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NetTCR-2.0 enables accurate prediction of
TCR-peptide binding by using paired TCRa
and P sequence data

Alessandro Montemurro', Viktoria Schuster!, Helle Rus Povlsen!, Amalie Kai Bentzen?, Vanessa Jurtz!,

William D. Chronister3, Austin Crinklaw® 3, Sine R. Hadrup?, Ole Winther@® %>, Bjoern Peters3”,

Leon Eyrich Jessen® ! & Morten Nielsen@® 8%

Prediction of T-cell receptor (TCR) interactions with MHC-peptide complexes remains highly
challenging. This challenge is primarily due to three dominant factors: data accuracy, data
scarceness, and problem complexity. Here, we showcase that “shallow” convolutional neural
network (CNN) architectures are adequate to deal with the problem complexity imposed by
the length variations of TCRs. We demonstrate that current public bulk CDR3p-pMHC
binding data overall is of low quality and that the development of accurate prediction models
is contingent on paired o/ TCR sequence data corresponding to at least 150 distinct pairs for
each investigated pMHC. In comparison, models trained on CDR3a or CDR3p data alone
demonstrated a variable and pMHC specific relative performance drop. Together these
findings support that T-cell specificity is predictable given the availability of accurate and
sufficient paired TCR sequence data. NetTCR-2.0 is publicly available at https.//
services.healthtech.dtu.dk/service.php?NetTCR-2.0.
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surface for the presence of foreign peptides presented in

complex with major histocompatibility complex (MHC)
molecules. This recognition by the T cell is facilitated by the
T-cell Receptor (TCR). This crucial interaction between TCRs
and peptide-MHC (pMHC) molecules thus forms a molecular
switch defining a bottleneck for immune activation. Under-
standing the rules governing this interaction hence represents a
paramount step in both personalized immune treatment and
development of targeted vaccines.

The TCR is a heterodimeric protein, consisting of an a- and p-
chain. The subpart of the TCR interacting with the pMHC
complex is defined by six loops, three for each a- and B-chain.
These loops determine the specificity of the TCR and are denoted
complementarity determining regions (CDRs) 1-2-3. The cur-
rent consensus is that the CDR3 loops primarily interact with the
peptide, while the CDR1 and CDR2 loops interact with the
MHC!-3. The peptide specificity is thus predominantly defined by
the CDR3 loops. The diversity of the CDR3s is defined by the
genomic recombination of the variable, diversity, and joining
(VDJ) TCR-genes. However, while the a-chain is the result of a
V- and ] recombination, the B-chain contains the V-, D- and ]
genes creating a broader diversity. The result of this is that most
data-generating studies have focused on the B-chain alone.

The majority of the publicly available TCR-pMHC-specificity
data resides in the Immune Epitope Database (IEDB)4, VDJdb>,
and McPAS-TCRY, all of which primarily contain CDR3p-data.
Several recent works have demonstrated the important short-
coming of this limited view on the TCR and demonstrated how
the information on the specificity of the TCR toward its cognate
pPMHC target is carried by CDR3 of both a- and B-chains”S. To
investigate the pMHC specificity on paired a-/B-chains, single-
cell (SC) technology is required. SC is considerably more costly,
and thus much less paired-specificity data are publicly available.
This is a critical shortcoming of current databases and highlights
the urgent need for further development of cost-efficient SC
technologies capable of accurate high-throughput paired-data
generation®.

While cost-efficient and accurate state-of-the-art high-
throughput technologies for experimentally and computation-
ally assessing the binding of a peptide to an MHC are
available!9-12, for reasons explained above, the TCR component
of the triad remains highly cost-intensive and low throughput and
sparsely explored. This represents a major challenge in moving
the field forward.

A number of studies have been published related to the pre-
diction of TCR-pMHC interactions”>13-21. They present a wide
range of data and modeling techniques. Most are constructed
based on data from the IEDB, VDJdb, and/or McPAS-TCR and,
in addition to the epitope information, make use of either CDR3
sequences alone!>-15, a mixture of CDR3a and CDR3f
sequences!®, or smaller data sets entailing all 6 CDR3 sequences
and potentially additional cellular information!”:18, Methodolo-
gically, the different studies range from simple CDR3 alignment-
based methods!®22, over CDR similarity-weighted distances such
as TCRdist”, k-mer feature spaces in combination with PCA and
decision trees (SETE!3), random forests?%-2! such as TCRex23,
CNN-based (ImRex)!®, and Gaussian process classification
methods (TCRGP!7), to more complex approaches integrating
natural language processing (NLP) methods (ERGO!4). The
overall conclusion from these earlier works is that while the
prediction of TCR specificity is feasible, the volume and accuracy
of current data limit the performance of the developed models.
Moreover, these earlier works only to a limited extent address the
high degree of redundancy present in TCR-interaction data sets,

T cells survey the health status of cells by scrutinizing their

making it difficult to assess the generalizability of the developed
models.

We have earlier proposed a simple 1D CNN-based model,
NetTCR-1.01, integrating peptide and CDR3B sequence infor-
mation into a model for the prediction of TCR peptide specificity.
Using a similar modeling framework, we here present an in-depth
analysis of publicly available TCR-pMHC interaction data, with
an emphasis on investigating the impact of data limitations and
quality on model performance. Furthermore, the performance of
the developed model is compared with simpler sequence-based
models as well as more complex deep learning approaches and
the impact of training on paired versus single-chain TCR-
sequence data is investigated.

Results

We set out to develop and benchmark models for the prediction
of TCR-pMHC binding with a particular focus on investigating
the quality of different data types, and the effect of using paired
CDR3a/p versus CDR3p information only.

