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Background: Congenital sucrase-isomaltase deficiency (CSID) is an autosomal

recessive inherited disease that leads to the maldigestion of disaccharides and is

associated with mutation of the sucrase-isomaltase (SI) gene. Cases of CSID are not

very prevalent in China or worldwide but are gradually being identified and reported.

Case Presentation: We report a case involving a 14-month-old male who presented

with failure to thrive that had begun after food diversification and was admitted for chronic

diarrhea. We used a whole-exome sequencing (WES) approach to identify mutations in

this patient’s genome. WES revealed two novel heterozygous mutations in the SI gene,

c.2626C > T (p.Q876∗) and c.2872C > T (p.R958C), which were confirmed by Sanger

DNA sequencing. With a strict sucrose- and starch-restricted diet, the patient’s diarrhea

was resolved, and he began to gain weight.

Conclusions: We report a case of novel variants in the SI gene that caused CSID. This

report provides valuable information for the clinical field, especially in China.

Keywords: congenital, sucrase-isomaltase deficiency, mutation, gene, case report

INTRODUCTION

Congenital sucrase-isomaltase deficiency (CSID, OMIM #222900) was first reported in 1960 by
Weijers et al. (1). This deficiency has been defined as an autosomal recessive disease that is
characterized by loss of sucrase or sucrase-isomaltase (SI) activities (2). Upon the ingestion of
disaccharides and oligosaccharides, osmotic-fermentative diarrhea occurs due to the failure of
sucrose breakdown into fructose and glucose. As a result, patients with CSID have chronic diarrhea,
abdominal pain, and abdominal distension, leading to failure to thrive. The estimated prevalence of
CSID in North America and Europe ranges from 0.05 to 0.2% (3), while in the Inuit population of
Greenland, it ranges from 5 to 10% (4). However, the prevalence of CSID in the Chinese population
is unknown (5).

Currently, the confirmation of complete or near-complete absence of sucrase and/or isomaltase
activities in biopsy tissue from the small bowel is the diagnostic gold standard for CSID (6). This
approach is straightforward but invasive and is difficult to implement in young patients. Lifelong
sucrose restriction is an effective therapy for CSID patients (7).

At the genetic level, this condition results from compound heterozygous or homozygous
mutations in the sucrase-isomaltase gene (SI, OMIM #609845), which is located on chromosome
3q26.1 (7). This locus encodes a small intestine brush-border membrane disaccharidase that is
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required for the hydrolysis of some starches and sucrose. The
first identification of a mutation in the SI gene associated with
CSID was described by Ouwendijk et al. (8). Previous reports
have shown associations of SI mutations with irritable bowel
syndrome (9). Genetic testing of the SI gene for this condition
is now clinically available. To date, more than 40 mutations of
the SI gene that are associated with CSID have been identified
(10). Here, we report a case of CSID with two novel variants of
the SI gene.

CASE PRESENTATION

The patient was a 14-month-oldmale admitted to our hospital for
chronic diarrhea, abdominal distention, and failure to thrive. He
was the second child of healthy and non-consanguineous parents.
Both his father and brother had a history of frequent episodes of
diarrhea in their youth.

Abbreviations: CSID, congenital sucrase-isomaltase deficiency; SI, sucrase-

isomaltase; kg, kilogram; IgE, immunoglobulin E; ACMG, American College of

Medical Genetics and Genomics.

FIGURE 1 | Abdominal radiographs suggested intestinal motility changes without any signs of intestinal obstruction.

The patient was born at 39 weeks with a height of 50 cm,
and he weighed approximately 3 kg (between the age- and sex-
specific 15–25th percentile). He was breastfed at birth and
showed ordinary growth until 3 months old (weight: 6 kg, at
the age- and sex-specific 15–25th percentile), at which time food
diversification began with goat milk, rice paste, and so on. After
this dietary change for several days, he began to have seven
to eight episodes per day of non-bloody watery stools and had
poor weight gain. Formula changes, including deep hydrolysis
formulas and amino acid formulas, were attempted without the
patient showing signs of improvement. He was admitted to more
than three hospitals at the ages of 6 months, 9 months, and
12 months, but treatment for a cow’s milk protein allergy did
not work.

A physical examination in our hospital suggested an alert
infant with a severe reduction in subcutaneous fat. He weighed
5.6 kg (below the age- and sex-specific 3rd percentile) and had
not gained weight for 11 months. He could not sit, crawl, or walk
by himself.

