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ABSTRACT

Molecular interactions are key drivers of biologi-
cal function. Providing interaction resources to the
research community is important since they allow
functional interpretation and network-based anal-
ysis of molecular data. ConsensusPathDB (http:
//consensuspathdb.org) is a meta-database com-
bining interactions of diverse types from 31 pub-
lic resources for humans, 16 for mice and 14 for
yeasts. Using ConsensusPathDB, researchers com-
monly evaluate lists of genes, proteins and metabo-
lites against sets of molecular interactions defined
by pathways, Gene Ontology and network neigh-
borhoods and retrieve complex molecular neighbor-
hoods formed by heterogeneous interaction types.
Furthermore, the integrated protein–protein interac-
tion network is used as a basis for propagation
methods. Here, we present the 2022 update of Con-
sensusPathDB, highlighting content growth, addi-
tional functionality and improved database stability.
For example, the number of human molecular inter-
actions increased to 859 848 connecting 200 499
unique physical entities such as genes/proteins,
metabolites and drugs. Furthermore, we integrated
regulatory datasets in the form of transcription
factor–, microRNA– and enhancer–gene target in-
teractions, thus providing novel functionality in the
context of overrepresentation and enrichment anal-
yses. We specifically emphasize the use of the inte-
grated protein–protein interaction network as a scaf-
fold for network inferences, present topological char-
acteristics of the network and discuss strengths and
shortcomings of such approaches.

INTRODUCTION

Modern biomedical experiments, for example the genera-
tion of cell atlases (1) or patient-derived disease-associated
data (2), rely on high-throughput experiments such as se-

quencing, proteomics or genome-wide methylation exper-
iments and agglomerate heterogeneous information from
these diverse experiments. An important step in these work-
flows is the integration and interpretation of the data in the
context of biological pathways and networks.

Biological networks typically consist of molecular inter-
actions that have been experimentally measured by pro-
teomics or genetic technologies, reported in the literature
and assembled in interaction databases (3). However, such
databases are often complementary in terms of content and
tend to focus on one or a few types of interactions, while
in biological processes all the different interaction types
coexist in the cell. In order to obtain a global interaction
map that reflects cell biology as comprehensively as possi-
ble, subject to the currently available interaction knowledge,
many available interaction resources have to be used in par-
allel. Furthermore, it has been shown that the choice of a
pathway database for analyzing a given dataset impacts re-
sults of gene enrichment analyses (4), which necessitates in-
tegration across such resources.

To this end, we have developed and maintained (since
2009) the ConsensusPathDB database that integrates dif-
ferent types of interactions from numerous resources into
a seamless global network (5,6). In this network, phys-
ical entities (genes, proteins, protein complexes, metabo-
lites, drugs, etc.) from different interaction sources are
matched based on their accession numbers and interac-
tions are matched based on the physical entities involved
to reduce data redundancy. In ConsensusPathDB, we have
agglomerated the content of 31 major public repositories
on human molecular interactions of heterogeneous types
as well as biochemical pathways resulting in one of the
largest interactome maps available. Furthermore, separate
instances of the database integrate the content of 16 mouse
and 14 yeast interaction repositories, respectively. The web
interface enables the research community to search and
visualize complex subnetworks as well as to carry out
overrepresentation/enrichment analysis and network anal-
ysis of lists of proteins, genes and metabolites (e.g. from
large-scale experiments) in order to interpret experimen-
tal data. The integrated resources can be downloaded and
used for network analysis, e.g. for network propagation-
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Table 1. Growth figures describing the increase in content of human interactions with respect to the last database publication in 2013 (5)

Human

Interaction type 2013: version 25 (# interactions) 2022: version 35 (# interactions)
Content growth
(# interactions)

Protein–protein 155 855 616 304 460 449
Signaling or metabolic 20 682 25 046 4364
Gene regulatory 5658 18 912 13 254
Genetic 265 7936 7671
Drug–target 33 081 191 650 158 569
Gene target sets 2013: version 25 (# sets) 2022: version 35 (# sets) Content growth (# sets)
Pathways 4601 5578 977
Protein complex-derived sets 39 685 244 987 205 302
miRNA–gene target 0 5474 5474
Transcription factor–gene target 0 800 800
Enhancer–gene target setsa 0 217 790 217 790

It should be noted that enhancer–gene target sets are highly redundant across different cell types.

based methods. For example, the integrated protein–protein
interaction (PPI) network of ConsensusPathDB has been
recently benchmarked as one of the top-performing net-
works for disease gene identification among 21 compara-
ble resources (7) and has been used for identifying network
modules for monitoring drug actions across heterogeneous
experiments (8).

