Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-Hydroxy-2,2,6,6-tetramethylpiperidinium trichloroacetate

Peng-Wei Zhang,^{a,b}* Tong-Yun Zhang,^c Li Zhang^b and Yi Deng^a

^aSchool of Pharmaceutical Science & Technology, Tianjin University, Tianjin 300072, People's Republic of China, ^bDepartment of Pharmaceutics, Medical College of Chinese People's Armed Police Force, Tianjin 300162, People's Republic of China, and ^cDarentang Pharmaceutical Factory, Tianjin Zhongxin Pharmaceutical Group Co. Ltd, Tianjin 300457, People's Republic of China Correspondence e-mail: zpw0803@gmail.com

Received 19 February 2008; accepted 26 February 2008

Key indicators: single-crystal X-ray study; T = 113 K; mean σ (C–C) = 0.003 Å; R factor = 0.024; wR factor = 0.060; data-to-parameter ratio = 16.0.

In the crystal structure of the title compound, $C_9H_{20}NO^+$.-Cl₃CCOO⁻, the cations and anions are connected via O– H···O, N–H···O, O–H···Cl and N–H···Cl hydrogen bonding. The six-membered ring adopts a chair conformation with the hydroxyl group in an equatorial position.

Related literature

For related literature, see: Borzatta & Carrozza (1991).

Experimental

Crystal data $C_9H_{20}NO^+ \cdot C_2Cl_3O_2^ M_r = 320.63$

Monoclinic, $P2_1$ *a* = 6.3468 (13) Å b = 14.450 (3) Å c = 8.2175 (16) Å $\beta = 95.19 (3)^{\circ}$ $V = 750.5 (3) \text{ Å}^{3}$ Z = 2

Data collection

Rigaku Saturn diffractometer
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC,
2005)
$T_{\min} = 0.930, T_{\max} = 0.953$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.024$	
$wR(F^2) = 0.060$	
S = 1.06	
2858 reflections	
179 parameters	
1 restraint	

Mo $K\alpha$ radiation $\mu = 0.61 \text{ mm}^{-1}$ T = 113 (2) K $0.12 \times 0.10 \times 0.08 \text{ mm}$

5459 measured reflections 2858 independent reflections 2636 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.028$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.21 \text{ e } \text{Å}^{-3}$ $\Delta \rho_{min} = -0.23 \text{ e } \text{Å}^{-3}$ Absolute structure: Flack (1983), 996 Friedel pairs Flack parameter: 0.04 (4)

Table 1		
Hydrogen-bond geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O1-H1···O3 ⁱ	0.89 (3)	1.99 (3)	2.8095 (18)	152 (3)
$O1-H1\cdots Cl1^i$	0.89 (3)	2.92 (3)	3.6201 (16)	136 (2)
$N1 - H1A \cdots O3^{ii}$	0.95 (3)	1.87 (3)	2.8085 (19)	170 (2)
$N1 - H1B \cdot \cdot \cdot O2^{iii}$	0.94(2)	1.87 (2)	2.796 (2)	165.1 (19)
$N1 - H1B \cdot \cdot \cdot Cl2^{iii}$	0.94 (2)	2.94 (2)	3.5647 (16)	124.5 (16)

Symmetry codes: (i) x + 1, y, z; (ii) $-x, y + \frac{1}{2}, -z + 1$; (iii) $-x + 1, y + \frac{1}{2}, -z + 1$.

Data collection: *CrystalClear* (Rigaku/MSC, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2380).

