(x; k)~

ð
W (x{x0)P(x0; k0)dx0, ð14Þ

where W is a distribution of shifts due to a perturbation in rate

parameters (which may depend on k). W will tend to be a narrow

distribution, similar to d(x92y) for some state y: changing k0 to k
will produce primarily a shift in state. Thus

P(x)~

ð
Q(k)

ð
W (x{x0)P(x0; k0)dx0dk

~

ð
S(x{x0)P(x0; k0)dx0,

ð15Þ

where S(x2x9) is a distribution of shifts, which is convolved with

P(x;k) to yield P(x). S may be well approximated by a normal
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distribution, as it is a sum of many weakly correlated terms

(corresponding to the different perturbations). In particular, values

of x9 near the original state vector x are likely to have more parameter

sets with shift distributions W centered near x9; also Q(k) is likely to be

higher for k nearer to k0, which in general will correspond to x9 being

nearer to x. Note that the strategy used in the above derivation can be

applied to perturbations beyond those in the model parameters.

When measuring parameters, it is advantageous to define the

extrinsic noise such that it does not induce a systematic shift in the

molecule numbers (this merely represents a choice of what base

parameter set k0 to use for a parameter distribution Q(k)); this

would correspond to S(x2x9) having zero mean. Also, it might be

useful, in a concrete representation of the extrinsic noise

distribution, to add a background term to help make up for the

approximations in the representation; let this be B(x). Thus, we

may represent P(x) as

(1{a)P(x; k0) �M0(x;S)zaB(x), ð16Þ

where * denotes convolution, M0 is a zero-mean multivariate

normal distribution with the given covariance matrix, and a is a

small constant.

M0 may have an altered normalization in order to still be a valid

probability distribution in the necessary discrete state space (i.e.

M0 must still sum to 1 over all states, even though the values are

still proportional to what the multivariate normal distribution

would ordinarily give). The covariance matrix quantifies the

‘‘spreading’’ of probability density in state space due to extrinsic

noise. The background noise term represents the distribution of

extrinsic noise far from the values predicted by intrinsic noise. Its

associated parameters could be estimated from those sections of a

flow cytometry data set only, reducing the number of parameters

needed to fit the actual peaks. Fitting of the peaks is facilitated by

the fact that their location limits the possible values of the rate

parameters, allowing the spread to be used to estimate the extrinsic

noise standard deviations.

While convolution can be considered as another form of explicit

account for parametric perturbations (with a priori specified

distributions), its formulation is more general and allows

representation of noise sources not well described by perturbations

in rate parameters. Many kinds of perturbations can be

represented as shifts in the distribution and accounted for by

convolution. Because perturbations may induce different shifts in

molecule numbers depending on the specific region of state space.

For example, a reaction may have a minor effect on molecule

numbers when the original molecule numbers are small and a

more significant effect when they are large. Therefore, it may be

necessary to have the covariance matrix in Eq. 16 depend on x, or

more generally to have the form of S in Eq.15 depend on x. For

example, different values of the extrinsic noise standard deviation

s can be used for each of the two peaks in a bimodal distribution.

In other words, it is preferable to consider Eq. 16 as an empirical

equation that has solid theoretic foundation but can be readily

used to describe experimental data under diverse conditions.

Either direct summation or (to save time) a discrete Fourier

transform is appropriate for performing this convolution if the

probability is known in functional form (i.e. if it was obtained by

solving the CME exactly or approximately). If only a sample of n

points x1,…xi,…,xn from the intrinsic-noise-only probability

distribution is known, i.e.

P(xi~x)~P(x,k0) ð17Þ

then we can draw n new samples y1,…yi,…,yn using

yi*M0(x{xi;S) ð18Þ

and these obey the convoluted distribution:

P(yi~x)~

ð
P(y; k0)M0(x{y,S)dy

~P(x; k0) �M0(x;S)

ð19Þ

Once the sample based on the convolution has been drawn in

this fashion, if a background noise term in the distribution is

desired, then a sample of na/(12a) points corresponding to the

background term can be drawn to complete the sample based on

extrinsic noise. As in any formulation of extrinsic noise, the

sources, form, and magnitude of the noise must be determined

based on empirical considerations for a given system.

Our convolution approach provides an intuitive relationship

between the distribution of extrinsic noise and the final

distribution. In principle, it is highly versatile and can account

for all sources of extrinsic noise in an empirical manner. As such,

determining an appropriate extrinsic–noise distribution will

depend on experimental measurements of the overall distribution.

