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Abstract

Motivation: ADP-ribosylation is a post-translational modification (PTM) implicated in several

crucial cellular processes, ranging from regulation of DNA repair and chromatin structure to cell

metabolism and stress responses. To date, a complete understanding of ADP-ribosylation targets

and their modification sites in different tissues and disease states is still lacking. Identification of

ADP-ribosylation sites is required to discern the molecular mechanisms regulated by this modifica-

tion. This motivated us to develop a computational tool for the prediction of ADP-ribosylated sites.

Results: Here, we present ADPredict, the first dedicated computational tool for the prediction of

ADP-ribosylated aspartic and glutamic acids. This predictive algorithm is based on (i) physico-

chemical properties, (ii) in-house designed secondary structure-related descriptors and (iii) three-

dimensional features of a set of human ADP-ribosylated proteins that have been reported in the

literature. ADPredict was developed using principal component analysis and machine learning

techniques; its performance was evaluated both internally via intensive bootstrapping and in pre-

dicting two external experimental datasets. It outperformed the only other available ADP-

ribosylation prediction tool, ModPred. Moreover, a novel secondary structure descriptor, HM-ratio,

was introduced and successfully contributed to the model development, thus representing a prom-

ising tool for bioinformatics studies, such as PTM prediction.

Availability and implementation: ADPredict is freely available at www.ADPredict.net.

Contact: m.lomonte@ibp.cnr.it

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Post-translational modifications (PTMs) exponentially increase the

variety of protein functions in an organism, allowing fine-tuned and

rapid responses to a wide range of stimuli occurring in both physio-

logical and pathological conditions. PTMs can occur by covalent

addition of functional groups or small molecules (such as phosphor-

ylation or ubiquitination), as well as by redox modifications, bond

formation or peptide cleavage (either degradative or activating).

Due to improved detection technologies, the list of protein modifica-

tions in the literature has risen to well over 200 (Mann and Jensen,

2003; Olsen and Mann, 2013). Although some of these events have

been exhaustively described, for many others, the actors involved, as

well as the cellular environment and the cascade of downstream

events, are only partially understood. This is the case for
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ADP-ribosylation biology, where although the understanding of its

role in cell functions has been greatly enhanced in recent years, the

related molecular mechanisms often remain to be explored since

sites of modification have not been mapped in most cases (Gupte

et al., 2017).

ADP-ribosylation consists of the enzymatic transfer of the ADP-

ribose (ADPr) moiety from nicotinamide adenine dinucleotide

(NADþ) to a target protein, with release of nicotinamide (Ueda and

Hayaishi, 1985). It is catalyzed by both ecto-enzymes [ecto-ADP-

ribosyltransferases (ecto-ARTs)] and intracellular enzymes [poly-

ADP-ribosylpolymerases (PARPs)] (Grimaldi et al., 2015; Palazzo

et al., 2017; Ueda and Hayaishi, 1985). Ecto-ARTs specifically

transfer a single unit of ADPr on arginine residues of membrane/

extracellular targets (Laing et al., 2011). Differently, enzymes of the

PARP family can add either a single unit of ADPr (mono-ARTs) or

multiple moieties to form long and branched ADPr polymers

(PARPs), mostly on lysine and acidic residues (Messner et al., 2010;

Vyas et al., 2014). Protein ADP-ribosylation is a heterogeneous,

highly charged and rapidly degraded PTM. These features made dif-

ficult the identification of target residues for a long time and only in

recent years, especially considering the low abundance of endogen-

ous ADP-ribosylation at basal level (Larsen et al., 2017).

In the last few years, the development of novel techniques to pro-

file ADP-ribosylated proteins at the residue level has been reported

(Bartolomei et al., 2016; Bilan et al., 2017a; Chapman et al., 2013;

Daniels et al., 2014, 2017; Gibson et al., 2016; Ismail et al., 2015;

Martello et al., 2016; Zhang et al., 2013). The increasing available

information concerning both identified substrates and specific resi-

dues of the modification has been systematically collected (Vivelo

et al., 2017) and lays the groundwork for the development of ADP-

ribosylation prediction tools. To date, two such tools have been

published: ModPred, by Radivojac and colleagues (Pejaver et al.,

2014), it is not exclusively focused on ADP-ribosylation but rather

meant as a multi-PTM predictor and ADPRtool, by Liu et al.

(2015), which focuses on ADP-ribosylation of aspartic acid residues

but is unfortunately not available to the community.

Thus, given the lack of a fully dedicated computational tool and

taking advantage of the newest experimental data, we sought to de-

sign a specific algorithm to accurately predict ADP-ribosylation sites

throughout the human proteome. Based on physicochemical proper-

ties and, when available, on structure-related information of a wide

set of experimental ADP-ribosylated sites, ADPredict identifies the

aspartic acid and glutamic acid most probable to be ADP-

ribosylated within a target protein. We focused on these two residue

types since the better-known ADP-ribosylation target and the most

abundant among available experimental data.

Being able to provide robust and confident predictions,

ADPredict would facilitate the biologist in investigating the molecu-

lar mechanisms underlying pathways of interest mediated by ADP-

ribosylation.