In this 2022 update of ConsensusPathDB, we describe
the novel content and functionality recently added to the
database and the web interface, respectively. Notably, ad-
ditional regulatory gene sets have been added to the over-
representation and enrichment functionality comprising
microRNA–, transcription factor– and enhancer–gene tar-
get sets, adding to the previously available options of us-
ing curated pathways, Gene Ontology (9) categories, net-
work neighborhoods and protein complexes. Furthermore,
we describe and characterize the new integrated PPI net-
work that now comprises 522 618 human binary, physical
interactions as a scaffold for network propagation anal-
yses. ConsensusPathDB is freely accessible under http://
consensuspathdb.org.

CONSENSUSPATHDB CONTENT UPDATE 2022

Source databases and types of molecular interactions

Since our last report on ConsensusPathDB (5), the database
has grown significantly in content (see Table 1 for hu-
man resources and Supplementary Table S1 for mouse
and yeast resources). While the number of interaction
source databases integrated in ConsensusPathDB stayed
fairly constant (with the exception of DrugBank dropping
out due to new access restrictions), its overall content in-
creased significantly. Since the last report (5), the num-
ber of unique interactions stored in ConsensusPathDB has
grown from 215 541 (version 25) to 859 848 human in-
teractions in the current version 35 (+299%) mainly be-
cause the content of the included resources has grown. For
human interactions, the integrated resources comprise 31
databases: BIND (10), BioCarta (11), Biogrid (12), CO-
RUM (13), ChEMBL (14), DIP (15), EHMN (16), HPRD
(17), HumanCyc (18), INOH (19), InnateDB (20), IntAct
(21), KEGG (22), MINT (23), MIPS-MPPI (24), Ma-
trixDB (25), NetPath (26), PDB (27), PDZBase (28), PID

(29), PIGDB (30), PINdb (31), PharmGKB (32), Phospho-
POINT (33), PhosphoSitePlus (34), Reactome (35), SM-
PDB (36), SignaLink (37), SPIKE (38), TTD (39) and
WikiPathways (40).

A major motivation for providing a meta-resource for
molecular interactions is the complementarity of the differ-
ent source databases. Analysis of the total number of source
databases per interaction in ConsensusPathDB shows that
the respective distribution is right-skewed, with most of
the interactions (83%) originating from a single source
database (Figure 1A). These results show that currently
available databases are highly complementary and, impor-
tantly, that the integrated interaction map present in Con-
sensusPathDB has not saturated yet. The proportion of
‘unique’ interactions has even slightly increased compared
to the 2013 version 25 of ConsensusPathDB where we ob-
served 75% single-source interactions. This underlines the
continued need for integration of interaction data in or-
der to generate more complete interactomes. Most of the
integrated interactions are protein interactions (72%) in
the form of protein–protein binary interactions and protein
complexes followed by drug–target interactions (22%) and
biochemical reactions (3%) covering metabolic and signal-
ing processes.

The individual databases have variable contribution
to the overall content of ConsensusPathDB. The five
largest resources are Biogrid (495 966 interactions), IntAct
(162 374), ChEMBL (143 258), TTD (43 878) and HPRD
(40 484). Also, the contribution to the novel interactions
is largely driven by a few databases (Supplementary Fig-
ure S1), namely Biogrid (418 831 novel interactions; 53%
of all novel interactions), IntAct (146 989; 19%), ChEMBL
(143 258; 18%) and TTD (40 621; 5%), which account for
95% of all novel interactions.