References

Borzatta, V. & Carrozza, P. (1991). European Patent EP 0 462 069. Flack, H. D. (1983). *Acta Cryst.* A**39**, 876–881. Rigaku/MSC (2005). *CrystalClear*. Rigaku/MSC, The Woodlands, Texas, USA. Sheldrick, G. M. (2008). *Acta Cryst.* A**64**, 112–122. supplementary materials

Acta Cryst. (2008). E64, o641 [doi:10.1107/S1600536808005369]

4-Hydroxy-2,2,6,6-tetramethylpiperidinium trichloroacetate

P.-W. Zhang, T.-Y. Zhang, L. Zhang and Y. Deng

Comment

The title compound was obtained as a byproduct in the synthesis of hindered amine light stabilizers preventing the degradation of polyolefins in sunlight, in which 2,2,6,6-tetramethylpiperidin-4-ol is a very important intermediate (Borzatta & Carrozza,1991). We report here the crystal structure 4-hydroxy-2,2,6,6-tetramethylpiperidinium trichloroacetate (Fig. 1). Intermolecular O—H···O, N—H···O, O—H···Cl, N—H···Cl hydrogen bonds are observed which help to establish the crystal packing. The piperidine ring adopts a chair conformation.

Experimental

0.25 g (1.6 mmol) of 2,2,6,6-tetramethylpiperidin-4-ol was dissolved in 3.2 ml of trichloroacetate acid solution (1.6 mmol, 0.26 g). Colorless crystals of the title compound were obtained by slow evaporation of the solvent.

Refinement

All H atoms bound to C atoms were constrained; positioned geometrically (C—H = 0.96-0.98 Å) and refined as riding with $U_{iso}(H)=1.2U_{eq}(\text{carrier})$ or $1.5_{eq}(\text{methyl groups})$. H atoms of O—H and N—H were located from difference maps and then refined freely.

Figures

Fig. 1. Crystal structure of the title compound with atom labeling and displacement ellipsoids drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radii.

4-Hydroxy-2,2,6,6-tetramethylpiperidinium trichloroacetate

Crystal data	
$C_9H_{20}NO^+ C_2Cl_3O_2^-$	$F_{000} = 3$
$M_r = 320.63$	$D_{\rm x} = 1.$
Monoclinic, P2 ₁	Mo $K\alpha$ $\lambda = 0.7$
Hall symbol: P 2yb	Cell par
a = 6.3468 (13) Å	$\theta = 1.4$ -

 $F_{000} = 336$ $D_x = 1.419 \text{ Mg m}^{-3}$ Mo K α radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2559 reflections $\theta = 1.4-27.9^{\circ}$

b = 14.450 (3) Å	$\mu = 0.61 \text{ mm}^{-1}$
<i>c</i> = 8.2175 (16) Å	T = 113 (2) K
$\beta = 95.19 \ (3)^{\circ}$	Block, colorless
V = 750.5 (3) Å ³	$0.12\times0.10\times0.08~mm$
Z = 2	