2 Materials and methods

The overall framework is schematized in Figure 1, which shows the

five main stages trough which ADPredict was developed. The first

stage, data collection and data fusion, includes all pre-processing

stages through which the training set was refined. The second stage,

feature extraction and selection, comprises the calculations of all

considered protein properties. Then, model training and evaluation

refer to algorithm development and performance control and com-

parison. The fourth stage comprises 1000 runs of bootstrapping, the

external prediction of two other datasets and a successful bench-

marking session. The final step concerns web service deployment.

2.1 Data collection
2.1.1 Pre-processing

The training dataset was generated starting from a collection of

ADP-ribosylated sites identified via mass spectrometry published by

Yu and colleagues (Zhang et al., 2013). The set consists of a total of

1048 aspartic acid and glutamic acid residues belonging to 340 dif-

ferent human proteins. A data-cleaning session, aimed to standard-

ize data entries, was performed. In details (i) when missing, primary

sequence was retrieved from Uniprot databank and (ii) checked for

congruence with the indicated international protein index or gene

name; (iii) the position of modified residue within the primary se-

quence was controlled and corrected if the case; (iv) sub-sequences

not included into the relative protein primary sequence (possibly due

to incorrect isoform annotation) were excluded; (v) Titin protein

(Q8WZ42), accounting for 6 modified sites and almost 5000 non

modified glutamic and aspartic acids, was removed form dataset.

This procedure led to a set of 1018 unique modified residues (821

glutamic acid and 197 aspartic acid) distributed across 317 proteins.

For this set, protein sequences from the UniProt databank (The

UniProt, 2017) and, when available, the related resolved structures

from the PDB databank (Berman et al., 2000) were retrieved. For

this second aspect, a dataflow was specifically developed to properly

select and retrieve only the most representative crystal structure. To

do this, the related primary sequences were retrieved from the PDB

and checked against the relative original primary sequences for mis-

matches or missing regions. Inconsistencies were corrected to prop-

erly perform the alignment. The criteria used to select the best

structures were (i) maximum number of modified residues; (ii) min-

imum number of missing/erroneous residues; (iii) maximum portion

of the protein resolved; and (iv) preference for a crystal structure,

the most recently published, and with the best resolution possible.

Several proteins showing only resolved structures not covering any

modified site were discarded because they could not be used. In

total, 54 protein structures featuring 135 ADP-ribosylated sites (91

glutamic acid and 44 aspartic acid) were collected.

Fig. 1. Schematic framework of ADPredict development. On the left, the verti-

cal labels list the main stages of the study; relative itemized details follow. On

the right, a diagram schematizes the activity flow
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2.1.2 Descriptive analysis

A detailed descriptive analysis was undertaken to exhaustively

examine the data and to set up an appropriate computational strat-

egy. The 1018 validated ADP-ribosylated sites were considered as

true positives (TPs), while all other 29 757 acidic residues reported

to be unmodified were considered as true negatives (TNs). The total

number of TNs was �30 times larger than that of TPs. Since this

unbalance would negatively influence our ability to develop a TP

prediction algorithm, a selection of 5000 TNs (an arbitrarily chosen

number) was made using the maximum dissimilarity method, as im-

plemented in the Pipeline Pilot program (Warr, 2012), to preserve

the representation of the entire physicochemical space of the dataset

and to limit the introduced bias. Another crucial aspect for our final

goal arises from the distribution of ADP-ribosylated sites among

proteins in the set. Despite being twice longer than the expected,

with a mean length of about 741 amino acids, the 317 proteins in

the refined dataset showed a moderate rate of ADP-ribosylated sites.

In details, for almost 50% of the proteins, only one TP was experi-

mentally identified, increasing to more than 75% if we considered

up to three modifications. This was true for both glutamic acid and

aspartic acid residues (Fig. 2). On these grounds, models were tested

and selected according to their capacity to correctly predict ADP-

ribosylated sites within the top three positions, ranked according to

the prediction score, of the acidic residues list of a target protein.