Due to the exceedingly complex nature of extrinsic noise in many

systems, however, a Gaussian distribution may be the best starting

point. On one hand, such a simple distribution avoids overfitting

experimental data. On the other, the Gaussian distribution can be

thought of modeling extrinsic noise from many weakly correlated

sources added together. A significant deviation from model

prediction and experimental data would suggest that a large,

concerted phenomenon is influencing the extrinsic noise; in that

case, it would be appropriate to expand the network model to

include this phenomenon explicitly. The convolution approach, as

a method for calculating the steady-state distribution, is also useful

in that it can model noise from processes at a variety of different

timescales—whether these are similar timescales to those of the

main network model or not.

Case Studies
Combining MGS, CME rescaling, and convolution model for

extrinsic noise defines an integrated framework for efficient

computation of the steady-state distribution of gene expression

for a given set of parameters. To illustrate their use, we consider

the application of the overall framework to several examples;

aspects of these have been mentioned in the previous section.

Constitutive expression of a protein (Figure 3A). Here,

the intrinsic noise is described exactly by a Poisson distribution (see

Eq. 3). As expected, this matches the distribution given by running

the Gillespie algorithm for a sufficient length of time (Figure 3B).

Integrating over the prior distribution of the parameters allows the

analytical addition of extrinsic noise (see Eq. 4). Addition of

extrinsic noise results in spreading and, ultimately, loss of the

characteristic shape of the distribution (Figure 3C,D). Also, adding

extrinsic noise by perturbing parameters or by convolution with a

Gaussian produces similar results, as evident from the best-fit

convolved distributions to the parameter-perturbed distributions in

Figure 3C,D. However, the parameter-perturbation method shifts

the peak of the distribution while the convolution method does

not. In this sense, the two methods define the ‘‘intrinsic-noise-

only’’ state somewhat differently, as the parameter perturbation

method considers it to be at the mean value of the parameters

while the convolution method (at least when using a Gaussian)
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maintains the mean of the molecule number distribution, giving a

more intuitive description of extrinsic noise. A better match

between the techniques could be obtained by matching the

distributions of extrinsic noise, as opposed to using a gamma

distribution for parameters and a Gaussian for convolution

because of the suitability of each of these distributions for their

respective methods.
A genetic toggle switch. The toggle switch [47,48] consists

of two proteins that repress each other’s expression (Figure 4A). Its

reaction kinetics can be described by a highly simplified model

consisting of two differential equations (Eqs. 20 and 21, Methods).

These equations can then be used to construct the CME model

(Eq 22) to describe the corresponding stochastic dynamics

(accounting for intrinsic noise only).

The system is bistable given appropriate parameter values,

leading to a bimodal distribution by directly solving the CME

(Figure 4B). Addition of extrinsic noise by convolution widens the

peaks (Figure 4C), while increasing molecule numbers (and

therefore, necessarily relying on scaling of the CME to solve it)

narrows them (Figure 4D).

With this system, we also compared MGS with the exact

solution of the CME. The MGS overall matches direct CME

solution very well (compare Figure 4E and 4B); Table 1 shows a

quantitative comparison. Using parameter set 1, the probability

distribution obtained by directly solving the CME and two

approximations based on 10,000 points each from MGS were

compared using the sums of squared deviations, which were

0.0095 and 0.011 respectively. For comparison, the two

approximations had a sum of squared deviations of 0.0004, and

the maximum possible sum of squared deviations is 2. Overall,

MGS effectively approximates the true solution of the CME with

greatly reduced computational cost.

Addition of extrinsic noise is very quick using the convolution

method, since the noise is simply added to the final samples, and

the results are similar to those obtained by solving the CME

directly (Figure 4F). Note that the effectiveness of Gibbs sampling

is in spite of the violation of detailed balance for this system. The

appropriateness of the detailed balance approximation may be

evaluated by comparing the actual ratios of probabilities for

different states to the probabilities assumed by the detailed-balance

approximation (Eq. 9). For the parameter set used in Figure 4E,

the average relative error of the detailed-balance approximation,

weighted by probability, is 0.58 for protein V and 0.25 for protein

U.