We started with data obtained from the IEDB, consisting of
9204 unique CDR3p sequences, each labeled to bind a single
pMHC complex, and 387,598 negative data points derived from
10X single-cell sequencing (for details see “Materials and meth-
0ds”). This data set is referred to as the p-chain data. Another, but
smaller set of positive data points, was derived from combining
IEDB and VDJdb data providing both CDR3a- and CDR3-
chain, leading to a paired chain set of 2744 unique TCR-peptide
data points. The available data were highly heterogeneous in
terms of studied peptides and HLA alleles with a majority (62%)
of the IEDB data being restricted to HLA-A*02:01. Likewise, the
vast majority of the HLA-A*02:01 restricted peptides were of
length 9. Given this, for the further part of this work, we limited
the analysis to HLA-A*02:01 and 9-mer peptides. Supplementary
Fig. 1 presents TCR counts in the positive data sets for the three
most abundant peptides NLVPMVATV (NLV) from human
herpesvirus 5 (cytomegalovirus), GILGFVFTL (GIL) from influ-
enza A virus, and GLCTLVAML (GLC) from human herpesvirus
4 (Epstein-Barr virus) in the two data sets. These three represent
99% and 92% of the B-chain and paired-chain data, respectively.

Model performance: CDR3 data. In a first attempt to evaluate
the possibility of predicting TCR-peptide interactions, prediction
models were constructed from the TCRp data set. A critical part
of the model development and evaluation relates to the procedure
implemented for data preparation in the context of data redun-
dancy and partitioning. Models were therefore trained and eval-
uated using cross-validation on different CDR3p data sets,
characterized by different degrees of interpartitional redundan-
cies. The performance was further evaluated on an external data
set. For details on the data set preparation and interpartitional
redundancies, refer to “Materials and methods”. Here, two
models were investigated, a sequence-similarity and a 1D CNN-
based (NetTCR) model. The sequence-similarity-based model
(baseline) serves here as a benchmark to investigate the added
benefit of modeling the data using the more complex CNN fra-
mework. Performance of deeper and different neural network
architectures was investigated subsequently. Cross-validation
performance results as a function of the partitioning thresholds
are shown in Fig. 1a. Here, the baseline model demonstrated the
expected strong association between internal data redundancy
and model performance, with a substantial and highly significant
(p <0.0001, bootstrap test with 10,000 replications) drop in per-
formance as the partitioning threshold is decreased (from an
AUC value of 0.67 at 99% to 0.63 at 90%)—resulting in a lower
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Fig. 1 Performance of models trained on CDR3f data alone. a Overall AUCs evaluated via cross-validation of different training data-partitioning

thresholds for the baseline model and NetTCR. Partitioning thresholds are indicated in percent on the x-axis. b Overall AUCs evaluated on the MIRA sets at
different thresholds (shown on the x-axis) using the model trained on the 94% similarity-partitioned data. The MIRA threshold represents the degree of
separation between the training set and the MIRA set. ¢ Peptide-specific AUCs for 94% partitioned cross-validation (CV) and external evaluation with a

similarity threshold of 94%, colored by model.

similarity between the training and test data sets. This depen-
dency on the partitioning threshold is diminished for the NetTCR
neural network method. The performance of the NetTCR method
was low even at the highest partitioning threshold with a max-
imum AUC of 0.69.

We next evaluated the performance of the models trained on
the 94% partitioned data on the independent MIRA data set
(Fig. 1b) using an ensemble of the 20 models obtained from cross-
validation. Five different MIRA datasets were obtained by
imposing a separation from the training set of 90, 92, 94, 99,
and 100% similarity. That is, MIRA 94% TCRs do not share more
than 94% Levenshtein similarity to any of the TCRs in the
training set. Overall, this benchmark revealed a higher perfor-
mance of all models compared to that observed in the cross-
validation with a performance value of up to 0.79 in AUC. This
performance is higher than the best-performance values observed
during cross-validation and suggests that the MIRA data share an
overall higher quality compared with the IEDB data used for
training (for further discussion of this see later). Also here, the
NetTCR method outperformed the baseline model, and we
likewise observed a continued drop in performance of the models
as the similarity between the evaluation and training data sets was
diminished. This drop was particularly large for the 90%
similarity threshold where all models achieved a comparable
performance of AUC 0.635. Similar results were obtained for the

models trained using other partitioning thresholds (see Supple-
mentary Fig. 2).

Figure 1c displays the peptide-specific AUCs in cross-
validation and the external evaluation (defined using a 94%
similarity threshold) of the models trained on the 94% partitioned
training data set for the three dominant peptide sequences in the
training data set. These peptide-specific AUCs strongly suggest
that the model performance does not correlate with the amount
of training data. That is, the performance of the NLV peptide
characterized by the largest amount of training data displayed the
lowest performance value in both the cross-validation and MIRA
evaluation. Additionally, the neural network method did not in
this evaluation perform overall better than the baseline model.

In conclusion, the observed relatively low predictive perfor-
mance—even at high interpartitional redundancies—and the
lacking correlation between data set size and predictive
performance, suggest that TCR-peptide interactions can only to
a very limited extent be characterized using current CDR3p-
peptide data.

To further elaborate on this conclusion, and to ensure that it
was not a result of the data set and/or modeling framework
investigated here, we extended the benchmark to include the
recently published ERGO method!4. ERGO predicts peptide-TCR
binding using long-short term memory (LSTM) networks or
autoencoders (AE). Both network architectures were trained on
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Fig. 2 Comparison between NetTCR and ERGO. a Test AUCs per peptide for NetTCR and ERGO trained on four out of five partitions of the IEDB + 10X
data set and evaluated on the left-out partition. b Peptide-specific AUCs for NetTCR and all the four variants of ERGO evaluated on the MIRA data.

data sets derived from VDJdb and/or McPAS. Training NetTCR
and the LSTM-based ERGO on four out of the five partitions of
the IEDB + 10X data set and evaluating both models on the left-
out partition, we observed that NetTCR and ERGO shared
comparable performance in terms of peptide-specific AUC (see
Fig. 2a) and both models have an overall AUC of 0.66. We further
tested the performance of NetTCR trained on the complete
IEDB + 10X data set and all the variants of ERGO on the MIRA
data. In this case, NetTCR achieved an overall AUC of 0.77 and
outperformed the best ERGO model (LSTM trained on VDJdb),
which achieved an AUC of 0.74 (see Fig. 2b). These results show
that NetTCR has a comparable performance to that of ERGO,
hence demonstrating that the relatively low performance for
TCR-peptide interactions observed here for NetTCR and
the baseline is not imposed by the limited complexity of these
models, compared with ERGO. Further, the results suggest that
simple shallow models like the CNNs used here, rather than more
sophisticated architectures, are sufficient to achieve optimal
performance for the prediction of TCR-peptide specificity (at
least given the current data).