2.2 Feature extraction
Once the dataset had been refined and focused, and before proceed-

ing with physicochemical- and structure-related feature extraction,

the sub-sequences of interest were retrieved from the proteins’ full-

length primary sequence, aiming to identify these features in the im-

mediate vicinity of the modified site. A progressively wider window

centered on the modified residue in the primary sequence was as-

sessed to obtain sequence fragments of 5–33 amino acid residues

[variable length sub-sequence (VLS)]. The lower limit was selected

because a shorter fragment of three amino acids would not suffi-

ciently describe a chemical or structural space, resulting in common

triplets that are indistinguishable in terms of predictions. On the

other hand, the upper limit was chosen based on structural evalu-

ations, i.e. large enough to encompass a hypothetical large, mean-

ingful folding motif, such as a membrane-spanning alpha helix or a

beta sheet. Once the VLSs were extracted, both physicochemical-

and structure-related scores were calculated. For the primary se-

quence-based features, we used a selection of the amino acid de-

scriptor (AAD) sets reported in the literature, accounting for

physicochemical as well as topological and three-dimensional elec-

trostatic properties. Specifically, we annotated the first three princi-

pal components of Z-Scales, ST-Scales, Prot-FP and MSWHIM sets

(Sandberg et al., 1998; Yang et al., 2010; Zaliani and Gancia,

1999), as previously reported and recently compared in terms of de-

scriptive capacity by Bender and colleagues (van Westen et al.,

2013). A 12 score-per-amino-acid string was thus obtained (VLS-

AAD), preserving the relative position of every single amino acid

within the sub-sequence. Structure-related features were also taken

into account, with the assumption that besides a specific chemistry,

a proper shape is also necessary to allow the ADP-ribosyltransferase

to properly approach the residue being modified. Thus, for those

proteins whose structure has been published, folding was annotated

as reported by the PDB databank dictionary. The classification

based on seven motifs was translated into a simpler four-motif clas-

sification, with the aim to focus on the most significant structural

classes (Supplementary Table S1). A helix-strand-turn-coil

annotated sub-sequence list was therefore obtained, again with the

variable length approach described before. These strings were fur-

ther coded with an in-house-developed hashing code to identify only

robust and meaningful folds, and if this was not the case, to add the

uncertainty annotation (reported as 0). In detail, the hashing strat-

egy consisted of splitting the simplified secondary structure string

into three to seven fragments, depending on the VLS; within each

fragment annotated folds are counted and the most numerous one is

selected. In the case of two equally represented folds, an uncertainty

is annotated (0). Therefore, three, five or seven-letter hashed strings

were produced, which we refer to as VLS-hashed motifs (VLS-HMs)

(Table 1). Moreover, the hashing code allowed us to reduce the

number of diverse entries, especially for the very long VLSs and to

make them comparable to each other, enabling their use in predict-

ive algorithm development. As with motif folding, whole protein-

based 3-D properties were calculated as well, in line with what has

been done in other prediction tools (Brandes et al., 2016) and based

on the assumption that a modifiable residue would be chemically

available to establish an interaction with the enzyme as well as

exposed to the external environment. Therefore, 14 parameters ac-

counting for structural information, such as solvent exposure (free

and bound, namely FreeASA and GxG ASA, respectively), the num-

ber of rotatable bonds, the possible presence of intramolecular inter-

actions and several intramolecular energies, were calculated with

the molecular operating environment (MOE, 2018) and small-

molecule drug discovery suite (Schrödinger, 2018) programs and re-

ported for every amino acid, resulting in a 14 score-per-amino-acid

string, called VLS-3-DSs (Supplementary Table S2).

2.3 Feature selection
Principal component analysis (PCA) was performed for both VLS-

AADs and VLS-3-DScores, mean centered and scaled to unit vari-

ance and the principal components explaining 75% of the variance

were used as descriptors for model development (AAD-PCs and 3-

D-PCs, respectively). The frequency of TP and TN entries in VLS-

HMs was calculated, and the resulting ratio was used as the

structure-related descriptor (HM-ratio).

3 Machine learning algorithms

3.1 Model training
Regression tree methods are very popular statistics tools that are

used widely in many fields, including biological event exploration

and prediction (Jia et al., 2016a; Li et al., 2015; Xiao et al., 2016).

Fig. 2. ADP-ribosylated site distribution among the training set proteins.

Yellow dots mark the percentage of proteins reporting one or up to three

modifications. Blue and orange lines refer to the count of modified aspartic

acid and glutamic acid, respectively; gray bars display the percentage of pro-

teins (left y-axis) with a certain number of modifications; and the green line

represents the cumulative curve (right y-axis)
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Among these, we exploited the recursive partitioning (RP) and the

random forest (RF) methods (Breiman, 1984, 2001) to interpret our

dataset and to derive predictive models, as has been done previously

(Jia et al., 2016b; Xiao et al., 2016). In addition to classification tree

methods, we used as well a supervised learning technique statistical

model, namely, the support vector machines model (SVM, also

known as support vector network) (Cai and Jiang, 2016; Xu et al.,

2016). RP models were calculated with the R statistics module,

Learn RP Tree model, embedded in Pipeline Pilot. The output con-

sisted of differently pruned trees, from the most pruned one to the

largest, completely unpruned one. The maximum tree depth was set

to 50 as the number of maximum knots allowed per property; the

Gini index was used for ranking the desirability of splits in the data.

The internal ranking and selection of the best trees were made by

evaluating the ROC function, which was automatically computed

by the Pipeline Pilot component. Similarly, RF models were calcu-

lated with the R statistics module, Learn RP Forest model. Tree set-

tings were set in line with those of RP models, and the bootstrap

aggregation method was used in constructing the forest. Finally, the

SVM models were developed using the R statistics module, Learn R

SVM model, setting the kernel as radial and the C and e parameters

as 1.0 and 0.1, respectively. As for the regression tree methods, the

output consisted of a possibility score for a site to be ADP-

ribosylated, expressed as values between 0 and 1, with higher values

reflecting higher probability. Three parallel model development

campaigns were performed using AAD-PC, HM-ratio and 3-D-PC

descriptors, separately, to initially obtain two different classes of

models: one based on the primary sequence that would always be

useable and a second developed from structure-related information

and thus only exploitable when the structure of the protein of inter-

est is known. These methods were applied to all VLSs, aiming to ob-

jectively identify the best performing sub-sequence length for our

study.