The results of a laboratory examination showed that the
patient’s blood count levels, C-reactive protein levels, liver
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FIGURE 2 | Heterozygous SI mutations: (A) A non-sense mutation c.2626C > T (p.Q876*) and (B) missense mutation c.2872C > T (p.R958C) were identified in the

patient (upper panels), while healthy control individuals had the wild-type sequence (lower panels). (C) The structure of the SI protein (NP_001032.2), depicting the

functional domains, 40 reported mutations, and two mutations in this case. The mutations identified in this study are marked in red (novel), and previously reported

mutations are marked in black. AA, amino acids.

function, renal function and other blood or stool tests were
normal. Imageology examination that included abdominal
radiographs suggested intestinal motility changes without any
signs of intestinal obstruction (Figure 1).

Although his parents did not consent to an invasive
biopsy of small bowel tissue, they agreed to whole-exome
sequencing (WES) to identify their son’s underlying
genetic mutations. A genetic study was carried out after
approval from the Clinical Research Ethics Committee.

Informed consent was obtained. His parents also received
genetic testing.

As a result, two novel heterozygous mutations, c.2626C > T
(p.Q876∗) (inherited from his father) and c.2872C>T (p.R958C)
(inherited from his mother), in the SI gene were identified and
confirmed by Sanger sequencing (Figures 2A,B), leading to the
diagnosis of CSID.

This patient was given a strict sucrose- and starch-restricted
diet. Without sucrose and starch, the patient’s diarrhea resolved.
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TABLE 1 | Genotypic and phenotypic features of all reported patients with CSID and SI mutations.

Genotypic features Clinical manifestations

Case (reference) Nt(AA) change

(NM_001041.4)

Mutation

type

Zygotic

type

Domain of

mutation

Geographical

origin

Sex (F/M) Diarrhea Onset of

diarrhea

Failure to

thrive

Enzyme activities

Sucrase Isomaltase

19/60 29/29 28/28

Present c.2626C > T (p.Q876*) Non-sense Compound

heterozygote

Isomaltase Asia M + 3 months + NA NA

c.2872C > T (p.R958C) Missense Isomaltase NA NA

Marcadier et al. (16) c.273_274delAG

(p.Gly92Leufs*8)

Frameshift Homozygote Stalk America F + 9 days + NA NA

Gericke et al. (6) c.315G > T (p.Trp105Cys) Missense Compound

heterozygote

Stalk Europe NA + NA + Reduced Reduced

p.Trp931* Non-sense Isomaltase Inactive Inactive

Spodsberg et al. (13) c.350A > G (p.Gln117Arg) Missense Homozygote Isomaltase Europe NA + NA + Reduced Reduced

Gericke et al. (6) c.416T > A (Phe139Tyr) Missense NA Isomaltase Europe NA + NA + Normal Normal

Capalbo et al. (17) c.853G > T (p.Glu285*) Non-sense Heterozygote Isomaltase America F NA NA NA NA NA

Capalbo et al. (17) c.853G > T (p.Glu285*) Non-sense Heterozygote Isomaltase America M NA NA NA NA NA

Gericke et al. (6) p.Gln307Try Missense NA Isomaltase Europe NA + NA + Normal Reduced

Jacob et al. (12) c.1021T > C

(p.Leu340Pro)

Missense Homozygote Isomaltase Europe NA + NA + Normal Normal

Gericke et al. (6) c.1607A > T

(p.Asp536Val)

Missense Compound

heterozygote

Isomaltase Europe NA + NA + Reduced Inactive

c.1730T > G

(p.Val577Gly)

Missense Isomaltase Inactive Inactive

Sander et al. (2) c.1648delC Frameshift Compound

heterozygote

Isomaltase Europe M + NA + NA NA

c.4099A > G

(p.Arg1367Gly)

Missense Sucrase NA NA

Sander et al. (2) c.26887+1G > C Splicing Compound

heterozygote

Isomaltase Europe NA + NA + Inactive Inactive

c.1780T > C

(p.Ser594Pro)

Missense Isomaltase Inactive Inactive

Sander et al. (2) c.26887+1G > C Splicing Compound

heterozygote

Isomaltase Europe NA + NA + Inactive Inactive

c.1780T > C

(p.Ser594Pro)