Model performance: paired CDR data. Given the low perfor-
mance of the CDR3P models, we next moved toward data sets
consisting of both CDR3a and CDR3p. Figure 3a shows the
overall and peptide-specific cross-validation AUC performance
value of the baseline and NetTCR models trained on different
TCR chain components for data sets created at 90% and 95%
partitioning threshold. Here, data sets including both a- and f-
chains, were partitioned by the average similarity of CDR3a and
CDR3p. These partitions were maintained when training and
evaluating models on a- or P-chains alone. The results from
a chain-specific partitioning approach are included in Supple-
mentary Fig. 3. These results in Fig. 3a demonstrate a comparable
performance for models based on the CDR3a or CDR3p infor-
mation and superior performance when including both the a-
and B-CDR3 information for both the NetTCR and baseline
models. With an overall AUC performance of 0.89, NetTCR
significantly (p <0.0001, bootstrap test with 10,000 replications)
outperformed the baseline model. Further, the performance of the
NetTCR model was found to be maintained when trained on the
90% compared with the 95% partitioned data. This was in con-
trast to the baseline model that suffered a significant drop in
performance (p = 0.006, bootstrap test with 10,000 replications)
when lowering the partition threshold. These observations are
confirmed in Figs. 3b and 3c by the peptide-specific AUCs
derived from the 90% and 95% partitioned data, respectively. Also
here, and for both partitioning thresholds, the NetTCR model,

including both the a- and B-chain information, outperformed all
other models, and both single-chain models achieved a lower but
comparable performance. Investigating in more detail the effect of
the size of the training data on the predictive performance of the
two models, Fig. 3d displays the peptide-specific cross-validation
AUC for the set of peptides included in the training data. Overall,
this figure shows a decrease in AUC as the number of positive
data points present in the training data drops, with an average
AUC of NetTCR for peptides characterized by 200 or more TCRs
of 0.88, and an average of peptides characterized by 20 or fewer
TCRs of 0.38. One clear exception from this was the FLYALALLL
peptide with only 37 binding TCRs and an AUC of 0.94. This
potential outlier can however be explained by comparing the
sequence similarities between positive and negative data points.
Estimating a difference in similarity per positive TCR as the
maximum similarity to all other positives for the given peptide in
other partitions minus the maximum similarity to all negatives
for the same peptide in other partitions, the expectation is that a
higher dissimilarity between positives and negatives for a given
peptide would ease the discrimination task, resulting in a higher
peptide-specific performance value. This was confirmed by the
result shown in Supplementary Fig. 4, where the AUC displays a
clear tendency to increase as a function of the similarity difference
(a Spearman correlation between AUC and median difference in
similarity of 0.63). This result thus supports that FLYALALLL is
an outlier and its high performance is imposed by the high dif-
ference in similarity score between its positive and negative TCRs.

Overall, these results suggest that consistent and high-
performing models for TCR-pMHC interaction predicting can
be developed from paired TCR data and that the low quality of
current models is imposed by the low quality of bulk-sequenced
CDR3p data. To further quantify this, we went back to the model
trained on the bulk CDR3(B data and evaluated using cross-
validation the performance of a subset of 500 positive CDR3p
shared with the paired TCR data sets, and an equal-size data set
of positive CDR3p not sharing an overlap with the paired TCR
data set. Both sets of positive TCRs were evaluated in the context
of the complex negative dataset. The results of this experiment
confirmed the high quality of the shared CDR3 data with an AUC
of 0.80, and the likewise lower performance (AUC = 0.68) of the
CDRs not shared with the single-cell data. Further, we evaluated
the model trained on the 95% partitioned CDR3p data from the
paired TCR data set on the CDR3B MIRA data (excluding
identical overlap to the training data). This resulted in an overall
AUC of 0.81. This performance is lower than the cross-validated
performance but slightly higher than the performance of 0.79
demonstrated in Fig. 3b for the CDR3B-alone model. These
results demonstrate that the MIRA data have a quality
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points.

comparable to that of CDR3p from the paired TCR data, and
thus, in line with the observation earlier, suggest a higher
accuracy of these data compared with the overall accuracy of the
bulk CDR3p alone data.

To further validate the high performance of the NetTCR-2.0
model, a performance comparison against TCRdist is included in
Fig. 4 (for details on the implementation of the TCRdist method,
refer to “Materials and methods”). This analysis aligns with the
results from Fig. 3 demonstrating a consistent and highly
significant (p<0.001 for the a- and a+ B-chain models,
p=0.03 for P-chain, bootstrap test with 1000 repetitions)
superior performance of NetTCR-2.0 over TCRdist, and likewise
showing that also for TCRdist is the signal in the CDR3p

sequence lower compared with CDR3a when it comes to
predicting the specificity toward the NLV peptide.