To illustrate the use of our modeling framework to the analysis

of experimental data (Figure 5A), we experimentally measured the

switching dynamics using the toggle switch implemented by

Kobayashi et al. [48], in response to varying concentrations of the

Figure 3. Calculating steady-state distributions for a simple birth-death process. Calculating the steady-state distribution of a (A) simple
birth-death process; A is expressed in terms of molecule number for all distributions. (B) Simulated distribution using the Gillespie algorithm
(histogram) as compared with the analytical solution (blue line) from the CME, which is a Poisson distribution. (C) Final distributions from this systems
with extrinsic noise were generated by taking ks/kd,C(20,1) (green in C) or ks/kd,C(10,2) (green in D); best-fit distributions based on convolution
with a Gaussian (red; standard deviations 4.4 for C and 6.1 for D) and the intrinsic-noise-only distribution (blue) are shown as well. (The shift to lower
molecule numbers arising from extrinsic noise in the parameter-distribution representation is equivalent to changing the base parameter set in the
convolution representation; the ‘‘base’’ parameter set is less well defined in the parameter-distribution representation).
doi:10.1371/journal.pcbi.1002209.g003
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antibiotic norfloxacin (NFX). NFX causes an SOS response, which

induces GFP by increasing degradation of its repressor (an

additional term is added to the degradation rate constant for the

repressor; see Methods for modeling details). The method

described above for predicting distributions based on known

parameters can be applied to this data, generating reasonable

parameter sets for the perturbation. In particular, the model

accurately predicted the variation of ON fractions of the

population with the concentration of antibiotic (Figure 5B).

Parameter sets were obtained by nonlinear fitting. Random

searches of parameter space, as well as previous work with similar

circuits, were used in the production of initial estimates. In

general, the fitting process began with estimation of reaction

parameters based on the modes of distributions observed and on

previous studies, followed by refinement of these parameters and

estimation of others based on nonlinear fitting of the distributions.

Notably, the parameter set chosen yields a distribution dominated

by unexpectedly low molecule numbers, but an adequate fit was

not obtained with higher molecule numbers. The obtained

parameter set was Ku = 2.22, Kv = 13.69, ru = 1306.4, rv = 35.06,

b = 5.36, c = 1, du = 79.84, dv0 = 0.42, dv1 = 1.61, kA = 36.70, s1 = 1,

and s2 = 1 (see Eqs. 20–23 for parameter definitions; s1 and s2

are standard deviations of shift distributions for proteins U and V

respectively). The shapes of the predicted distributions deviated

somewhat from the data but were improved by using different

levels of extrinsic noise for the two peaks (Figure 5 C,D). The plots

Figure 4. Calculating steady-state distributions for a toggle switch. (A) Circuit diagram. (B) The probability distribution, based only on
intrinsic noise, for parameters Ku = Kv = 1, ru = rv = 10, b= c= 2, du = dv = 1. This was calculated by solving the CME directly. U and V are expressed in
molecule numbers for each distribution. (C) The same distribution except with extrinsic noise added (s1 =s2 = 2); peak spreading is evident. (D) The
intrinsic-noise-only distribution except with ru = rv = 1000; calculated using scaling; peak focusing is evident. (E) A sample (10000 points) from this
distribution (intrinsic noise only), using modified Gibbs sampling using the same parameters as in (B). (F) Another 10,000-point sample, generated the
same way except with extrinsic noise (s1 =s2 = 1).
doi:10.1371/journal.pcbi.1002209.g004

Table 1. Comparison of MGS and direct CME solution for the toggle switch.

Parameter set Species Mean (direct) Mean (MGS) St. dev. (direct) St. dev. (MGS) ON% (direct) ON% (MGS)

1 U 6.4314 4.0084 5.0680 4.0241 69% 55%

1 V 2.6319 3.0232 4.1081 3.5994

2 U 3.3446 3.7456 2.5215 2.6332 70% 77%

2 V 1.3271 1.0201 1.8958 1.5593

Parameter set 1 is: Ku = Kv = 1, ru = 10, rv = 9, b= c= 2, du = dv = 1; parameter set 2 differs in that ru = rv = 5 and b= 1.
doi:10.1371/journal.pcbi.1002209.t001
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show the distributions for 250 ng/mL NFX; the predicted

distribution in Figure 5D uses s= 1025 for the ON peak and

s= 1.4 for the OFF peak, where s is the standard deviation of the

Gaussian distribution describing extrinsic noise (see Eq. 16). The

peak is also shifted to account for background fluorescence or

synthesis: peaks in the experimental distribution are shifted away

from zero.