Data collection

Rigaku Saturn diffractometer	2858 independent reflections
Radiation source: rotating anode	2636 reflections with $I > 2\sigma(I)$
Monochromator: confocal	$R_{\rm int} = 0.028$
T = 113(2) K	$\theta_{\text{max}} = 27.9^{\circ}$
ω and ϕ scans	$\theta_{\min} = 2.5^{\circ}$
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005)	$h = -8 \rightarrow 8$
$T_{\min} = 0.930, \ T_{\max} = 0.953$	$k = -15 \rightarrow 19$
5459 measured reflections	$l = -10 \rightarrow 10$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H atoms treated by a mixture of independent and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.024$	$w = 1/[\sigma^2(F_0^2) + (0.0324P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$
$wR(F^2) = 0.060$	$(\Delta/\sigma)_{max} = 0.001$
<i>S</i> = 1.06	$\Delta \rho_{max} = 0.21 \text{ e } \text{\AA}^{-3}$
2858 reflections	$\Delta \rho_{\rm min} = -0.23 \text{ e} \text{ Å}^{-3}$
179 parameters	Extinction correction: none
1 restraint	Absolute structure: Flack (1983), 996 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: 0.04 (4)
Secondary atom site location: difference Fourier map	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C11	-0.04464 (7)	0.51471 (3)	0.10942 (5)	0.01980 (10)
C12	0.34863 (6)	0.41431 (3)	0.12885 (6)	0.02203 (11)
C13	-0.00077 (8)	0.35637 (3)	-0.09864 (5)	0.02572 (11)
01	0.7973 (2)	0.47566 (9)	0.51619 (17)	0.0227 (3)
H1	0.798 (4)	0.453 (2)	0.415 (4)	0.063 (10)*
O2	0.1032 (2)	0.27147 (9)	0.27469 (18)	0.0247 (3)
O3	-0.20242 (18)	0.34925 (9)	0.25644 (15)	0.0169 (3)
N1	0.4803 (2)	0.71305 (9)	0.64562 (18)	0.0111 (3)
C1	0.4608 (3)	0.62855 (12)	0.75507 (19)	0.0129 (3)
C2	0.6286 (3)	0.55858 (11)	0.7135 (2)	0.0139 (3)
H2A	0.7701	0.5832	0.7515	0.017*
H2B	0.6080	0.5005	0.7739	0.017*
C3	0.6235 (3)	0.53661 (11)	0.5324 (2)	0.0159 (4)
Н3	0.4876	0.5051	0.4945	0.019*
C4	0.6475 (3)	0.62493 (13)	0.4346 (2)	0.0164 (3)
H4A	0.6371	0.6090	0.3170	0.020*
H4B	0.7905	0.6506	0.4638	0.020*
C5	0.4836 (3)	0.69993 (12)	0.46158 (19)	0.0135 (3)
C6	0.2366 (3)	0.58770 (13)	0.7353 (2)	0.0198 (4)
H6A	0.1327	0.6377	0.7379	0.030*
H6B	0.2191	0.5443	0.8248	0.030*
H6C	0.2149	0.5550	0.6306	0.030*
C7	0.5076 (3)	0.66393 (13)	0.9293 (2)	0.0189 (4)
H7A	0.6495	0.6912	0.9419	0.028*
H7B	0.5003	0.6124	1.0061	0.028*
H7C	0.4029	0.7110	0.9519	0.028*
C8	0.2629 (3)	0.67658 (13)	0.3825 (2)	0.0198 (4)
H8A	0.1595	0.7193	0.4228	0.030*
H8B	0.2266	0.6130	0.4104	0.030*
H8C	0.2609	0.6825	0.2636	0.030*
С9	0.5521 (3)	0.79290 (13)	0.3950 (2)	0.0213 (4)
H9A	0.4450	0.8399	0.4123	0.032*
H9B	0.5676	0.7871	0.2779	0.032*
H9C	0.6878	0.8113	0.4523	0.032*
C10	0.0700 (3)	0.40324 (12)	0.09850 (19)	0.0130 (3)
C11	-0.0172 (3)	0.33454 (11)	0.2249 (2)	0.0133 (3)
H1A	0.373 (4)	0.7546 (18)	0.674 (3)	0.037 (7)*
H1B	0.610 (4)	0.7410 (15)	0.683 (3)	0.025 (6)*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0227 (2)	0.01408 (19)	0.0232 (2)	0.00440 (16)	0.00505 (17)	0.00388 (16)
Cl2	0.01100 (19)	0.0235 (2)	0.0318 (3)	-0.00221 (15)	0.00291 (17)	0.00920 (19)