Next, we investigated the power of the developed model to
identify the correct peptide target of a given TCR. Here, binding
to the three peptides GIL, NLV, and GLC was predicted (using
cross-validation) for each TCR positive to any of these three
peptides. To deal with peptide-specific scoring biases, the raw
prediction values were transformed into the percentile rank
values as described in “Materials and methods” and the predicted
target for each TCR was identified from the peptide with the
lowest rank value. This analysis was performed for the three
models trained on the CDR3a and CDR3p, CDR3a alone and
CDR3p alone, and the performance for each peptide was reported
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the “true” target peptide.

as the proportion of correctly identified targets (see Fig. 5). Here,
all models performed better than random with the proportion of
correct targets >33%. Further, the model trained on both CDR3a
and CDR3p significantly outperformed both other models for all
three peptides (p-value < 0.05 in all the cases, bootstrap test with
1000 repetitions); meanwhile, the choice of the best single-chain
model was peptide dependent, with NetTCR_a outperforming
NetTCR_ for the NLV peptide, in line with the result of Fig. 3.
To further quantify to what extent the peptide sequence
contributes to the model performance, models were trained on
a data set where the TCR sequences were paired with a wrong
peptide. Repeating the peptide-ranking analysis with these models
demonstrated a highly reduced performance, exemplified with,
for instance, the TCR_af for all TCRs predicting the optimal
target as the GIL peptide (see Supplementary Fig. 5).

We propose that the improved predictive power of NetTCR
over the sequence-based baseline model is driven by the
representation of the TCRs in the max-pooled CNN layer of
NetTCR. To elucidate this, the 160-dimensional representation
max-pooled output (80 for each of the CDR3a and CDRb TCR
sequences, respectively) from the NetTCR CNN layer of the
CDR3a and CDR3p input was extracted for all TCRs specific to

the GIL peptide. Likewise, a raw input representation of the TCR
was constructed using a simple encoding scheme where each
amino acid was represented by five features (normalized Van der
Waals volume, hydrophobicity, number of hydrogen bond
donors, number of hydrogen bond acceptors, and net charge).
Next, the t-distributed stochastic neighbor embedding (t-SNE24)
algorithm was used to visualize the relationship between these
vectors in a 2-dimensional space (see Fig. 6). In contrast to the
raw sequence representation (Fig. 6b), Fig. 6a shows the
separation of the positive from the negative GIL TCRs with a
clear positive TCR-enriched region in the upper-left part.

To further illustrate how the max-pooled feature space allows for
separation of the positive from the negative GIL TCRs, Fig. 7 shows
a hierarchically clustered heatmap of a random set of 50 positive and
50 negative GIL TCRs. This figure clearly illustrates the increased
power for separation of the positive from the negative TCR when
information from both CDR3a and CDR3p is included. Further
comparing the results obtained using the paired-chain max-pooled
representation (Fig. 7a) to the raw input space (Supplementary
Fig. 6), confirmed the improved clustering potential of the max-
pooled sequence representation. To further quantify the increased
ability of classification in the CNN space, the positive and negative
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Fig. 6 t-SNE plot for the TCRs of the GIL peptide. a The output from the max-pooled CNN layer of NetTCR trained on the 90% partitioned data set was
extracted for each TCR specific to the GIL peptide using cross-validation, resulting in a set of vectors, each of dimension 160. T-SNE was used to visualize
this data set in two dimensions. b In the input space, the TCRs were encoded using a 5-feature physicochemical encoding and then flattened into a vector.
The perplexity hyperparameter of the t-SNE algorithm was chosen to be 40 and the number of iterations was set to 1000. In the plot, positive TCRs are
shown in green, and negative TCRs in pink.
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Fig. 7 Hierarchical-clustered heatmaps of 50 positive GIL TCRs and 50 negatives. The clustering was performed using both a- and p-sequences (a) or
using single chains (a chain in b, B chain in ). Each row in the heatmap represents a TCR sequence in the max-pooled feature-space representation; the
color bar on the side of each plot delineates whether the TCR is positive or negative. Cosine distance was used as a metric for clustering.
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TCRs were clustered into two groups using the K-medoids
algorithm. The two clusters were labeled as positive and negative
by the majority vote of the TCRs falling in the cluster, and the
clustering accuracy was evaluated using the Matthews correlation
coefficient (MCC). The clustering was performed using both the
max-pooled and the raw input representation of the TCRs, resulting
in MCC values of 0.64+/—0.09 and 0.21 +/—0.14 (standard-
deviation values obtained using 1000 resamplings of TCR),
confirming that the separation between positives and negatives is
significantly more pronounced in the CNN space.

The NetTCR server. The presented NetTCR method is available
as a web server at https://services.healthtech.dtu.dk/service.php?
NetTCR-2.0. The server offers the possibility of predicting
binding of the input TCRs with one or more peptides; predictions
are made using the models trained on the 95% partitioned
training data. Supplementary Fig. 7a, b serves as a guide to select
thresholds for interpretation of prediction scores that the server
outputs, and displays sensitivity-specificity curves of the method
for the three individual peptides and the pooled data set with
prediction values obtained as percentile rank scores using cross-
validation. These figures demonstrate the very high specificity of
the method with sensitivity values greater than 50% (and in most
cases greater than 75%) and false-positive rates less than 2% in all
cases using a percentile rank score threshold of 2%.

Real-life validation. As a real-life validation of the NetTCR-2.0
method, a performance comparison of the different models was
conducted on a novel independent paired TCR data set generated
specifically for this study. In short, the data were defined from
T cells from four HLA-A*02:01-positive donors with pre-
established responses to GILGFVFTL, NLVPMVATYV, and
GLCTLVAML sorted into a positive subset, containing TCRs
responsive to one or more of the three peptides and a negative
subset, containing TCRs negative to the three peptides. Here, the
performance was estimated by predicting for each TCR binding
to the three peptides and assigning a score corresponding to the
lowest-predicted rank value. Next, performance values were cal-
culated in terms of AUC, AUCO.1 (defined as the area under the
ROC curve in the interval [0, 0.1]), and positive predictive value
(PPV), calculated as the proportion of positive hits within the top
89 (the total number of positive TCR) predicted TCR. Here, the
performance measures were used to quantify how this prediction
score could be used to separate the positive and negative TCRs
(see Fig. 8). Also in this benchmark, NetTCR_af significantly
outperform all other methods (p < 0.05, bootstrap test with 10000
repetitions), with a performance gain of more than 10% in terms
of PPV. Here the method demonstrate a very high specificity,
identifying 79% of the positive TCR at a false-positive rate of 2%
using a percentile rank threshold of 2% (Supplementary Fig. 7c).