Results of the fitting indicate that a parameter set of this size is

sufficient to describe some properties of the distribution (e.g.

dependence of the fraction of ON cells on the circuit induction

level). However, good fits of entire distributions, which have many

more degrees of freedom, are not possible based on the

mechanistic models described and on a simple form for extrinsic

noise. The discrepancy likely results from the simplicity of the

underlying model that generates the intrinsic variability, or the

simplicity of the form of assumed extrinsic noise. In theory, any

distribution can be fit to the intrinsic noise model if no constraints

are imposed on the extrinsic noise distribution, but such a fit would

yield no mechanistic insight without alternative methods to

interpret the resulting extrinsic noise term. In principle, however,

the computational framework proposed here can be used as an

effective approach for comparing different mechanistic models for

a given set of data. This aspect will require further in-depth

analysis.

A growth-modulating positive feedback circuit. This

circuit consists of a T7 RNA polymerase (T7 RNAP) activating

its own transcription [49]. It provides a useful example for

analyzing a unique mode of regulation of circuit dynamics: in

Figure 5. Toggle switch: comparison with experiments. (A) A typical workflow for analyzing experimental data based on the framework for
noise calculations presented in this study. Modes of the distribution(s) are determined and used with the deterministic model to estimate some
reaction parameters (i.e. intrinsic noise parameters); prior knowledge may also be included in these estimates. Then, using the calculation methods
(e.g. convolution for extrinsic noise) presented here, one can obtain a best fit for the full parameter set, which describes both intrinsic and extrinsic
noise. (B) Theoretical (blue) and experimental (green) fraction of ON cells as a function of [NFX]. Inset shows the perturbation to the circuit. (C)
Experimental distribution of GFP fluorescence in cells with 250 ng/mL NFX. (D) Predicted distribution of U molecule numbers (proportional to
fluorescence) with 250 ng/mL NFX. Note that the distribution in (C) is used in (A) to illustrate the general computational procedure.
doi:10.1371/journal.pcbi.1002209.g005
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addition to the positive feedback, expression of T7 RNAP slows

growth, and growth causes dilution of the T7 RNAP (Figure 6A).

As with the toggle switch, the CME model (Eq 27) predicts a

bimodal distribution would result for appropriate parameters

(Figure 6B,C). This distribution is based on a constant growth rate

(i.e. log-phase growth): the bimodality requires constant growth, in

which the growth rate and protein synthesis rate are inversely

related. In the absence of growth (e.g. during stationary phase), the

system would in theory approach a single, non-trivial steady state

that would result in a monomodal distribution. In an appropriate

time window like exponential growth phase, however, the bimodal

distribution can be considered as approximately at steady state (if

needed, it can be perpetuated by periodic dilution of the culture).

In other words, this reaction can only reach a true steady state if

the amount of medium is increasing proportionally to the bacterial

growth, allowing perpetual log-phase growth, but a ‘‘pseudo-

steady-state’’ corresponding to the limit of slow change in growth

rate compared to chemical reactions is possible and interesting.

This might, for example, be relevant when there is a large supply

of nutrients. These states are the same on a cellular level and are

modeled here.

According to this premise, we previously used a Gillespie

algorithm to predict how the approximately steady-state distribu-

tion would be modulated by inoculum size of the bacteria, which

would essentially affect the effective growth rate of the population:

the larger the inoculum, the smaller the effective growth rate. The

previous modeling predicted that the fraction of ON cells at the

final data point would increase with the inoculum size (as

Figure 6. T7 RNAP circuit. (A) T7 RNAP enhances its own transcription. In addition, T7 RNAP expression slows down cell growth, which dilutes T7
RNAP. (B) Probability distribution with M = 10, k0 = 0.001, kf = 0.01, kb = 0.1, k1 = 0.01, dx0 = 0.003, m= 0.01, and h= 1; shown with (green) and without
(blue) extrinsic noise (s= 3). (C) Comparison of experiment and modeling on the perturbations to growth and T7 RNAP synthesis rates. Contours
denote computed fractions of ON cells, by varying parameters k1 and m. X’s denote experimental data points with experimental parameters (IPTG
concentration and OD) as labeled; the k1 and m values for each data point were determined by fitting the fractions of ON cells.
doi:10.1371/journal.pcbi.1002209.g006
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controlled by the initial cell density, measured by optical density

(OD)) or the circuit induction level (controlled by the concentra-

tion of IPTG). This prediction was indeed consistent with

experimental measurements.