In addition to molecular interactions, ConsensusPathDB
contains 5578 pre-annotated pathway gene sets from 12
resources (KEGG, Reactome, WikiPathways, BioCarta,
EHMN, HumanCyc, INOH, NetPath, PID, PharmGKB,
SMPDB and SignaLink) available for overrepresentation
and enrichment analyses. Complementarity of the annota-
tion is also observable in this pathway content. For example,
the gene sets for apoptosis signaling––one of the best stud-
ied pathways that has high relevance for cancer––provided
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Figure 1. ConsensusPathDB content. (A) Number of interactions (Y-axis) shared by number of source databases (X-axis). The rightmost tail of the
histogram is magnified. The colors within each bar represent the different interaction types. (B) Venn diagram of overlapping gene sets for the apop-
tosis pathway annotated by three prominent pathway databases: KEGG (pathway identifier: hsa04210), Reactome (R-HSA-109581) and WikiPathways
(WP254). (C) Interaction display for the TOP1 (DNA topoisomerase I) gene. Binary interactions are scored for confidence and the confidence value is dis-
played by a traffic light symbol. Each interaction assigns a specific role to the molecule under study (e.g. ‘I’ interactor, ‘T’ target) and has an external link
to the annotating source database. Interactions can be selected for further visualization. (D) Visualization of selected interactions of TOP1. Interactions
are displayed with colored nodes indicating the interaction type and interacting molecules are displayed with colored squares indicating their type. Each
connection represents a source database that has annotated the interaction. Clicking on each interaction (or molecule) displays further information about
the interaction, the confidence score and supporting publications.
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by three prominent pathway databases [KEGG (hsa04210),
Reactome (R-HSA-109581) and WikiPathways (WP254)]
differ significantly, with 74% of the genes being unique to
one of the databases, whereas only 13% of the genes are
common for all three gene sets (Figure 1B). This ‘annota-
tion bias’ can interfere with gene set enrichment analyses
(4) and justifies using a variety of resources in such analysis
workflows rather than only a single one.

Integrative view on heterogeneous molecular interactions

The user can explore all integrated interactions of a
molecule of interest in ConsensusPathDB through the web
interface in several steps. In the first step, the molecule of
interest can be retrieved by typing an identifier or molecule
name. It is recommended to use official symbols, or UniProt
or Ensembl identifiers in case of genes or proteins and
KEGG, ChEBI or PubChem identifiers in the case of
metabolites or drugs, since these are the basic annotation
types of ConsensusPathDB. The database returns all entries
that match with the search term. After selecting an entry,
all interactions are listed with the gene/protein/metabolite
of interest (Figure 1C). In case of binary PPIs, a confi-
dence value is provided as a ‘traffic light’ icon in order to
help structuring and reviewing the output. In the third step,
interactions can be selected and visualized, enabling inte-
grated views across heterogeneous interaction types and in-
teraction resources (Figure 1D).

ADDITION OF NOVEL REGULATORY GENE SETS

Overrepresentation and enrichment analyses

Among the most widely used features of ConsensusPathDB
are to perform enrichment analyses of user-defined lists
of genes/proteins and metabolites with respect to pre-
annotated pathways, GO categories, protein complexes and
network neighborhoods as defined by the integrated PPI
network. Overrepresentation analysis requires a simple list
of gene/protein, metabolite, or identifiers and is computed
with Fisher’s exact test. Enrichment analysis requires in ad-
dition numerical data from two different states for compar-
ison (e.g. disease versus healthy state) and is computed with
Wilcoxon’s rank sum test (41).

In this 2022 update, the basis for overrepresentation and
enrichment analysis functionality has been extended to in-
clude regulatory gene sets in the form of microRNA–, tran-
scription factor– and enhancer–gene target sets. As epige-
netic studies and studies on post-transcriptional regulation
have become frequent, we have thus addressed the need for
analysis tools for such data based on gene sets defined by
regulatory relationships in the current ConsensusPathDB
version. Target gene sets were included from three different
microRNA databases [TargetScan version 7.2 (42), miR-
TarBase version 8.0 (43) and miRDB version 6.0 (44)], one
transcription factor–target interaction resource [TRRUST
version 2 (45)] and one enhancer–target interaction resource
[EnhancerAtlas version 2.0 (46)].