supplementary materials

C13	0.0321 (3)	0.0304 (3)	0.0149 (2)	-0.0025 (2)	0.00289 (18)	-0.00596 (17)
01	0.0249 (7)	0.0194 (7)	0.0241 (7)	0.0108 (5)	0.0033 (6)	-0.0052 (6)
O2	0.0147 (6)	0.0220 (7)	0.0377 (8)	0.0023 (5)	0.0044 (6)	0.0151 (6)
03	0.0125 (6)	0.0160 (6)	0.0230 (7)	-0.0007 (5)	0.0056 (5)	-0.0007 (5)
N1	0.0114 (7)	0.0098 (7)	0.0124 (7)	0.0007 (5)	0.0033 (6)	-0.0002 (5)
C1	0.0127 (8)	0.0130 (8)	0.0133 (8)	0.0010 (6)	0.0032 (6)	0.0029 (6)
C2	0.0137 (8)	0.0124 (8)	0.0156 (9)	0.0027 (6)	0.0014 (7)	0.0001 (6)
C3	0.0152 (8)	0.0131 (8)	0.0193 (9)	0.0035 (6)	0.0010 (7)	-0.0028 (6)
C4	0.0164 (9)	0.0187 (8)	0.0149 (8)	0.0020 (6)	0.0049 (7)	-0.0023 (7)
C5	0.0167 (8)	0.0153 (8)	0.0089 (7)	0.0010 (6)	0.0031 (6)	0.0010 (6)
C6	0.0152 (9)	0.0174 (9)	0.0276 (10)	-0.0007 (7)	0.0059 (8)	0.0059 (7)
C7	0.0228 (9)	0.0215 (10)	0.0127 (8)	0.0047 (7)	0.0028 (7)	0.0000 (7)
C8	0.0196 (9)	0.0215 (9)	0.0176 (9)	-0.0002 (7)	-0.0023 (7)	0.0013 (7)
C9	0.0272 (11)	0.0164 (9)	0.0214 (10)	-0.0001 (7)	0.0090 (8)	0.0043 (7)
C10	0.0118 (8)	0.0134 (8)	0.0141 (8)	0.0009 (6)	0.0021 (6)	0.0010 (6)
C11	0.0124 (8)	0.0145 (8)	0.0130 (8)	-0.0019 (6)	0.0010 (6)	-0.0006 (6)

Geometric parameters (Å, °)

Cl1—C10	1.7729 (17)	C4—C5	1.532 (2)
Cl2—C10	1.7710 (17)	C4—H4A	0.9900
Cl3—C10	1.7756 (17)	C4—H4B	0.9900
O1—C3	1.427 (2)	С5—С8	1.528 (2)
O1—H1	0.89 (3)	С5—С9	1.529 (3)
O2—C11	1.235 (2)	С6—Н6А	0.9800
O3—C11	1.245 (2)	С6—Н6В	0.9800
N1—C5	1.526 (2)	С6—Н6С	0.9800
N1—C1	1.528 (2)	С7—Н7А	0.9800
N1—H1A	0.95 (3)	С7—Н7В	0.9800
N1—H1B	0.94 (2)	С7—Н7С	0.9800
C1—C7	1.524 (2)	C8—H8A	0.9800
C1—C2	1.529 (2)	C8—H8B	0.9800
C1—C6	1.535 (2)	C8—H8C	0.9800
C2—C3	1.519 (2)	С9—Н9А	0.9800
C2—H2A	0.9900	С9—Н9В	0.9800
C2—H2B	0.9900	С9—Н9С	0.9800
C3—C4	1.523 (2)	C10-C11	1.573 (2)
С3—Н3	1.0000		
С3—О1—Н1	112.3 (19)	C8—C5—C4	113.00 (15)
C5—N1—C1	119.53 (13)	C9—C5—C4	110.55 (15)
C5—N1—H1A	113.1 (15)	C1—C6—H6A	109.5
C1—N1—H1A	105.4 (15)	С1—С6—Н6В	109.5
C5—N1—H1B	106.5 (14)	H6A—C6—H6B	109.5
C1—N1—H1B	105.4 (13)	C1—C6—H6C	109.5
H1A—N1—H1B	106 (2)	Н6А—С6—Н6С	109.5
C7—C1—N1	105.40 (13)	H6B—C6—H6C	109.5
C7—C1—C2	110.56 (14)	С1—С7—Н7А	109.5
N1—C1—C2	107.56 (13)	С1—С7—Н7В	109.5
C7—C1—C6	109.16 (14)	Н7А—С7—Н7В	109.5