In this study, we re-evaluated these data using methods

presented here. We treated the distributions of the final data

point as being at a pseudo-steady state. We varied parameters to

match the perturbations in ON (high-T7 RNAP) and OFF (low-

T7 RNAP) populations seen in experiments (Figure 6C). As for the

toggle switch, initial guesses were obtained with the aid of random

searching of parameter space, and nonlinear fitting was used to

obtain the final parameter set. The base case of bacterial culture

with an initial OD of 0.23 and 1000 mM IPTG exhibited 94% ON

cells; this matched a parameter set of k0 = 0.0011, kf = 0.01,

kb = 0.11, k1 = 0.0087, dx0 = 0.003, m= 0.007, and h= 1 (see Eq. 24,

27). An experiment with the same IPTG level but an initial OD of

0.15, which would result in overall faster growth, exhibited 48%

ON cells. We further performed a model fit to determine the

decrease in growth rate corresponding to this shift to the OFF

population, and the new growth rate was found to be m= 0.013 (all

other parameters were kept the same). Another experiment used

OD = 0.23 but provided only 100 mM IPTG, resulting in 49% ON

cells. This was modeled as a proportional decrease in k0 and k1,

which, by fitting, was a 26% decrease in each of these parameters,

giving k0 = 0.0008, k1 = 0.0065, and other parameters as in the

base case. For all numerical analysis, we assumed that the number

of promoters to be ten.

Again, here we find that aspects of the experimental data can be

readily fitted to the simple model. However, an apparent caveat is

that the distributions that we fitted were not genuinely at steady

state. Furthermore, similar issues as in the case for the toggle

switch also apply, which include the simplicity of the mechanistic

model and that in the specific form of the extrinsic noise

distribution.

Myc/Rb/E2F network. To illustrate general applicability of

our computational framework, we applied it the Myc/Rb/E2F

network, which we have analyzed extensively in recent studies

(Figure 7A) [50]. This network plays a critical role in regulating

cell cycle progression and cell-fate decisions [50]. Here we focus

on analyzing the bistable E2F response to serum stimulation [50].

To evaluate the methods described here, we use a well-established

stochastic model that we recently developed [51]. The stochastic

model consists of a set of stochastic differential equations in the

general form of Eq. 28 [51,52], where extrinsic noise can be

introduced as an additive term. When this term is set to 0, the

model will generate fluctuations due to intrinsic noise only. These

stochastic dynamics can also be fully described by the corres-

ponding CME model (Eq. 29).

For this model, we note that ad hoc strategies can be employed to

speed up the efficiency of Gibbs sampling. In particular, for the

base model parameters, multiple rounds of numerical simulations

using the SDE model, with either low or high initial E2F

conditions and without the extrinsic noise term, predict a clear

bimodal distribution in E2F, with the low mode (obtained with low

initial E2F) corresponding to E2F in repressed state and the high

mode (obtained with high initial E2F) corresponding to E2F being

activated. In fact, the two stable states are so separated that

stochastic transition between them by intrinsic noise alone is

extremely rare (never observed during SDE simulations once the

network settles in either state, data not shown). Therefore, we

separately sample the repressed and the activated mode when

applying the MGS. The locations of the different modes were

estimated using the deterministic model a priori, with the same rate

parameters.

As shown in Figure 7B, the intrinsic-noise-only distributions of

selected species of the Myc/Rb/E2F network (E2F, CYCD, and

CYCE) generated by MGS (red) closely resemble those predicted

by the SDE model (green). The sums of squared deviations

between SDEs-predicted distributions and MGS-predicted distri-

butions are shown besides each plot.

Next, we incorporated an additive extrinsic noise into the SDEs

(as described in [51]) to simulate empirical stochastic system

output, equivalent to experimental data one would expect. Again,

we note that significant extrinsic noise is required for the transition

between the repressed and the activated mode. As such, we

performed the extrinsic noise convolution with the intrinsic noise

only distribution separately for the repressed and the activated

mode, each with its own best-fit variance of the shift distribution

(here assumed to be Gaussian). The total probability of each mode

is calculated from the ratio of durations the system resides within

the distribution around the corresponding mode based on the

empirical distributions (SDE simulation), assuming steady-state

and ergodicity of the stochastic system with extrinsic noise. These

total probabilities are then used to combine the two modes. The

resemblance between the E2F distribution generated by the SDE

model (green) and that by the extrinsic noise-convolved MGS (red)

is evident in Figure 7C for two different levels of extrinsic noise (as

defined for the SDEs in [51]).

Discussion

Two key challenges in stochastic modeling of cellular networks

are computational efficiency in describing intrinsic noise and

adequate description of extrinsic noise. This study provides a

modular approach that makes such computations more tractable.

To compute intrinsic variability, a range of approaches for

predicting intrinsic noise, ranging from modified Gibbs sampling

to scaled CME solution to direct CME solution in order of

increasing accuracy and decreasing efficiency, is presented. Our

methods provide an efficient alternative to previous time-stepping

and analytical methods for modeling noise in cellular networks.