3.2 Model evaluation
Enrichment factor (EF) (Efron and Tibshirani, 1993; Kirchmair

et al., 2008) and receiving operating characteristic (ROC) (Fawcett,

2006) were used as evaluation functions. The EF assessed the im-

provement of the hit rate of correctly predicted TPs compared to a

random selection, considering the top three ranked residues (since

more than 75% of the proteins in the dataset possess at most three

ADP-ribosylated sites). When more residues than those considered

as the top three were ranked within the selected positions of the pre-

diction list due to an equal score, the sub-selection to calculate the

models’ performance was extended to include all equally scored top

ranked sites, which did not affect the results because the EFs were

calculated considering the resulting number of involved residues. In

this study, an EF threshold value for separating correctly and incor-

rectly predicted proteins was set at two (twice the random inci-

dence). The ROC was selected to measure the global performance of

the models (Shamsara, 2014), and the ROC curve was plotted to

visualize the TP rate (sensitivity) against the false positive rates (1—

specificity), calculated progressively while varying the TP/TN dis-

criminating threshold from 0 to 1 in small increments. Models with

higher EF values are preferred when global performances (ROC val-

ues) are not sufficient to discriminate them.

3.3 Cross-validation
Internal and external validations of the generated models and their

statistical stability were evaluated. Cross-validation strategies, such

as the leave-n-out, are widely used to overcome the intrinsic overfit-

ting limits of machine learning. In this study, we performed both

leave-one-out (L1O) and leave-10%-out (L10%O) calculations for

performance evaluation and model stability assessment, respectively

(Fu et al., 2005; Kohavi, 1995). The models were re-generated each

time after the removal of n proteins, and EF and ROC were calcu-

lated for each protein individually. The overall performance of the

models was evaluated in terms of mean values of the evaluation

functions and their standard deviations (SDEV-all). To assess the re-

producibility of model performance, the standard deviations were

also calculated as an average of all the proteins predicted for each

run (SDEV-mean). As for the model development, cross-validation

techniques were applied to all the VLSs separately, and the best per-

forming model for each descriptor was identified. In particular, to

accurately perform the L10%O, a two-step strategy for random

number selection was designed and implemented. A selected set of

1000 lists comprising 32 proteins (10% of the dataset) each was

chosen maximizing their diversity by the application of the

fingerprint-based Maximum dissimilarity method. For the structure-

related descriptors, the only difference lies in generating subsets of

six proteins, since the structure was available for 54 proteins. The

obtained lists were used to generate training and test sets for a 1000

runs bootstrap. This approach allowed us to avoid bias due to a

non-random selection of the subsets for the bootstrapping stages

(Efron and Tibshirani, 1993).

3.4 External validation
In addition to the work of Yu and colleagues, two studies about

ADP-ribosylation site identification have been published more re-

cently, both reporting a detailed list of experimentally derived ADP-

ribosylated aspartic and glutamic acids. Once pre-processed—using

the same protocol applied in refining the Yu dataset—the first study,

published by Kraus and colleagues (Gibson et al., 2016), resulted

into 1150 modified sites, while the second one, published by Nielsen

and colleagues (Martello et al., 2016), accounted for 1137 modified

sites (see Supplementary Fig. S2 for more details). We used these

two external test sets to further evaluate the predictive capacity of

the generated models, excluding from the calculation those modified

proteins already present in the training set, to avoid the introduction

any bias.

Table 1. Secondary structure hashing strategy

VLS Primary structure Secondary structure Metrics Hashed motif

9 MATTEWLMN CHH–HHT–TTC 3-3-3 H–H–T

11 WMATTEWLMNT CCH–HHHTT–TCE 3-5-3 C–H–0

13 YWMATTEWLMNTY ECCH–HHHTT–TCEE 4-5-4 C–H–E

15 IYWMATTEWLMNTYA EECCH–HHHTT–TCEEE 5-5-5 0–H–E

Note: Example of the hashing strategy exploited to annotate secondary structure information of the considered sub-sequences. The metrics accounts for the

fragmentation of the annotated string. For each fragment, the most representative fold is taken; when not possible uncertainty is introduced (0).
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3.5 Benchmarking
The predictive performance of our best performing model were

tested in a benchmark session against the tool ModPred (Pejaver

et al., 2014), the only ADP-ribosylation site predictor available in

the literature. The capacity of both models to correctly predict the

experimental data from the Yu, Nielsen and Kraus datasets was as-

sessed by comparing ROC curves.

4 Implementation

Development of the ADPredict tool was performed in workflow

programming using the BIOVIA Pipeline Pilot program. All calcula-

tions were run on a Dell PowerEdge r820 server, equipped with a

2.40 GHz 32-thread Xeon E5-4640 processor and 512 GB of RAM

in a Windows server 2012 environment. The Mks SIMCA program

was used for PCA model analysis and evaluation (Eriksson et al.,

2006). MOE and Schrödinger program suites were used for visual

inspection of 3-D structures, automated protein fragment extrac-

tion, and property calculations. The ADPredict website (www.