Missense Isomaltase Inactive Inactive

Sander et al. (2) c.1730T > G

(p.Val577Gly)

Missense Compound

heterozygote

Isomaltase Europe M + NA + Inactive Inactive

c.3218G > A

(p.Gly1073Asp)

Missense Sucrase Inactive Inactive

(Continued)
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TABLE 1 | Continued

Genotypic features Clinical manifestations

Case (reference) Nt(AA) change

(NM_001041.4)

Mutation

type

Zygotic

type

Domain of

mutation

Geographical

origin

Sex (F/M) Diarrhea Onset of

diarrhea

Failure to

thrive

Enzyme activities

Sucrase Isomaltase

19/60 29/29 28/28

Sander et al. (2) c.1730T > G

(p.Val577Gly)

Missense Compound

heterozygote

Isomaltase Europe M + NA + Inactive Inactive

c.3218G >

A(p.Gly1073Asp)

Missense Sucrase Inactive Inactive

Capalbo et al. (17) c.1730T > G

(p.Val577Gly)

Missense Heterozygote Isomaltase America F(5cases) NA NA NA NA NA

Capalbo et al. (17) c.1730T > G

(p.Val577Gly)

Missense Heterozygote Isomaltase America M(18cases) NA NA NA NA NA

Ceyhan-Birsoy et al.

(18)

c.1730T > G

(p.Val577Gly)

Missense NA Isomaltase America NA NA NA NA NA NA

Gericke et al. (6) c.1780T > C

(p.Ser594Pro)

Missense NA Isomaltase Europe NA + NA + NA NA

Ritz et al. (14) c.1859T > C

(p.Leu620Pro)

Missense Homozygote Isomaltase Europe NA + NA + Inactive Inactive

Keiser et al. (15) c.1903T > C

(p.Cys635Arg)

Missense Homozygote Isomaltase Europe M + NA + Reduced Reduced

Hou et al. (20) c.1936delT (p.Cys646fs) Frameshift Heterozygote Isomaltase America NA NA NA NA NA NA

Sander et al. (2) c.2080A > C

(p.Thr694Pro)

Missense Heterozygote Isomaltase Europe NA + NA + NA NA

Ceyhan-Birsoy et al.

(18)

c.2159+2T > G Splicing NA Isomaltase America NA NA NA NA NA NA

Gericke et al. (6) p.Leu741Pro Missense Compound

heterozygote

Isomaltase Europe NA + NA + Inactive Inactive

c.5234T > G

(p.Phe1745Cys)

Missense Sucrase Inactive Inactive

Wang et al. (21) c.2311delA Frameshift Compound

heterozygote

Isomaltase Asia F + NA NA NA NA

c.5056C > T

(p.Arg1686Cys)

Missense Sucrase NA NA

Cheema et al. (19) c.2401G > T (p.Glu801*) Non-sense NA Isomaltase Asia NA NA NA NA NA NA

Gericke et al. (6) c.2789A > G

(p.Gln930Arg)

Missense Compound

heterozygote

Isomaltase Europe NA + NA + Normal Normal

p.Arg1544Cys Missense Sucrase Reduced Reduced

Gericke et al. (6) p.Trp931Arg Missense Compound

heterozygote

Isomaltase Europe NA + NA + Reduced Reduced

p.Thr1606Ile Missense Sucrase Reduced Reduced

(Continued)
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TABLE 1 | Continued

Genotypic features Clinical manifestations

Case (reference) Nt(AA) change

(NM_001041.4)

Mutation

type

Zygotic

type

Domain of

mutation

Geographical

origin

Sex (F/M) Diarrhea Onset of

diarrhea

Failure to

thrive

Enzyme activities

Sucrase Isomaltase

19/60 29/29 28/28

Capalbo et al. (17) c.3186_3187delTT

(p.Tyr1063fs)

Frameshift Heterozygote Sucrase America F NA NA NA NA NA

Capalbo et al. (17) c.3186_3187delTT

(p.Tyr1063fs)

Frameshift Heterozygote Sucrase America M (8cases) NA NA NA NA NA

Sander et al. (2) c.3218G > A

(p.Gly1073Asp)

Missense Heterozygote Sucrase Europe NA + NA + Inactive Inactive

Capalbo et al. (17) c.3218G >

A(p.Gly1073Asp)

Missense Heterozygote Sucrase America F (4cases) NA NA NA NA NA

Capalbo et al. (17) c.3218G >

A(p.Gly1073Asp)

Missense Heterozygote Sucrase America M (18cases) NA NA NA NA NA

Ceyhan-Birsoy et al.