These techniques can implement a model quite accurately for

certain systems. However, the time-stepping method can require

great computational cost, especially in its most accurate form (the

Gillespie algorithm), and does not necessarily provide an accurate

representation of extrinsic noise. The direct analytical approach is

desirable because it accounts exactly for intrinsic noise, but it is

only feasible for the simplest biological networks. In principle, our

approximate methods are generally applicable to cellular networks

with arbitrary complexity.

Likewise, representation of extrinsic noise by convolution

provides significant advantages both in its intuitive relationship to

the final distribution and in its computational tractability (e.g. small

number of parameters). Because extrinsic noise is a heterogeneous

phenomenon with multiple sources, it is likely to have some

components best modeled as variation in parameters and others best

modeled in other ways. Applicability of each method can be

evaluated by its ability to produce similar distributions to other

methods, and more generally to account for different sources of

noise. The convolution method, with its ability to mimic results from

parameter perturbation methods, is useful in this regard. Also, we

expect the convolution method to be highly flexible. Though it is

developed in the context of analyzing steady-state distributions, it

may also be applied to incorporate contributions of extrinsic noise

into time-course simulations of stochastic network dynamics, for

example by the Gillespie algorithm.

The convolution method is also not constrained to the Gaussian

form of the extrinsic noise distribution used here: if appropriate in
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a system, different extrinsic noise distributions with different

numbers of parameters could be used. The Gaussian was used

here because it was likely the best distribution with a manageably

low number of parameters in these cases, but other distributions,

such as mixture models, could provide more realistic final

distributions at the expense of larger parameter sets. In theory,

this pattern could be continued to the point of using an

unconstrained function as the extrinsic noise distribution to

exactly fit the observed final distribution; while, as noted above,

this would compromise the mechanistic insight from the analysis, it

may be useful in characterizing the system in other ways, especially

if the reaction parameters are known from other measurements.

Importantly, our study has defined a general, streamlined

framework where one can derive unknown parameters from a

distribution using fitting algorithms. For instance, our framework

for extrinsic noise aids in obtaining initial estimates of reaction

parameters based on the modes of the distribution, since these

correspond well to the best-fit parameters. We have illustrated the

basic concept of this approach through the analysis of two simple

synthetic gene circuits as well as the feasibility of its application to

a more complex cell cycle entry model. Due to the wide variety of

perturbations that extrinsic noise can induce in all parameters and

variables, however, we caution that apparent agreement with

experiment could be seen for different models. To overcome this

challenge, prior knowledge and alternative measurements are

helpful for constraining the model, in terms of both reaction

mechanisms and corresponding parameters. It is likely that this

general framework is applicable for any biological network where

Figure 7. Myc/Rb/E2F network. (A) A network diagram of Myc/Rb/E2F at the G1-S cell cycle checkpoint. (B) Comparison of the MGS predicted
probability distribution (red) and the SDEs predicted distribution (green) of selected molecular species of the repressed and the activated state of the
network. The solid lines represent Gaussian distributions fitted over all random samples corresponding to each method. (C) Convolution of extrinsic
noise and combination of the repressed and the activated modes based on empirical data derived from SDE simulations, with the variance of the shift
distribution separately optimized. Shown in red are MGS predicted distributions and green are SDEs predicted distributions of E2F with either low or
high level of extrinsic noise as defined in the SDE framework. The SDE model and the associated parameters are described in detail in Lee et al [51].
doi:10.1371/journal.pcbi.1002209.g007
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a sufficiently mechanistic reaction mechanism is available.

However, specific interpretations and applications of the fitted

parameters, including those for the extrinsic noise distribution, will

be context dependent. Ad hoc constraints and prior knowledge of

the Markov chain describing the network dynamics, such as

irreducibility, may sometimes be required, which usually demands

no more mechanistic insights of the system than what’s already

required to carry out the actual sampling scheme.