ADPredict.net) is implemented using LAMP (Linux Apache MySQL

PHP), an open source Web development platform that allows a flu-

ent and responsive user experience in displaying and handling the

output data, which in this case are calculated on the fly in a com-

pletely automated Pipeline Pilot workflow. It runs on an Apache/

2.4.6 (CentOS) PHP/5.4.16 Server.

5 Results and discussion

5.1 Primary sequence-related models
For the developed models based on amino acid physicochemical

properties, the three machine-learning techniques showed compar-

able global performances, according to the ROC values, whereas

they had quite different EF values, indicating dissimilar performance

in retrieving TPs within the top three ranked position. The mean

ROC scores were very similar and robust (Fig. 3a), indicating that

the overall prediction capacity was well performing and reliable

(0.68, 0.8 and 0.67 for RP, RF and SVM, respectively). However,

the RP model in particular showed a higher percentage of correctly

predicted proteins—50.6% compared to 31 and 26.8% identified

by RF and SVM (Table 2). This behavior can be interpreted by con-

sidering the different EF and relative SDEV values. The EF values of

the RF and SVM models (2.78 and 3.10, respectively) were within

the very high- and low-scored predictions, as shown by their high

SDEV values (7.05 and 8.16, respectively), reflecting the capacity to

correctly predict a lower number of proteins but with a high recall

of sites compared to the RP model. This means that RF and, to a

greater extent, SVM are more elitist models than RP, and when they

correctly predict a site they do it with high confidence at the top

ranked positions. On the other hand, the RP model had a more con-

stant prediction performance, with an EF of 2.40 and a relative

SDEV of 2.60 (Table 2). All three methods were also checked for

their robustness in the bootstrapping stage. For all the methods, the

EF, ROC and the relative SDEV-all were similar to those of the L1O

session. A low SDEV-mean—especially for the ROC—supports how

the performance of the models does not depend on the data of sam-

pling (Table 2). For all the models, the VLS 9 represented the best-

performing string length. In light these results, performing with

comparable efficacy but still showing different recall, all three meth-

ods advanced to the next level of the study.

5.2 Secondary structure-related models
Initially being a simple value to calculate, the HM-ratio was applied

as a single-level binary classification, with the threshold set to 1,

consistent with the intrinsic meaning of the descriptor. Also in this

case, proteins were considered correctly predicted when character-

ized by an EF value greater than two but selecting the top ranked

residues only if their HM-ratio value was greater than one (meaning

an imbalance in HM frequencies in favor of TPs). Only slightly dif-

ferent from the primary sequence-based models, the best-performing

length for the secondary structure-based algorithms was VLS 11.

Among several explored approaches, the best strategy was the one

segmenting the 11-residue sub-sequences into three regions (three,

five and three residues long, respectively), finally coded by a three-

letter hashed motif, that, considering the full set of permutations

with repetition of 4-fold (H, E, T and C) and the uncertainty (0),

amount to a total of 125 possible fingerprints. At the feature-

extraction level, HM-ratios were calculated as the ratio between TP

and TN hashed motif frequencies. The resulting values allowed two

kinds of information to be collected: (i) the folds with the highest

frequencies among TPs can be noted as the most eligible ‘shapes’ for

ADP-ribosylation and (ii) the higher the HM-ratio for a given fold,

the more this discriminates for a modified residue, thus allowing to

design a predictive model. The frequency among TNs cannot be cal-

culated directly because TNs are in speculative annotations attrib-

uted to the unmodified residues, which in turn can be unmodified

for many different reasons (for example, the accessibility to the en-

zyme). Analyzing the HM distribution across TPs in the training set,

Fig. 3. Cross-validation (a)–(c) and Benchmark (d)–(f) ROC curves. (a) Primary

sequence-based models, (b) secondary structure-based models and (c) 3-D

based model L1O results. Comparative analysis of the ADPredict and,

ModPred performances in predicting (d) Yu, (e) Kraus and (f) Nielsen data-

sets. ModPred PSSM performance is evaluated for the Yu dataset only
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18% of them were represented by only one site. Thus, to properly

perform the L1O evaluation, the proteins containing these single-

tons were excluded from the set to avoid the case in which the test

set is out of the model’s applicability domain. The resulting model

showed a ROC mean value of 0.60 with a SDEV of 0.28 and an EF

value of 2.39 with a SDEV of 4.24, correctly predicting 32.4% of

the proteins (Fig. 3b; Table 2). Later, a classification RP tree method

was exploited to avoid imposing a specific HM-ratio threshold.

Here, multiple values were allowed, as selected by the model at each

branching node, and predictions were expressed as probabilities

from 0 to 1, allowing a performance comparison with the other

models.

The resulting model consisted of a tree with four branches, iden-

tifying two main HM-ratio ranges in which an enrichment of TPs

with respect to random incidence was observed, consistent with the

meaning of the descriptor: (i) values higher than 1.96

(Supplementary Fig. S1, box #6) and (ii) values between 1.11 and

1.96 (Supplementary Fig. S1, box #10). At the same time, a TN en-

richment was detected for values lower than one (Supplementary

Fig. S1, boxes #1 and #9). This model showed a mean ROC of 0.62

(SDEV of 0.21) and an EF of 1.71 (SDEV of 1.32), correctly predict-

ing 37.8% of the proteins (Fig. 3b). The L10%O calculation sup-

ported the reliability of the models, with ROC and EF values of 0.61

and 1.64 and a SDEV-mean of 0.09 and 0.59, respectively (Table 2).