(18)

c.3218G >

A(p.Gly1073Asp)

Missense NA Sucrase America NA NA NA NA NA NA

Hou et al. (20) c.3229C > T (p.Arg1077*) Non-sense Heterozygote Sucrase America NA NA NA NA NA NA

Hou et al. (20) c.3266G > A (p.Trp1089*) Non-sense Heterozygote Sucrase America NA NA NA NA NA NA

Ouwendijk et al. (8) c.3293A >

C(p.Gln1098Pro)

Missense Homozygote Sucrase Europe NA + NA + Inactive Inactive

Capalbo et al. (17) c.3370C > T (p.Arg1124*) Non-sense Heterozygote Sucrase America F (2cases) NA NA NA NA NA

Capalbo et al. (17) c.3370C > T (p.Arg1124*) Non-sense Heterozygote Sucrase America M (6cases) NA NA NA NA NA

Gericke et al. (6) c.3370C > T (p.Arg1124*) Non-sense Compound

heterozygote

Sucrase Europe NA + NA + Inactive Inactive

c.3218G > A

(p.Gly1073Asp)

Missense Sucrase Inactive Inactive

Capalbo et al. (17) c.3586_3587delAT

(p.Met1196fs)

Frameshift Heterozygote Sucrase America F NA NA NA NA NA

Capalbo et al. (17) c.3586_3587delAT

(p.Met1196fs)

Frameshift Heterozygote Sucrase America M (2cases) NA NA NA NA NA

Sander et al. (2) c.3686G >

A(p.Cys1229Tyr)

Missense Compound

heterozygote

Sucrase Europe F + NA + Inactive Reduced

c.5234T >

G(p.Phe1745Cys)

Missense Sucrase Inactive Inactive

Sander et al. (2) c.3686G >

A(p.Cys1229Tyr)

Missense Heterozygote Sucrase Europe F + NA + Inactive Reduced

Naim et al. (7) c.4427G > C

(p.Gly1476Ala)

Missense NA Sucrase NA NA NA NA NA NA NA

Gericke et al. (6) c.4592G > A

(p.Cys1531Tyr)

Missense Compound

heterozygote

Sucrase Europe NA + NA + Inactive Reduced

c.3218G > A

(p.Gly1073Asp)

Missense Sucrase Inactive Inactive

(Continued)
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Follow-up revealed that the patient grew and that gradually
caught up in weight with other children his age. Three months
later (at 17 months old), he weighed 7.6 kg (below the age-
and sex-specific 3rd percentile); 1 year later (at 2 years and 2
months old), he weighed 10.5 kg (below the age- and sex-specific
3rd percentile); and 3 years later (at 4 years and 2 months
old), he weighed 15 kg (at the age- and sex-specific 15–25th
percentile) and was 104 cm tall (at the age- and sex-specific 25–
50th percentile). Furthermore, he had learned to sit, crawl, walk,
and run (gradually catching up with other children his age),
which he could not do before. These observations suggested that
our treatment was effective.

DISCUSSION AND CONCLUSION

CSID is an inherited disease that occurs due to pathogenic
variants of the SI gene (7). The phenotypes of patients are
heterogeneous and vary according to onset age. Patients with an
onset of CSID in infancy typically present symptoms that include
diarrhea and failure to thrive, as observed in our case. Patients
with an onset of CSID in childhood or adulthood present milder
symptoms with only chronic diarrhea and have normal growth
rates (11). According to a summary of previously reported cases
(2, 6–8, 11–21), the incidence of CSID differs between females
and males (19/60) (Table 1). However, in some of these cases, sex
was not reported. The patients had diarrhea (29/29) and failure
to thrive (28/28). However, one study reported 31 cases that
were not included (22). This disease, caused by gene mutations,
has been reported in Asian (3/135, 2.22%), European (26/135,
19.26%), and American (106/135, 78.52%) populations, with the
majority of cases detected in Europe and America (Table 1)
(including 31 cases involving American children). To date, only
four patients with CSID have been reported in China, one of
whom was reported to have compound heterozygous mutations
in the SI gene (5, 21).