Methods

Modeling a Toggle Switch
The following model is adapted from that of Gardner and

colleagues [47]. Let the two proteins be U and V with molecule

numbers u and v respectively. Based on Hill kinetics for synthesis

and linear kinetics for degradation, the system can be described as:

du

dt
~

ru

Kuzvb
{duu ð20Þ

dv

dt
~

rv

Kvzuc
{dvv ð21Þ

A point in state space for this system is denoted (u, v). With

appropriate parameters, the system can be bistable. In such a case,

the deterministic steady states are at (umin,vmax) and (umax,vmin), where

umin,umax and vmin,vmax. The number of states in this system that

could potentially have nonnegligible probability is small enough

that the CME at steady state can be solved analytically using linear

algebra, provided the molecule numbers are small enough:

0~
d

dt
P(u,v)~

ru

Kuzvb
P(u{1,v)zdu(uz1)P(uz1,v)

z
rv

Kvzuc
P(u,v{1)zdv(vz1)P(u,vz1)

{
ru

Kuzvb
zduuz

rv

Kvzuc
zdvv

� �
P(u,v)

ð22Þ

Scaling allows solutions for larger amounts of protein.

The circuit can be induced by adding the antibiotic NFX.

Adding antibiotic to induce protein U’s high state involves

initiating an SOS response, which degrades protein V [48]; thus it

brings about the perturbation

dv~dv0z
dv1A

kAzA
ð23Þ

where dv0 is the basal degradation rate of V, dv0+dv1 is its maximal

degradation rate, A is the antibiotic concentration, and kA is the

half-maximal constant for the enhanced degradation.

For experimental flow cytometry data, ON and OFF fractions

of the data were determined by fitting the points to a mixture

model consisting of two Gaussians using Mixmod 2.1.1. The

theoretical data were partitioned based on which protein had a

higher molecule number.

Modeling a Growth-Modulating Positive-Feedback
Circuit

Let n denote the number of T7 RNAP molecules in a given cell

and let the cell have M promoters producing it, with m of them in

an inactive state (O0) and M-m in an active state (O1). Tan et al.

[49] modeled this system using the Gillespie algorithm with six

reactions. Five are normal chemical reactions: synthesis of a T7

RNAP molecule from O0, with propensity k0 m, or from O1, with

k1m; conversion of an O0 and a T7 RNAP molecule to an O1, with

propensity kfmn, or the reverse, with kb(M2m); and degradation of

T7 RNAP, with propensity dx0n. The sixth is cell division, which

distributes the T7 RNAP molecules according to a binomial

distribution and resets all the promoters to O0, and has propensity

m0

1zhn
1{

N

C

� �
ð24Þ

Where m0 and h are constants, C is the carrying capacity of the

system, and N is the number of cells in it. When tracking molecule

numbers in a single cell for purposes of determining steady state,

one thus assumes, according to the binomial distribution, that cell

division moves the molecule number from n9 to n with probability

n0

n

� �
2{n0 ð25Þ

For n9$n.

It is useful to apply a somewhat different definition of steady

state for this system than in more typical reaction systems. If all the

reactions are required to reach steady state, then the system must

be at carrying capacity, and thus cell division can be eliminated

from the analysis; this results in a monostable circuit. However,

provided that the intracellular reactions are fast on the timescale of

the growth curve, temporary quasi-steady states at other points

along the growth curve, for example at log phase, can exhibit

significant additional properties, including bistability; thus steady-

state analysis at these times can replicate the features observed by

the Gillespie algorithm. To do this, let

m~m0 1{
N

C

� �
ð26Þ

be the effective growth rate, leading to the steady-state master

equation

0~
dP(n,m)

dt
~k0mP(n{1,m)zkf (mz1)(nz1)P(mz1,nz1)

zkb(M{mz1)P(n{1,m{1)zk1(M{m)P(n{1,m)zdx0(nz1)

P(nz1,m)zdmM

X?
n0~n

XM
m0~0

m

1zhn0

n0

n

 !
2{n0P(n0,m0)

 !

{ k0mzkf mnzkb(M{m)zk1(M{m)zdx0nz
m

1zhn

� �
P(n,m)

ð27Þ

The network can be induced by IPTG, effectively increasing k0

and k1. Different steady states can be investigated by examining

the system at different OD levels; in each case N/C is estimated as

the ratio of the current OD to the carrying-capacity OD.

ON/OFF fractions for this network were found by identifying

the two most prominent peaks in the histogram of the protein

being monitored and then defining the bin in between those peaks

with the lowest value as the border between ON and OFF. When

peaks were found to blur together (a problem in the theoretical

distributions), the point on a shoulder with the lowest derivative

(approximated as a finite difference between points) was
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designated as the border between the main peak and the shoulder

‘‘peak.’’

Characterization of the Toggle Switch Circuit
E. coli, JM2.300 was transformed with two plasmids, pTSMa

and pCIRa [48]. The cells were cultured overnight at 37uC with

2 mM IPTG to ensure OFF state. The cells were then washed

twice with fresh media, diluted 1000 fold, and cultured at 37uC.