Thus, the VLS 11 HM-RP model was selected as the best-preforming

model for secondary structure-related information. In light of these

results, the proposed hashing approach resulted to properly catch

the secondary structure information of the considered subsequence

and allowed to generate a reliable descriptor, HM-ratio, exploitable

in discriminating between putative and not modifiable residues.

5.3 3-D descriptor related models
3-D property-based algorithms were developed in a manner similar

to the physicochemical property session using three different ma-

chine learning techniques (RF and SVM results are not shown). Out

of the three techniques applied, the RP method resulted in the best-

performing model. At the L1O level, it showed a mean ROC value

of 0.65 and a mean EF value of 1.58 (SDEV of 1.68) and resulted in

the correct prediction of 37% of the proteins in the set (Fig. 3c).

Also in this case, the L10%O calculation supported the robustness

of the model, with a ROC of 0.65, an EF of 1.92 and a SDEV-mean

of 0.1 and 0.92 (for ROC and EF, respectively) (Table 2). On these

results, the use of 3-D descriptors as well was proved to be

meaningful and the resulting model was promoted to the following

stages of the study.

5.4 External predictions
To further prove their predictive capacity, the five best-performing

models (the three AAD based, the HM-ratio-based RP and the 3-D-

RP) were tested in predicting the external datasets of Kraus and

Nielsen. Of note, being these two datasets generated with different

experimental strategies respect to those of the training set, using the

predictive models offered also the chance to estimate if and how

much ADP-ribosylation property patterns really diverge along with

the experimental conditions Again, the EF and ROC functions were

calculated to evaluate the predictive performance.

5.4.1 AAD-based models

The three AAD-based predictive models were used for the prediction

of both Kraus and Nielsen dataset, obtaining encouraging results

(Table 3). In more detail, the RP, RF and SVM models correctly pre-

dicted 51.8, 30 and 26.4% of the proteins in the Kraus set, com-

pared with 25.1, 10.7 and 11.5% of those in the Nielsen list,

respectively. Consistent with the local predictions, global measures

were also better when predicting proteins in the Kraus set, as indi-

cated by ROC values ranging from 0.66 for the SVM model to 0.70

for the RP model. The best model in predicting Nielsen was still RP,

but this model only had ROC values of 0.54 (Table 3). These results,

especially in the case of Kraus dataset, further confirmed the predict-

ive capacity of AAD-based models, successfully retrieving the effect-

ive modified sites of an external set as numerous as the training one.

5.4.2 Secondary structure-based models

Similar to what was done for the Yu set, both TP-specific and the

TP/TN discriminating folds were inspected in the Kraus and Nielsen

sets. The Pearson correlation coefficient, as computed for each pair

of sets, showed a quite strong positive correlation of the HMs for

TP, whereas the correlation values dropped when considering the

HM-ratio. This can be probably explained considering the paucity

of overlap of modified sites among the three sets and the intrinsic

spread distribution of the descriptor itself. This is more evident

focusing the analysis on the 43 proteins commonly modified in all

the studies. In contrast, HMs among TNs appeared to be highly cor-

related and the analysis of the entire human proteome, checked in

the PDB databank, allowed us to further confirm the observed

global distribution (see Supplementary Table S3 for more details).

Table 2. Cross-validation results

EF (TOP3) Proteins with

EF> 2 (%)

ROC

L1O L10%O L1O L10%O

Mean SDEV Mean SDEV(Mean) SDEV(All) Mean SDEV Mean SDEV(Mean) SDEV(All)

AAD-RP 2.406 2.601 2.453 0.536 3.041 50.6 0.684 0.230 0.666 0.042 0.236

AAD-RF 2.778 7.046 2.499 1.307 7.481 31.0 0.684 0.224 0.671 0.039 0.238

AAD-SVM 3.104 8.157 2.884 1.432 8.733 26.8 0.671 0.247 0.666 0.041 0.250

HM-ratio 2.392 4.245 2.393 1.846 3.949 32.4 0.603 0.281 0.613 0.126 0.283

HM-RP 1.707 1.324 1.643 0.590 1.343 37.8 0.622 0.214 0.607 0.093 0.214

3-D-RP 1.745 1.498 1.918 0.919 2.068 48.1 0.650 0.233 0.654 0.105 0.231

ADPredict 3.427 7.331 3.395 1.445 8.206 33.5 0.707 0.234 0.7 0.04 0.235

Note: Resuming table of the model performance in predicting ADP-ribosylated sites of the training set, in both a L1O and a L10%O cross-validation sessions.