Discussion

Identification of cognate targets of TCRs is a critical bottleneck of
the development of T-cell therapeutics. Here, we have presented a
study aiming to resolve this bottleneck, developing models cap-
able of predicting TCR-pMHC interactions based on the amino
acid sequences of the peptide and CDR3 region of the TCR
chains. Several model architectures were investigated spanning
from simple sequence-similarity models to more complex con-
volutional neural networks (CNN). The models were trained
using cross-validation and validated using independent evalua-
tion data carefully constructed using strict data-redundancy
reduction rules. The overall best-performing model was found to
be a 1D CNN. This model is a variant of the model proposed
earlier by us for pan-specific prediction of kinase-specific

phosphorylation?®. This model significantly outperformed sim-
pler sequence-based models implemented using the TCRMatch?2
and TCRdist” frameworks.

Two important issues related to the understanding of the TCR-
binding characterization and prediction were addressed during
the model development, namely the quality of the current data,
and the impact of including paired CDRa and CDRp informa-
tion. First, models were developed using data available from the
IEDB (similar results were obtained using CDR3P data from
VDJdb) with CDR3f information available only. This data set
was substantially larger compared with data with paired TCR-
sequence information, and one would expect that models trained
on such larger data sets should achieve overall higher perfor-
mance values compared with models trained on the more reduced
paired TCRa and TCRP data sets. This was however not the case.
Models constructed from data with CDR3p information from
paired TCR data demonstrated significantly higher performance
to similar models trained on the data with CDR3f information
only. This result strongly suggests that the quality of the data with
only CDR3p information is lower than that of the data with
paired CDRs. Further, and in line with earlier work”-8, the con-
clusions from the current study clearly supported the notion that
both TCR chains contribute to the TCR specificity (and impor-
tantly, that their relative importance is pMHC specific), and that
only by including this combined information can one achieve
accurate TCR-specificity prediction.

In contrast to the models trained on the data with only CDR3p
information, the model trained on the data with paired TCR
information demonstrated a clear and statistically significant
correlation of the peptide-specific performance to the number of
different positive TCR available for a given peptide and suggested
that ~150 unique TCRs are required to achieve an AUC > 0.75 for
a given peptide. Currently, this criterion is only met for a very
small set of MHC-peptide combinations placing great limitations
on the applicability of the developed model, since it can only,
given the current data, provide reliable predictions for three
peptides. This limitation underlines the urgent need for the
development and refinement of technologies for high-throughput
paired sequencing of TCRs with known pMHC targets. The
developed framework is trivially extendable and retrainable, as
more data become available.

Investigating the TCR-specific performance of the model
revealed a likewise high predictive power, with ~75% of predicted
peptide targets (from the pool of three) being correct. Taken with
some reservations, given the small peptide space covered, this
high performance suggests that the model has the potential to
resolve not only which TCRs are specific to a given peptide, but
also which peptide is specific for a given TCR, pointing to
important biomedical applications within T-cell therapy?®-27.

The power of the CNN model compared with the simpler
sequence-based approaches lies in its ability to translate the
variable length of the TCR sequences into an abstract feature
space suitable for specificity classification. To illustrate this, a
similarity analysis between TCRs specific to the GIL peptide was
conducted in the CNN feature space compared with the original
sequence space. This analysis confirmed the improved ability to
perform classification in the CNN feature space and suggests that
this representation potentially could be used as an alternative to
the conventional autoencoding approaches for feature extraction
and compression of biological data?32?.

The current model only includes information from the two
CDR3 regions of the TCR. Earlier work has demonstrated that
also CDRI1 and CDR2 carry information of potential impor-
tance for prediction of TCR specificity”-8. The modeling fra-
mework proposed here can readily be extended to include such
information (as well as information related to HLA and V- and
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Fig. 8 Benchmark performance on in-house TCR data set. Methods included are NetTCR and baseline trained on paired CDR3a-CDR3p data (ab), CDR3a
(a), CDR3p (b), and the LSTM-based ERGO trained on the VDJdb. Performance measures are (left) AUC, center (AUC 0.1), and right (PPV).

J- germline usage), and future work will tell if integrating this
information can lead to an improved predictive power of the
model proposed here. Also, the neural network architecture
proposed here is relatively simple, consisting of one single max-
pooled CNN layer. In this work, we did not perform an
exhaustive performance comparison to other more complex
models; however, our comparison to the ERGO model on the
CDR3B-only data demonstrated comparable performance
between the two modeling architectures, strongly suggesting
that, at least for the current data and data volumes, a simple
network architecture, like the one we have proposed here, is
sufficient.

A critical issue for the development of machine learning
models is the availability of accurate negative data. Often, not
simply more but rather more accurate data are needed. Earlier
works have proposed to resolve this issue by either mispairing the
positive data, or by including data from healthy controls as
negatives!41°. Both approaches share potential pitfalls in that the
proposed negatives either share a compositional bias (imposed by
the fact that they are positive to one or more of the other peptides
in the data) or that the TCRs are falsely labeled as negative
(imposed by the fact that TCRs in healthy controls are likely
positive to the dominant peptides in the positive data set). Here,
we have therefore taken a different approach, benefitting from the
study published by 10X Genomics, and complemented the mis-
paired artificial negative data with TCRs explicitly found not to be
positive to any of the peptides in the training data. While this
proved a highly useful approach, the 10X Genomics MHC-feature
barcode platform is still in development, and the negative data
defined here are hence likely not fully accurate. Given this, we
suggest that substantial further work is needed to assess how to
best define a proper TCR-negative data set.