N1—C1—C6	111.62 (14)	С1—С7—Н7С	109.5
C2—C1—C6	112.31 (14)	Н7А—С7—Н7С	109.5
C3—C2—C1	113.80 (14)	H7B—C7—H7C	109.5
C3—C2—H2A	108.8	С5—С8—Н8А	109.5
C1—C2—H2A	108.8	С5—С8—Н8В	109.5
С3—С2—Н2В	108.8	H8A—C8—H8B	109.5
C1—C2—H2B	108.8	С5—С8—Н8С	109.5
H2A—C2—H2B	107.7	H8A—C8—H8C	109.5
O1—C3—C2	105.80 (14)	H8B—C8—H8C	109.5
O1—C3—C4	110.67 (14)	С5—С9—Н9А	109.5
C2—C3—C4	110.33 (14)	С5—С9—Н9В	109.5
O1—C3—H3	110.0	Н9А—С9—Н9В	109.5
С2—С3—Н3	110.0	С5—С9—Н9С	109.5
С4—С3—Н3	110.0	Н9А—С9—Н9С	109.5
C3—C4—C5	114.51 (14)	Н9В—С9—Н9С	109.5
C3—C4—H4A	108.6	C11—C10—Cl2	111.74 (11)
C5—C4—H4A	108.6	C11—C10—Cl1	111.69 (11)
C3—C4—H4B	108.6	Cl2—C10—Cl1	108.65 (9)
C5—C4—H4B	108.6	C11—C10—Cl3	106.67 (11)
H4A—C4—H4B	107.6	Cl2—C10—Cl3	109.25 (9)
N1—C5—C8	110.77 (14)	Cl1—C10—Cl3	108.77 (9)
N1—C5—C9	105.97 (14)	O2—C11—O3	128.65 (16)
C8—C5—C9	108.77 (14)	O2—C11—C10	116.15 (14)
N1	107.55 (13)	O3—C11—C10	115.14 (14)
C5—N1—C1—C7	168.77 (14)	C1—N1—C5—C9	-167.95 (14)
C5—N1—C1—C2	50.78 (19)	C1—N1—C5—C4	-49.69 (19)
C5—N1—C1—C6	-72.85 (19)	C3—C4—C5—N1	50.25 (19)
C7—C1—C2—C3	-166.72 (14)	C3—C4—C5—C8	-72.32 (19)
N1—C1—C2—C3	-52.12 (18)	C3—C4—C5—C9	165.51 (16)
C6—C1—C2—C3	71.08 (18)	Cl2—C10—C11—O2	-29.86 (19)
C1—C2—C3—O1	176.40 (14)	Cl1—C10—C11—O2	-151.81 (14)
C1—C2—C3—C4	56.67 (19)	Cl3—C10—C11—O2	89.47 (17)
O1—C3—C4—C5	-172.59 (14)	Cl2—C10—C11—O3	152.80 (13)
C2—C3—C4—C5	-55.84 (19)	Cl1—C10—C11—O3	30.85 (18)
C1—N1—C5—C8	74.25 (18)	Cl3—C10—C11—O3	-87.87 (15)

Hydrogen-bond geometry (Å, °)

D—H··· A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
01—H1···O3 ⁱ	0.89 (3)	1.99 (3)	2.8095 (18)	152 (3)
01—H1···Cl1 ⁱ	0.89 (3)	2.92 (3)	3.6201 (16)	136 (2)
N1—H1A···O3 ⁱⁱ	0.95 (3)	1.87 (3)	2.8085 (19)	170 (2)
N1—H1B···O2 ⁱⁱⁱ	0.94 (2)	1.87 (2)	2.796 (2)	165.1 (19)
N1—H1B…Cl2 ⁱⁱⁱ	0.94 (2)	2.94 (2)	3.5647 (16)	124.5 (16)
$\mathbf{C} = \{1, \dots, n\}$		- 1 1		

Symmetry codes: (i) x+1, y, z; (ii) -x, y+1/2, -z+1; (iii) -x+1, y+1/2, -z+1.