Use case 1: exploring post-transcriptional regulation for car-
diotoxicity

Recently, we have analyzed the effects of four anti-
cancer therapies (doxorubicin, epirubicin, idarubicin and
daunorubicin) in a human 3D cardiac microtissue model
and identified a network of 142 proteins (Supplementary
Data S1) that revealed common dynamic changes as mea-
sured with transcriptomic and proteomic time course ex-
periments (8). It is well known that anthracyclines induce
cardiotoxicity in patients, so we explored the Consensus-
PathDB for information on disease pathways and metabolic
processes that might be altered after drug treatment. Path-
way overrepresentation with the set of 142 genes reveals
multiple pathways related to cardiac diseases (Supplemen-
tary Data S1) such as ‘diabetic cardiomyopathy’ (KEGG
hsa05415, Q = 8.02e−08) and ‘striated muscle contraction’
(Reactome R-HSA-390522, Q = 172e−07), among others,
as well as metabolic pathways related to ‘electron trans-
port’ (Reactome R-HSA-611105, Q = 721e−07; WikiPath-
ways WP111, Q = 168e−05) and the ‘TCA cycle’ (Reac-
tome R-HSA-1428517, Q = 887e−14; KEGG hsa00020,
Q = 154e−10; EHMN TCA cycle, Q = 802e−08; Hu-
manCyc PWY66-398, Q = 106e−07; WikiPathways WP78,
Q = 146e−06) that account for mitochondrial dysfunction
and relevant cardiotoxicity response pathways (47).

In addition to such pathway-based analyses, the Consen-
susPathDB 2022 offers the analysis of microRNA–gene tar-
get sets. Overrepresentation analysis reveals 16 significantly
enriched microRNA target sets (Supplementary Data S1;
Q < 0.05). The top three candidates are those regulated
by miR-615-3p, miR1-3p and miR92a-3p (Q = 0.00098)
annotated from miRTarBase version 8.0. Literature evi-
dence supports the role of these microRNAs for cardiac
function and toxicity. For example, deletion of miR92a-
3p has been reported to exert cardioprotective effects in
mice (48). Most evidence has been reported for miR1-
3p: in a recent study on human patients, it was found
that different forms of cardiomyopathies had typical mi-
croRNA patterns and that miR1-3p was specific for hy-
pertrophic cardiomyopathy where it was also correlating
with clinical parameters such as left ventricular ejection
function (49). More specifically, miR1-3p has been pro-
posed as a biomarker for doxorubicin-induced cardiotox-
icity after treatment of breast cancer patients, which ac-
counts for the origin of the selected gene targets in the in
vitro microtissue model (50). This use case exemplifies that
the newly integrated gene sets can expand the knowledge
from transcriptomics/proteomics-derived gene lists to post-
transcriptional regulatory information.

Use case 2: tissue-specific genes and transcription factors

Tissue-specific processes are often regulated by specific
transcription factors and through the specific connections
between transcription factors and their gene targets (51).
Thus, enrichment analysis of transcription factor–target
sets evaluated against user gene lists can provide valu-
able insights into regulatory mechanisms. We exemplified
this by downloading the 100 most highly expressed genes
across 226 liver samples as provided by the GTEx Con-
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sortium (52). Overrepresentation analysis with Consensus-
PathDB reveals nine transcription factors significantly en-
riched by the top liver-expressed genes (Supplementary
Data S2; Q < 0.05): NR2F1, HNF4A, CEBPB, NR2F6,
STAT3, HNF1A, CEBPA, PPARGC1A and TFCP2. All
detected factors play key roles in liver development and
metabolism, for example hepatic nuclear factors, HNF1A
and HNF4A (53), in liver disease pathology such as STAT3
(54) or in liver regeneration such as CEBPA and CEBPB
(55). We conclude that, combining expression-based gene
lists with transcription factor–target sets, can generate valu-
able hypotheses on transcriptional regulation of the system
under study.

Use case 3: putative enhancer regulation of the human cancer
signaling network

ConsensusPathDB offers the possibility to interrogate lists
of genes and proteins against enhancer–target gene sets de-
rived from the EnhancerAtlas 2.0 database (46) that pro-
vides such information for 110 human cell lines. Enhancers
are known to impact signaling pathways; for example, it
has been shown that in cancer cells superenhancers pro-
mote oncogene expression and thus mediate dysregulation
of several signaling pathways (56). In order to explore pu-
tative enhancer regulation of the cancer signaling network,
we used 531 genes contained in the KEGG ‘Pathways in
cancer’ network (ID 05200 N). Overrepresentation analy-
sis yields 959 enriched enhancer–target sets (Supplemen-
tary Data S3; Q < 0.05). The corresponding enhancers are
highly redundant across the different cell lines. Combining
enhancers with the same gene targets yields 17 enhancer
clusters that regulate 61 cancer genes. For example, IL4 (in-
terleukin 4), IL5 and IL13 genes are part of enhancer–target
sets on chromosome 5 in many different cell lines. The genes
are cytokines that are expressed in T helper type 2 cells and
they mediate the escape of tumor cells in chronic infection.
It has been shown that the expression of these genes is regu-
lated by a genomic enhancer region that is located on chro-
mosome 5 in the 3′ region of the RAD50 gene, which cor-
responds to the predicted enhancer regions in the different
cell lines (57).