The high performance of the developed NetTCR-2.0 model was
validated on an in-house data set of paired TCR data with
qualitative-interaction measurements to a set of 3 HLA-A*02:01
peptides. Here, a predictive positive value of ~75% was observed,
greatly surpassing the performance of both the baseline and
ERGO models. This result confirmed that the development of
accurate prediction models for TCR specificity is contingent on
the availability of paired (and accurate) a- and p-sequence data
and suggests that a predictive power can be achieved to a degree
where the tool can have actual biomedical applications.

Finally, in this work, we have used a rather simple definition of
TCR similarity based on the relative Levenshtein distance when
defining data redundancy. This distance has obvious short-
comings when comparing the similarity between pairs of TCR of
very different lengths—i.e., a similarity score of 0.9 corresponds
to both one mutation/edit when comparing two TCRs of length
10 and to 4 mutations/edits if the TCRs are of length 36. Given
the relatively limited length variation of the CDR3 sequences
included in the current work (90% of the paired CDR3a and
CDR3p sequences from the paired data set have a length in the
range of 9-13 amino acids), this shortcoming does not have large
impacts for the current work. However, it will be essential to
consider alternative and less length-biased approaches, such as,
for instance, the kernel similarity method underlying
TCRmatch??, if the work is extended to cover full-length TCRs
and/or include the complete set of CDR sequences.

In conclusion, we have successfully trained a model to predict
interactions between TCRs and their cognate, HLA-A*02:01-
restricted peptide target. Our results indicate that accurate pre-
diction is feasible only by training on data of paired TCRa- and -
chains. Due to the small number of training peptides, the model
can at present only be applied to the limited set of peptides
included in the training data. However, as more data become
available, we expect the predictive power of the model to increase
and allow for accurate predictions also for uncharacterized pep-
tides, as has been observed earlier for the pan-specific prediction
models of peptide-MHC interactions®0. Finally, the presented
model framework is highly flexible and allows for the straight-
forward integration of the MHC molecule or TCRa chain in the
future when data become available, to train a truly global pre-
diction method.

Materials and methods

Training data

CDRp data. The initial set of CDR3p sequences binding to epitopes presented by
HLA-A*02:01 with corresponding epitopes was collected from the Immune Epi-
tope Database (IEDB) on January 29th, 2020. The original IEDB data set consisted
of 25,300 data points with 21,855 unique CDR3p sequences and 675 unique
peptides, covering both class-I and -II binders. Cross-reactive TCRs were excluded.
Quality assessment and uniform CDR3p-sequence frame were ensured by applying
a k-mer-based scoring method using a profile hidden Markov model (pHMM) to
the data (see Supplementary Note 1 details). Following quality assurance, the IEDB
data set specific for HLA-A*02:01 and peptides of length 9 consisted of 10,987
unique CDR3p sequences and 168 peptides.
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Nonbinding peptide-CDR3p pairs were derived from 10X Genomics
Chromium Single Cell Immune Profiling of four donors. All T cells in this assay
had been exposed to all tested pMHC multimers3!. Each entry of the data set
includes a unique molecular identifier (UMI) and counts of a given TCR to all
peptides in the assay. From this data set, an initial negative data set was constructed
from the HLA-A*02:01-restricted peptides filtered to only include TCR-peptide
pairs with UMI counts < = 10. This data set comprised 1,325,949 distinct peptide-
CDR3p pairs with 69,847 unique CDR3p sequences and 19 different peptides of
which seven were shared with the IEDB peptides.

Positive and negative training data points were reduced to peptide-TCR pairs
with CDR3p lengths within the range of 8-18 amino acids, and peptides of length
equal to nine amino acids shared between the two data sets (7 peptides). The final
data set representing seven epitopes characterized with both positive and negative
TCR data consists of a positive set of 9204 unique CDR3p-peptide pairs and a
negative data pool of 387,598 data points.

Paired CDR data. Positive data points were taken from IEDB and VDJdb. The
databases were downloaded on August 26th, 2020 and August 5th, 2020, respec-
tively. Restricting to data with both CDR3a and CDR3p chains available, a length
range of 8-18 and reported to bind peptides of length 9, 3859 unique binding pairs
were identified from IEDB and 2843 from VDJdb. These provided 4598 unique
CDR3a-/p-peptide interactions with 276 different peptides specific to allele HLA-
A*02:01.

Negatives were derived from 10X. Using the same restrictions as for the
positives (CDR3 length between 8 and 18 AAs, peptide length 9, and peptides
specific for HLA-A*02:01), 627,323 unique data points with 0 UMI counts to all
the tested peptides were identified. These contained 33,017 unique TCRs tested
against a set of 19 different peptides. In total, 17 of these overlapped with the
peptides in the positive data set.

External evaluation data

MIRA. Positive data points for external evaluation were derived from the MIRA
set?2. It entailed 376 CDR3p-peptide pairs associated with HLA-A*02:01. Negative
samples were taken from an excluded subset of the 10X negative set (see above).

Validation data. Healthy donor material was collected under approval by the local
Scientific Ethics Committee and written informed consent was obtained according
to the Declaration of Helsinki. Peripheral blood mononuclear cells (PBMCs) from
healthy donors were isolated from whole blood by density centrifugation on
Lymphoprep (Axis-Shield PoC) and cryopreserved at —150 °C in FCS (FCS; Gibco)
+10% DMSO.

The three peptides, GILGFVFTL, NLVPMVATYV, and GLCTLVAML, were
purchased from Pepscan (Pepscan Presto) and dissolved to 10 mM in DMSO. UV-
sensitive ligands were synthesized as previously described®’. In brief, recombinant
HLA-A*02:01 heavy chains and human B, microglobulin light chain were
produced in Escherichia coli. HLA heavy and light chains were refolded with UV-
sensitive ligands. Specific peptide-MHC complexes were generated by UV-
mediated peptide exchange®> and MHC tetramers were assembled on PE-
conjugated streptavidin (BioLegend, Nordic Biosite, Denmark) as previously
described4.