Homozygous or compound heterozygous mutations in the
SI gene were found via genetic testing to have caused CSID
in our patient (7). We performed WES in this patient to
confirm the diagnosis of CSID. WES identified novel compound
heterozygous variants (c.2626C > T and c.2872C > T) in the
SI gene. The p.Q876∗ mutation can be interpreted as “likely
pathogenic” according to the American College of Medical
Genetics and Genomics (ACMG) standard, as this mutation
is a null variant (pathogenic criterion PVS1) that is absent
from controls (PM1) (23). The other variant, p.R958C, can
also be classified as likely pathogenic, since this variant has an
extremely low frequency in controls (PM1) and was detected
in trans with another likely pathogenic variant (PM3). This
variant was also predicted bymultiple lines of prediction software
to be deleterious (PM): it was predicted to be “deleterious”
by PROVEAN, with a score of 6.45 (24); predicted to be
“damaging” by SIFT, with a score of 0.000 (http://sift.bii.a-star.
edu.sg); and predicted to be “probably damaging” by polyphen2,
with a score of 1.0 (http://genetics.bwh.harvard.edu/pph2). The
phenotype of the patient was also specific to the disease (PP4). In
addition, residue R958 is highly conserved across various species
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FIGURE 3 | Conservation is shown in the red boxes; the Q876* mutated amino acids are moderately conserved across different species, and the R958C mutated

amino acids are highly conserved.

(Figure 3), which indicates the functional importance of this
residue. Thus, the changes in residue properties may damage the
structure and function of the final product. We considered that
both of these phenotypes were disease-causing mutations.

The SI gene encodes a protein of 1,827 amino acids that
has four membrane-spanning regions (membrane anchor, stalk
region, isomaltase domain, and sucrase domain); this protein
is preferentially expressed in the small intestinal microvillus
membrane, performing terminal digestion of dietary sucrose and
starch (7). The two mutations in our report were located in
the isomaltase domain from residues 110 to 1,007; in previous
reports, there were two mutations reported in the stalk region,
19 in the isomaltase domain and 17 in the sucrase domain
(Figure 2C). The first null variant p.Q876∗ leads to a truncated
protein with only 876 amino acids. Parts of the isomaltase domain
and the whole sucrase domain are missing. All of the active sites
in the sucrase domain, including residues 1,231, 1,259, 1,260,
1,295, 1,335, 1,393, 1,394, 1,395, 1,484, 1,497, 1,500, 1,533, and
1,558, are missing, which might seriously disrupt the function
of the enzyme sucrase-isomaltase (25). The other mutation,
p.R958C, is located in the trefoil factor domain from residues
935 to 980 of the isomaltase domain (https://www.ncbi.nlm.nih.
gov/protein/NP_001032.2). This domain is highly expressed by
mucus-producing cells and is thought to be related to mucosal
defense (26).

According to the database Human Gene Mutation Database
(HGMD) Professional, 40 mutations in the SI gene have been
identified as associated with CSID (Table 1). The reported
mutations included missense (25/40, 62.5%), non-sense (7/40,
17.5%), andFrameshiftmutations (6/40, 15.0%) and mutations at
the splice site (2/40, 5.0%). Three zygotic mutations have also
been reported, including homozygotes (6/97, 6.19%), compound
heterozygotes (15/97, 15.46%), and one case of heterozygotes
(76/97, 78.35%). Because details are lacking, the data from 31
American children are not included in the above summary.

Although we did not detect sucrase and/or isomaltase activity
in biopsy tissue of the small bowel, most biopsies in the reported
cases revealed reduced or absent enzyme activities (sucrase and
isomaltase) (Table 1). Fortunately, after 3 years of follow-up, the
patient in this report gradually grew under a strict sucrose- and
starch-restricted diet. Therefore, lifelong sucrose restriction is an
effective therapy for patients with CSID (7).

In conclusion, the clinical manifestations, genetic results, and
effective treatment support our diagnosis. Without diagnosis,
the treatment would not have been appropriate, and the boy
may have continued to have diarrhea and failure to thrive. If
endoscopy is not allowed, genetic evaluation with WES can
be used as a diagnostic tool. Due to the development of the
field of genetics, we were able to describe a novel case with
mutations in the SI gene that caused CSID, which provides
valuable information for the clinical field, especially in China.
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