After three hours, cells were treated with various concentrations of

NFX and further cultured at 37uC for 5 hours. Samples were then

collected and subjected to flow cytometry analysis. LB medium

was used throughout the experiment.

Characterization of the T7 RNAP* Circuit
The construction and characterization of the T7 RNAP*

positive feedback circuit were described by Tan et al. [49].

MC4100z1 cells (from Michael Elowitz) were used throughout the

study.

Modeling Myc/Rb/E2F Network
As an example to evaluate the feasibility of extending the

proposed computational framework to a more complex model, we

adopt a previously developed stochastic model for this network

[51]. It consists of a set of stochastic differential equations, which

has the general form of

dXi tð Þ
dt

~
XM
j~1

vjiaj X tð Þ½ �z
XM
j~1

vji

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aj X tð Þ½ �

q
Cj tð Þzvi tð Þ ð28Þ

where Xi(t) represents the number of molecules of a molecular

species i (i = 1, …, N ) at time t, and X(t) = (X1(t), .., XN(t)) is the state

of the entire system at time t. X(t) evolves over time at the rate of

aj[X(t)] ( j = 1, …, M), and the corresponding changes in the

number of individual molecules are described in vji, Cj(t) and vi(t)

are temporally uncorrelated, statistically independent Gaussian

noises. Cj(t) is the standard normal distribution with mean 0 and

variance 1. vi(t) tunes the level of empirical additive extrinsic noise

[51].

When vi(t) is set to 0, the SDE simulation gives an

approximation to the exact solution of the discrete stochastic

chemical reaction system [52], against which the MGS distribu-

tions are compared. The inclusion of either low or high levels of

extrinsic noise is realized by setting vi(t) to 15 or 50, respectively.

Based on the reactions involved in this system [51], we can write

down the following CME:

d

dt
P ½M�,½E�,½CD�,½CE�,½R�,½RP�,½RE�ð Þ~ kM ½S�

KSz½S�P ½M{1�,.ð Þz

dM ½Mz1�P ½Mz1�,.ð Þz kE

½M�
KMz½M�

� �
½E�

KEz½E�

� �
z

kb½M�
KMz½M�

� �

P ½E{1�,.ð Þz kP3½CD�½REz1�
KCDz½REz1� z

kP4½CE�½REz1�
KCEz½REz1�

� �
P ½E{1�,ð

½RP{1�,½REz1�,.ÞzdE ½Ez1�P ½Ez1�,.ð ÞzkRE ½Rz1�½Ez1�

P ½Ez1�,½Rz1�,½RE{1�,.ð Þz kCD½M�
KMz½M�z

kCDS½S�
KSz½S�

� �
P ½CD{1�,.ð Þz

dCD½CDz1�P ½CDz1�,.ð Þz kCE ½E�
KEz½E�P ½CE{1�,.ð ÞzdCE ½CEz1�

P ½CEz1�,.ð ÞzkRP ½R{1�,.ð Þz kDP½RPz1�
KRPz½RPz1�P ½R{1�,½RPz1�,.ð Þz

kP1½CD�½Rz1�
KCDz½Rz1� z

kP2½CE�½Rz1�
KCEz½Rz1�

� �
P ½Rz1�,½RP{1�,.ð ÞzdR½Rz1�

P ½Rz1�,.ð ÞzdRP½RPz1�P ½RPz1�,.ð ÞzdRE ½REz1�P ½REz1�,.ð Þ{

kM ½S�
KSz½S�zdM ½M�zkE

½M�
KMz½M�

� �
½E�

KEz½E�

� �
z

kb½M�
KMz½M�z

kP3½CD�½RE�
KCDz½RE� z

kP4½CE�½RE�
KCEz½RE� zdE ½E�zkRE ½R�½E�z

kCD½M�
KMz½M�z

kCDS ½S�
KSz½S�zdCD½CD�z kCE ½E�

KEz½E�zdCE ½CE�zkRz
kDP½RP�

KRPz½RP�z

kP1½CD�½R�
KCDz½R� z

kP2½CE�½R�
KCEz½R� zdR½R�zdRP½RP�zdRE ½RE�

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

P ½M�,½E�,½CD�,½CE�,½R�,½RP�,½RE�ð Þ, ð29Þ

where N represents the state of interest for the molecular species not

specified, as in ([M], [E], [CD], [CE], [R], [RP], [RE]), which

represent molecular number. Refer to Lee et al [51] for detailed

description of the reaction mechanism and the corresponding rate

constants.
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