Cryopreserved PBMCs from four HLA-A*02:01-positive donors were thawed

and washed in RPMI 4 10% FCS. The presence of T cells binding to GILGFVFTL,
NLVPMVATYV, and GLCTLVAML was preestablished using DNA barcode-labeled
MHC multimers as described in Bentzen et al.%. In total, 3 x 10° - 6 x 10 cells from
each donor were washed in cytometry buffer (PBS 4 2% FCS) and incubated,
15 min, 37 °C, with a pool containing all three MHC multimers in a total volume of
80 pL (final concentration of each distinct pMHC, 23 nM). Next, a 5x antibody mix
composed of CD8-BV480 (clone RPA-T8, BD 566121) (final dilution 1/50), dump-
channel antibodies: CD4-FITC (BD 345768) (final dilution 1/80), CD14-FITC (BD
345784) (final dilution 1/32), CD19-FITC (BD 345776) (final dilution 1/16), CD40-
FITC (Serotech MCA1590F) (final dilution 1/40), CD16-FITC (BD 335035) (final
dilution 1/64), and a dead-cell marker (LIVE/DEAD Fixable Near-IR; Invitrogen
L10119) (final dilution 1/1000) was added and incubated for 30 min at 4 °C. Cells
were washed twice in cytometry buffer before proceeding directly to sorting.

Cells were sorted on a FACSMelody Cell Sorter (Becton Dickinson) into tubes
containing 150 pl of PBS 4-0.5% BSA (tubes were presaturated with PBS + 2%
BSA). Using BD FACSChorus Software, we gated on single, live CD8-positive and
“dump” (CD4, 14, 16, 19, and 40) negative lymphocytes. Within this population,
we sorted all multimer-(PE) positive cells from all donors into one tube and a
proportion of multimer negative/CD8 positive from all donors into another tube.
The sorted cells were centrifuged for 10 min at 390 g and the buffer was removed.
An overview of samples and gating strategy is included in Supplementary Table 1
and Supplementary Fig. 8.

VDJ sequences from the CD8 T cells were obtained through the 10x Genomics
pipeline using Chromium Next GEM Single Cell 5’ Reagent Kits v2 (Dual Index)
according to the manufacturer’s instructions (10x Genomics, USA). Up to 17,000
cells of the multimer-positive or the multimer-negative CD8 T cells were loaded
onto each of their separate lane, to yield a maximum of 10,000 cells with an
intermediate/high doublet rate. TCRs were sequenced on a MiSeq as recommended
by Ilumina.

The single-cell data were processed via the 10x Genomics software Cell Ranger
v5.0.1, using cellranger mkfastq and cellranger vdj, to extract V(D)] gene
annotations and CDR3 sequences for each T cell. The GRCh38/Ensembl reference
genome v4.0.0 for mapping V(D)]J genes was downloaded from 10x Genomics. The
pool of all multimer-positive cells and the pool of multimer-negative cells yielded
1091 and 12,801 mapped and annotated T cells. Of these sets, 520 and 3074 cells,
respectively, met the criteria of having both an a- and p-chain with unambiguous
annotations, meaning that each T cell should only have one a-chain and one -
chain annotation. Reducing the sets to contain only unique pairs of CDR3 a/p and
removing the TCRs already present in the training set, resulted in 89 multimer-
positive pairs and 1694 multimer-negative pairs.

Data preparation. Figure 9 gives a schematic overview of how the data-redundancy
and data partitioning procedure was implemented in the current work. The sec-
tions below describe the details of each of the outlined steps.

Similarity scoring. A critical component of data redundancy is related to the metric
chosen to define the similarity between two points. Here, the Levenshtein similarity
was used as a measure of the similarity between CDR3 sequences. The Levenshtein
similarity is based on the Levenshtein distance. The Levenshtein distance is a
similarity measure between words. Given two strings, the distance describes the
number of modifications needed to transform one word into another. The possible
changes are insertion, deletion, and replacement. Each of these three operations
adds one to the distance. The Levenshtein similarity score is given by the relation

Si max(|ul, |v|) — Distancey,,(u, v)
imy,, =
e max(|ul, |v])

()]

where u and v represent two CDR3 sequences, and || defines their length.

Redundancy reduction. Peptide-specific redundancies regarding CDR3 sequences
were removed using the Hobohm 1 algorithm?>. The positive and negative data
specific for each peptide were each first sorted by CDR3 length in descending order.
Next, the sorted negative data were appended to the sorted positive data. Sequences
were then iteratively sorted into non-redundant and redundant stacks based on a
given similarity threshold, hereafter referred to as redundancy threshold. The
algorithm starts by assigning the first sequence to the nonredundant list. It then
iterates through the peptide-specific CDR3 sequences and assesses whether a
sequence’s similarity to the list of nonredundant sequences is above the redun-
dancy threshold or not. Similarities above the threshold lead to the examined
sequence being assigned to the redundant list.

Data partitioning. Partitioning was performed using single-linkage clustering of the
redundancy-reduced positive training data. First, the Levenshtein similarity scores
between all CDR3 sequences are binarized based on a given threshold, referred to
as the data-partitioning threshold. In the case of paired-chain data, TCR similarity
is defined as the average a and P Levenshtein similarity. Next, single-linkage
clustering was performed on this binary matrix, and the connected components of
this graph were sorted by size into a list and iteratively assigned partitions 1-5. The
selected similarity threshold thus presents an upper limit of similarities between
different partitions.

Next, negative CDR3 data were added to each partition. For each peptide in
each partition, 5 times the number of positive CDR3 were added from the negative
data. Negatives were gradually added under the condition that their similarity to all
TCRs in the other partitions was lower than the given partitioning threshold. In
addition, negative examples were generated by mismatching the positive data, i.e.,
combining a TCR sequence with a peptide different from its cognate target. Each
positive TCR was paired with 5 peptides, randomly sampled from the list of unique
peptides in the dataset. These added negatives were used during the training but
were not included when evaluating the model performance.