In order to cross-validate these 17 enhancer clusters and
their role in cancer, we compared them against a recent pan-
cancer analysis of enhancer expression from The Cancer
Genome Atlas (TCGA) Consortium (58). In this study, en-
hancer patient gene expression was identified that has prog-
nostic value for survival and 4 out of 17 enhancer clusters
identified with the overrepresentation analysis indeed con-
tained prognostic enhancers from the TCGA study. Thus,
enhancer–target set enrichment can explore regulatory in-
formation inherent in user gene lists.

INTEGRATING PPIS FOR NETWORK-BASED INFER-
ENCES

PPI confidence assessment and network characterization

ConsensusPathDB contains a large integrated PPI network
comprising 616 304 human interactions (Table 1). Of these,
522 618 are binary interactions composed of exactly two

interaction partners; the rest are self-interactions or com-
plex interactions comprising three or more partners. Sim-
ilar to previous versions, all binary interactions have a nu-
merical score assigned (range [0, 1]; Figure 2A). Scores have
been computed by integrating several annotation-based and
topology-based measures that quantify the confidence asso-
ciated with each given interaction (59). In the web interface,
these scores are additionally visualized with a ‘traffic light’
icon (green: high confidence >0.95; orange: moderate con-
fidence [0.5–0.95]; red: low confidence <0.5).

The integrated PPI network covers 19 610 different hu-
man proteins and consists of well-known hubs with very
high node degrees >1000 (e.g. MYC with 1932 interactions
or TP53 with 1281 interactions; Table 2) and a large num-
ber of 6601 proteins with <10 interactions. We analyzed
this network further using the network analysis function
(60) within the Cytoscape software (61). As typical for bio-
logical networks, the node degree follows a power law and
exhibits a small-world property with a median shortest path
of 3 connecting two proteins (Figure 2B and C).

The PPI as a resource for network propagation

Network propagation is a theoretical framework for net-
work analyses. It describes a set of analysis tools that use
experimental data such as genotype data, expression data
or categorical data to initialize node weights and subse-
quently distribute these weights simultaneously to the net-
work neighborhoods of the nodes (62). This process con-
verges to a steady state and leads to a re-ranking of the origi-
nal network nodes. This re-ranking typically amplifies func-
tional associations and is used to identify hotspot subnet-
works that agglomerate much of the experimental weights
and can be associated with specific biological pathways or
parts thereof. Typical applications are to draw inference on
genotype–phenotype relations from mutation data (63) or
to identify functional networks from gene and protein ex-
pression data (64). The integrated ConsensusPathDB PPI
network is available from the download section of the web
server. It has been used in the past as a resource for net-
work propagation (8), and it has been found as one of the
best-performing networks for disease gene identification in
an independent benchmark comparison among 21 publicly
available networks (7).

Degree bias in PPI networks

It should be noted that the ConsensusPathDB PPI net-
work, as many others, contains well-studied protein as hubs
(Table 2), which may interfere with network inferences
that are based on degree distributions because hubs typ-
ically gain a lot of weight in the propagation process be-
cause they are highly connected. There are two main biases
in PPI networks associated with such hubs: experimental
bias and annotation bias. Experimental bias is induced by
the way interactions are measured, e.g. Y2H (65), because
these experiments generate star-like structures in interac-
tion graphs with the bait protein as center and prey proteins
being connected with the center hub but usually not among
themselves. Annotation bias is introduced by the trend to
study interactions of already well-studied proteins, which
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Figure 2. PPI network characteristics. (A) Histogram of confidence scores for the 522 618 human binary interactions in ConsensusPathDB. X-axis:
confidence score in bins of 0.1; Y-axis: number of interactions. (B) Histogram of shortest path lengths connecting pairs of nodes in the PPI. (C) Node
degree distribution of the PPI in log–log scale. X-axis: node degree; Y-axis: number of nodes. Graphs (B) and (C) were generated with the network analysis
function (60) within the Cytoscape software (61). (D) Scatter plot of degree (X-axis) and core (Y-axis) of all 19 610 nodes in the PPI. (E) Box plot of node
core distribution of 3347 recently annotated cancer genes from the Network of Cancer Genes, NCG version 7 (orange) and 3347 randomly selected genes.
The P-value corresponds to the unpaired Wilcoxon’s rank sum test.
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Table 2. Top 30 hub proteins in ConsensusPathDB 2022