Selected models for each class of properties are reported, as well as the consumptive model, ADPredict. EF and ROC values, along with relative SDEV values, are

calculated as evaluation functions. Proteins with an EF higher than two are considered correctly predicted and are here reported as percentage of the training set.
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The Kraus and Nielsen datasets were then used as external test sets

to check the prediction capacity of secondary structure-based mod-

els. In order not to bias the results by predicting an object that had

been used in the training set, proteins in common with the Yu list

were subtracted from the Kraus and Nielsen sets. The HM-RP

model showed similar and poor results in predicting Kraus and

Nielsen unique proteins, as evidenced by ROC values of 0.5 and

0.55, respectively. From the local model point of view, the gap be-

tween the trends grows, with an EF value of 1.41 for Nielsen and

1.03 for Kraus. The model had better performance in predicting the

Nielsen than the Kraus set, being successful in 23.7% of the cases

compared to 19.3% (Table 3).

These results, in line with what observed in the correlative ana-

lysis of the folds frequency across the different datasets, showed

HM-ratio failing in predicting the external sets. However, it has to

be considered the intrinsic spread distribution of the HM descriptors

(125 different elements in which to catalog, with often an even

lower number of samples), limit that we are confident will be over-

come as the training set grows.

5.4.3 3-D descriptor-based models

Among the three machine learning techniques applied for develop-

ing the 3-D properties based models, the RP was selected as the best

performing in predicting Yu data (L1O). Thus, only RP was ex-

ploited for the external predictions of Kraus and Nielsen datasets.

As showed by the resulting ROC and EF values, once again, the

model performance was better in predicting the Kraus set (ROC of

0.66, EF of 1.99, correctly predicting 46.2% of proteins) than the

Nielsen set (ROC of 0.53, EF of 1, correctly predicting 19.5% of

proteins) (Table 3). Once again, similarly to what highlighted for

the physicochemical properties by the AAD-based predictive models,

3-D-RP as well showed how the three-dimensional properties of Yu

and Kraus datasets appear to be more aligned then those of Yu and

Nielsen, in line with the respective trend in TPs overlap among

datasets.

5.5 Consensus model, ADPredict
To combine the contribution of each selected model, a consensus

model, from here on named ADPredict, accounting for the mean

prediction of all models (namely the three AAD-based, the RP de-

veloped on HM-ratio and the 3-D-RP), was generated and tested. In

predicting the Yu dataset, the ADPredict model outperformed all

the other models in terms of global performance, showing a mean

ROC value for the L1O stage of 0.71 (Fig. 3; Table 2). In line to

what observed for each single model, the L10%O of consensus

model as well proved it to be robust and to perform better of each

individual predicting model, as reported by both ROC and EF

higher values and SDs in line with previously described ones

(Table 2).

We identified 0.4 as the significance threshold for the prediction,

the value that corresponds to an EF value larger than two. The 0.4

threshold maximize the number of correctly predicted modified sites

while minimizing the number of FNs. For this value, sensitivity (or

true positive rate—TPR), specificity (or true negative rate—TNR)

and accuracy showed values of 0.46, 0.78 and 0.77 respectively.

Thus, sites with an ADPredict score equal to or higher than 0.4 are

putative ADP-ribosylated sites. ADPredict model was mostly driven

by the AAD models because only a minor portion of the set had

resolved structures. Its prediction capacity was better than the RF

and SVM models, with an improved EF value (3.43, SDEV of 7.3),

and it correctly predicted 33.5% of the proteins (Table 3).

ADPredict model was then tested with the two external datasets, re-

sulting to perform better in predicting the Kraus dataset than for the

Nielsen dataset, with ROC values of 0.71 and 0.55, EF values of 2.6

and 1.4, and correctly predicting 28.3 and 12.1% of the proteins, re-

spectively (Table 3). On these grounds, we definitively confirmed

that the Yu and Kraus ADP-ribosylation profiles are more similar to

each other than to the Nielsen one. In light of these results,

ADPredict model represents the best predictive metrics for ADP-

ribosylation site prediction. It offers a clear picture of the ADP-

ribosylation profile of the target of interest, at the same time

accounting for all the diverse features considered in this study. It is

the main output of the online application.

5.6 Benchmark results
To determine how well ADPredict performs compared to only other

available ADP-ribosylation prediction tool, ModPred (Pejaver et al.,

2014), a benchmark session was carried out. The Yu, Kraus and

Nielsen datasets were predicted using with the ModPred tool and the

results were compared with those from our final model (Fig. 3d–f).

ModPred resulted in ROC values of 0.56 and 0.53 for the Yu and

Kraus datasets, respectively, compared to 0.71 and 0.70 obtained

with ADPredict (Fig. 3d and e). In contrast, both models obtained

comparably poor results for the Nielsen dataset, as shown by ROC

values of 0.58 for ModPred and 0.55 for ADPredict (Fig. 3f).

Furthermore, the ModPred-PSSM model, which was reported to have

higher performance by Pejaver and colleagues, was used to predict the

Yu dataset and only slightly improved the result, yielding a ROC

value of 0.59 (Fig. 3d), which was still markedly lower than the

ADPredict value of 0.71.