Separating external Evaluation Data from the Training Data. The evaluation data
sets for the CDR3p model were separated from the training data by a given
Levenshtein similarity threshold, meaning that the data points with similarities to
the training data above this threshold were removed. Negatives reserved for
external evaluation were reduced to CDR3p sequences with similarities below the
given threshold to the training data. Subsequently, five times the number of
positives per peptide were randomly selected from the remaining negatives.

Paired chain data preparation pipeline. Positive and negative data from IEDB,
VDJdb, and 10X were prepared and cleaned as described in the training data
section. Positives and negatives were then reduced to data points containing their
shared set of peptides. This is represented by 18 different peptides and resulted in
2886 unique positive interactions and 594,306 unique negative data points. Positive
data were subsequently partitioned into 5 partitions with a similarity threshold
based on their average chain similarities. Negatives were then added to the parti-
tioned positives as 5 times the number of positives per peptide and partition,
upholding the similarity restraint of the partitioning. Further were mismatched
negatives added as described above.
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Fig. 9 Data-partitioning pipeline schematics. a Data-preparation pipeline for the p-chain data; b pipeline for the paired-chain data. The positive and

negative data sets were each redundancy-reduced with the Hobohm 1 algorithm, according to a Levenshtein similarity threshold. The redundancy-reduced
set of positives was partitioned into five groups using a single-linkage clustering algorithm. Negative data were subsequently added to each partition: for
each peptide, 5 times the number of positives was randomly selected from the pool of nonredundant negative data. In a, to ensure that the MIRA external
evaluation data did not share similarity with the training set, positive points from the MIRA set with a Levenshtein similarity above a certain threshold were

removed. Each step of the pipeline is described in detail in the text.

Baseline model. A baseline model was designed to establish the predictive power of
simple similarity-based methods. The similarity-scoring approach used in the
baseline model was the kernel-scoring method introduced by Shen et al.3® with
default parameters, as described earlier in the MAIT Match!® and TCRMatch??
methods. In the model, the prediction score for a given TCR is calculated as the
highest score obtained when scoring the CDR3p against a database of positive
CDR3ps. In 5-fold cross-validation, each of the 5 partitions, in turn, represents a
test set, and the positive elements in the remaining 4 partitions define the database.
For external evaluation, all positive elements in the training data set define the
database. For analysis of paired a and p TCR sequences, the similarity score was
calculated as the highest average of the individual a and  CDR3-sequence scores
for each TCR.

TCRdist model. The TCRdist model was implemented identically to the baseline
model only using the distance metric proposed in the TCRdist publication”. That
is, the prediction score for a given TCR is calculated as 1—the closest distance
obtained when scoring the TCR against a database of positive TCRs for the given
peptide (defined in a cross-validated manner).

Neural networks

The NetTCR model. A 1-dimensional CNN model, similar to the one proposed by
Jurtz et al.!>, was implemented to predict whether or not a given TCR can bind to a
specific peptide. The neural network takes the peptide, the CDR3a, and/or CDR33
regions of the TCR amino acid sequences as inputs. The CDR sequences were zero-
padded to a maximum length of 30. The amino acids were encoded using the
BLOSUMS50 matrix3’. That is, each amino acid is represented as the score for
substituting the amino acid with all the 20 amino acids. Hence, the BLOSUM
encoding scheme maps a sequence of length / into an array of dimension / x 20. The
peptide and the CDR3 sequences are processed separately by a 1D convolutional
layer with channels corresponding to the given sequence encoding. On each
sequence (peptide, CDR3(s)), 16 convolutional filters with kernel size {1, 3, 5, 7, 9}
process the input (80 filters per sequence). The kernel weights were initialized with
the Glorot normal initializer33. For each kernel size, the convolutional output was
max-pooled and the resulting feature vectors concatenated in a single vector with
240 entries (80 for each input sequence) representing the convoluted peptide and
CDR3 sequences. This vector was then fed into a dense layer of 32 hidden neurons;
the output consists of one single neuron, giving the probability of a peptide-TCR
pair to bind. The activation function used through the network was the sigmoid
function. A schematic representation of the CNN model is given in Fig. 10.

Model training. Models were trained using nested 5-fold cross-validation (CV) for
300 epochs with early stopping and patience of 50 epochs. The weights were
updated using the Adam optimizer with a learning rate of 0.001. The batch size was
128 and the loss function was binary cross-entropy.

(DR3a

| | |
Conv 1D Conv 1D Conv 1D
MaxPool MaxPool MaxPool
|

concat

COR3b

peptide

|

out

Fig. 10 Setup of NetTCR model. The CDR3 and peptide sequences are
encoded using the BLOSUM50 matrix. The encoded sequences are passed
independently through a 1D convolutional layer and a max-pooling layer.
The convolutional filter size is set to {1, 3, 5, 7, 9}, and for each filter size, 16
filters are used. The extracted features are then concatenated and fed into a
dense layer with 32 hidden units. The output of the network consists of a
single neuron, giving the binding probability.
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Performance evaluation. In cross-validation, the performance was evaluated from
the concatenated test sets either globally over the entire data set, or in a per-peptide
manner. Likewise was the performance on the independent evaluation reported
either globally over the entire data set, or in a per-peptide manner. To normalize
the prediction scores across peptides, the raw prediction values were transformed
into the percentile rank values. Percentile rank scores were estimated from a set of
10,000 natural TCRs, extracted from the 10X data set with no overlap with the
training set. The percentile rank score of a given peptide-TCR pair was then
calculated by comparing the prediction score with the distribution of prediction
scores for the particular peptide.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data and data partitions used for NetTCR-2.0 training and evaluation are available at
https://github.com/mnielLab/NetTCR-2.0.

Code availability

The NetTCR-2.0 code is available at https://github.com/mnielLab/NetTCR-2.0. The
NetTCR-2.0 prediction model is available as a web-server tool at https://
services.healthtech.dtu.dk/service.php?NetTCR-2.0.
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