Protein
Gene

symbol
Node
degree

Node
core

Cancer gene
(NCG V7)

PKHA4 HUMAN PLEKHA4 2932 92 No
A4 HUMAN APP 2554 92 No
ESR2 HUMAN ESR2 2296 92 No
ESR1 HUMAN ESR1 2200 92 Yes
NTRK1 HUMAN NTRK1 1958 92 Yes
MYC HUMAN MYC 1932 92 Yes
KIF14 HUMAN KIF14 1707 92 No
H4 HUMAN H4C1 1685 92 No
JUN HUMAN JUN 1580 92 Yes
EGFR HUMAN EGFR 1436 92 Yes
CTRO HUMAN CIT 1383 92 No
NR2C2 HUMAN NR2C2 1358 92 No
RECQ4 HUMAN RECQL4 1353 92 Yes
BRD4 HUMAN BRD4 1345 92 Yes
U5S1 HUMAN EFTUD2 1345 92 Yes
RNF4 HUMAN RNF4 1331 92 Yes
BIRC3 HUMAN BIRC3 1324 92 Yes
UBC HUMAN UBC 1324 92 No
XPO1 HUMAN XPO1 1310 92 Yes
P53 HUMAN TP53 1281 92 Yes
EGLN3 HUMAN EGLN3 1279 92 No
CUL3 HUMAN CUL3 1229 92 Yes
BRCA1 HUMAN BRCA1 1096 92 Yes
TIF1B HUMAN TRIM28 1085 92 Yes
GRB2 HUMAN GRB2 1056 92 Yes
HD HUMAN HTT 1036 92 No
PHB HUMAN PHB 1017 92 No
KI20A HUMAN KIF20A 999 92 No
HSP7C HUMAN HSPA8 994 92 No
CSN5 HUMAN COPS5 985 92 No

attributes additional links to these hubs and leads to bias in
the degree distribution of the PPI (66).

Node degree bias in network propagation can be reduced
by either better controlling the hubs in the propagation step
or taking into account more robust metrics in the re-ranking
process. For this purpose, we have developed the network
propagation method NetCore (67). NetCore uses the node
core as an alternative node property instead of node degree
to conduct the propagation of the experimental weights,
which has been found to be more robust against the influ-
ence of hubs. Coreness, in contrast to degree, reflects the
connectedness of the entire node environment rather than
the center hub and thus downweights star-like structures. It
is used for identification of influential nodes, i.e. nodes in
the core of a network, in contrast to nodes in the periphery
of the network. It has been shown that degree and core can
be viewed mathematically as start and convergence states of
a series of node operators called H-indices (68).

Although node core is more robust than node degree,
both metrics are correlated (Figure 2D). In fact, it can be
seen that most hubs (Table 2) are in the very inner core of
the network and that higher core genes are typically disease
genes that are well annotated. To exemplify this, we have
investigated the core distribution of 3347 cancer genes and
putative cancer genes as identified recently with the network
of cancer genes, NCG version 7 (69). This core distribution
is significantly higher than that of 3347 randomly chosen
genes (Figure 2E; P = 3.25e−55), which reflects the fact that
cancer genes are very influential in the PPI network, on the
one hand, because they are intensively studied and, on the

other hand, because they are highly connected and partici-
pate at multiple cellular processes.

CONCLUSION

Through the integration of 31 human public
interaction/pathway resources, ConsensusPathDB as-
sembles one of the most comprehensive available maps
of human interactions and pathways. Viewing and an-
alyzing molecular data in the context of heterogeneous
interactions allows detecting cellular mechanisms across
annotation domains, which is essential in the interpretation
of contemporary types of complex high-throughput data.
The content increase updates the system with the most
widely used interaction databases and the inclusion of
regulatory gene sets for data interpretation opens a novel
path for functional analysis and interpretation of gene lists.
Additionally, the PPI network provides a valuable resource
for network biology.

DATA AVAILABILITY

ConsensusPathDB is freely accessible through the web
server at http://consensuspathdb.org. All agglomerated in-
teractions and pathway gene sets can be downloaded in the
download section.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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