Table 3. External validation results

Nielsen dataset Kraus dataset

EF (TOP3) Proteins with

EF> 2 (%)

ROC EF (TOP3) Proteins with

EF> 2 (%)

ROC

Mean SDEV Mean SDEV Mean SDEV Mean SDEV

AAD-RP 1.190 2.018 25.1 0.538 0.243 2.569 2.617 51.8 0.696 0.244

AAD-RF 1.289 6.998 10.7 0.532 0.249 3.176 6.823 30.0 0.689 0.248

AAD-SVM 1.387 7.013 11.5 0.534 0.262 2.585 5.991 26.4 0.661 0.249

HM-ratio 1.532 2.897 26.3 0.545 0.316 1.037 2.293 16.8 0.510 0.269

HM-RP 1.413 2.604 23.7 0.549 0.304 1.033 1.698 19.3 0.500 0.250

3-D-RP 0.994 1.572 19.5 0.529 0.261 1.987 2.150 46.2 0.656 0.255

ADPredict 1.399 6.987 12.1 0.547 0.247 2.624 5.628 28.3 0.706 0.228

Note: Resuming table of the model performance in predicting ADP-ribosylated sites of the two external datasets. EF and Roc values, along with relative SDEV

values, refers to a L1O session.
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6 Web server tool implementation

ADPredict is available as a web application, freely accessible at

ADPredict.net (Fig. 4). The user can perform the search by entering

the UniProt entry or the UniProt entry name of the protein of inter-

est and entering a custom Fasta sequence. In this second case, only

standard amino acids are allowed and only AAD-based predictive

models will be calculated (Supplementary Fig. S3a). The human 60S

ribosomal protein L11 (rl11_human, P62913), included in the Kraus

dataset, is reported here as an example of an ADPredict output

(Supplementary Fig. S3b–d). Three residues are predicted to be mod-

ified and the first two of these are experimentally validated targets

of ADP-ribosylation (Supplementary Fig. S4). Initially, ADPredict

reports all glutamic acid and aspartic acid residues present in the

protein primary sequence and the related information. In more de-

tail, the ADP-ribosylatable residues are listed in a table that reports,

for each site (i) the position within the sequence, (ii) the VLS in

which it is located (VLS 11 is preferred, otherwise VLS 9, if lower

the site is marked as discarded and not predicted), (iii) the relative

secondary structure string (if available) and, in that case, (iv) the se-

lected resolved structure (PDB ID) (Supplementary Fig. S3b). In add-

ition to the table, a pie chart summarizes the count of residues of

interest, the information they come with and the models available

for the calculation. Submitting the query leads to the prediction

output, represented by both a plot and a table, which are

completely interactive and available for download (Supplementary

Fig. S3c and d). The web server by default will calculate the

ADPredict model and the other five models described earlier. An

easy user guide can be found on the website in the tutorial section.

7 Conclusions

In this study, we exploited multiple machine learning techniques to

develop the ADPredict, a tool for the prediction of ADP-

ribosylatable aspartic acid and glutamic acid residues in a target pro-

tein. ADPredict relies on physicochemical properties, combining

them with structure-related information when available. Extensive

bootstrapping and external predictions support the effectiveness of

its predictive power, and the benchmarking results indicate it is the

best tool in the field.

ADPredict applies at different levels of molecular and cellular

biology. At a more comprehensive stage, when studying a specific

pathway known to be regulated by ADP-ribosylation, it helps focus-

ing the attention on the more promising substrate(s) among several

putative players, so supporting the early investigation stages of cellu-

lar pathways. Besides, at a more specific level, such as the study of a

known ADP-ribosylation target, the tool allows identifying this

modification event at a residue level, a step needed to describe the

molecular mechanisms underlying the pathways of interest. In add-

ition, the high selectivity of the tool in identifying sites more prone

to be modified strongly reduces the likelihood of false positive re-

sults, thus facilitating the validation of the prediction through muta-

genesis analysis and so allowing to study the event of interest

without altering the environmental steady conditions.

Of note, the comparison of the ADP-ribosylation datasets indi-

cates high variability, depending on the biochemical environment

(cell type, physio-pathological conditions) and the experimental

procedures used for enrichment and characterization of the ADP-

ribosylated sites. Indeed, both qualitative and quantitative experi-

mental evidence of this variability has recently been published (Bilan

et al., 2017). However, despite this variability, we observed that an

ADP-ribosylatable site possesses a basal set of physicochemical

properties as well as an opportune shape and 3-D features that, inde-

pendent from the experimental conditions, predispose it to be modi-

fied. Aiming to improve the predictive performance of our model,

the property space on which it was developed will be enlarged by

including the novel information contributed by the Kraus and

Nielsen datasets, as identified by the external prediction results. We

are confident that a richer training set would allow to increase the

power of our prediction tool and, particularly, it would offer the

chance to overcome the observed limitation of the well promising

in-house generated structure based descriptor, HM-ratio. At the

same time, the experimental strategy used by Nielsen offers the

chance to explore the ADP-ribosylation trend in lysine and arginine

residues. Therefore, we intend to extend the ADPredict applicability

to basic amino acids and emerging new ADP-ribosylated residues

such as serine (Bilan et al., 2017b; Bonfiglio et al., 2017) to fully

support biologists of the field in the study of this molecular event.
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