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Traditional, hospital-based stroke rehabilitation can be labor-intensive and expensive. Fur-
thermore, outcomes from rehabilitation are inconsistent across individuals and recovery is
hard to predict. Given these uncertainties, numerous technological approaches have been
tested in an effort to improve rehabilitation outcomes and reduce the cost of stroke reha-
bilitation. These techniques include brain–computer interface (BCI), robotic exoskeletons,
functional electrical stimulation (FES), and proprioceptive feedback. However, to the best
of our knowledge, no studies have combined all these approaches into a rehabilitation
platform that facilitates goal-directed motor movements.Therefore, in this paper, we com-
bined all these technologies to test the feasibility of using a BCI-driven exoskeleton with
FES (robotic training device) to facilitate motor task completion among individuals with
stroke. The robotic training device operated to assist a pre-defined goal-directed motor
task. Because it is hard to predict who can utilize this type of technology, we considered
whether the ability to adapt skilled movements with proprioceptive feedback would predict
who could learn to control a BCI-driven robotic device.To accomplish this aim, we developed
a motor task that requires proprioception for completion to assess motor-proprioception
ability. Next, we tested the feasibility of robotic training system in individuals with chronic
stroke (n=9) and found that the training device was well tolerated by all the participants.
Ability on the motor-proprioception task did not predict the time to completion of the BCI-
driven task. Both participants who could accurately target (n=6) and those who could not
(n=3), were able to learn to control the BCI device, with each BCI trial lasting on average
2.47 min. Our results showed that the participants’ ability to use proprioception to control
motor output did not affect their ability to use the BCI-driven exoskeleton with FES. Based
on our preliminary results, we show that our robotic training device has potential for use
as therapy for a broad range of individuals with stroke.

Keywords: stroke, exoskeleton, BCI, electric stimulation, proprioception

INTRODUCTION
Nearly 30% of stroke survivors suffer from motor and somatosen-
sory deficits (Connell et al., 2008). Rehabilitation interventions
after stroke are important to reduce motor and somatosensory
deficits (Cifu and Stewart, 1999). Stroke rehabilitation is unfortu-
nately labor-intensive and expensive. In US alone, the direct cost
for stroke rehabilitation is about $36.5 billion per year (Go et al.,
2014).

Researchers have been working on various approaches to reduce
the cost of rehabilitation while maximizing the rehabilitation out-
comes. These approaches include (1) task-specific training therapy
in which individuals practice goal-directed motor tasks (Sma-
nia et al., 2003; Hubbard et al., 2009; Wong et al., 2012); (2)
robotic-assisted therapies that use an exoskeleton or/and a func-
tional electrical stimulation (FES) to conserve time, human labor,
and cost (Glanz et al., 1996; Looned et al., 2014); (3) brain–
computer interface (BCI) to promote mental practice and user

engagement (Dobkin, 2007; Graimann et al., 2007; Daly and Wol-
paw, 2008); and (4) proprioceptive feedback that could enhance
the motor-related components of electroencephalography (EEG)
(Ramos-Murguialday et al., 2012).

In recent years, interest has grown in robotic-assisted rehabili-
tation (Colombo et al., 2005; Fazekas et al., 2006, 2007; Lo et al.,
2010; Loureiro et al., 2011; Poli et al., 2013). Rehabilitation robotic
devices aim to assist individuals with stroke who have limited
mobility. However, therapies that involve passive robotic-assisted
movements are not as efficient, as they do not actively engage the
participants during the therapy. The best outcomes are achieved
when the users are actively engaged in the task and help to initi-
ate movement of the robotic devices (Lo and Xie, 2012; Formaggio
et al., 2013). To encourage user active engagement during the reha-
bilitation process, BCI-driven robotic devices have been proposed
(Adamovich et al., 2004; Ang et al., 2009; Grosse-Wentrup et al.,
2011; Ramos-Murguialday et al., 2012; Webb et al., 2012). A BCI
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system allows the user to translate his/her intention to commands
that operate a device such as a computer and/or a robotic arm
(Wolpaw et al., 2002). In order to activate a BCI-driven robotic
device, the user performs motor imagery or mental practice of
motor tasks. Studies have suggested that the combination of exer-
cises and mental practice with BCI helps in neurological recovery
perhaps by driving both anatomical and functional reorganization
within the central nervous system (Di Pino et al., 2014).

Growing evidence, from both human and animal models, have
shown that learning brings about a transformation in the way
brain process information (Elbert et al., 1975; Lebedev et al., 2000).
These plastic changes are needed to consolidate and store acquired
sensorimotor knowledge. Therefore, enhancing the brain plastic-
ity by maximizing the use of remaining undamaged brain, can
improve functional recovery following brain injury (Chen et al.,
2002; Wang et al., 2010). Further, combining mental practice with
robotic motion and feedback can help to augment the sensori-
motor feedback to influence functional ability in individuals with
stroke (Broetz et al., 2010; Caria et al., 2011; Karolyn, 2011). Inter-
estingly, in a recent study by Ramos-Murguialday et al. (2012), the
proprioceptive feedback provided by a BCI-controlled exoskele-
ton enhanced the motor-related signals of the brain of healthy
individuals.

No studies have combined BCI, robotic exoskeletons, FES, and
proprioceptive feedback into a rehabilitation platform that facil-
itates goal-directed motor movements. The primary objective of
this paper was to combine all these technologies and test the fea-
sibility the device. We have developed a BCI-driven exoskeleton
with FES that can assist individuals with stroke in performing
goal-directed motor tasks. This device is lightweight and portable.
Besides, it provides proprioceptive feedback similar to Ramos-
Murguialday et al. (2012) study. More specifically, the users see and
feel their hand with the exoskeleton moving through when work-
ing through the goal-directed motor task. We are also interested in
understanding whether the motor-proprioception ability of stroke
individuals affects their ability to use the BCI-driven device. Thus,
a motor task that requires proprioception for completion was
developed to assess motor-proprioception ability.

MATERIALS AND METHODS
This section first provides details about the three main compo-
nents of the BCI training device: an exoskeleton arm, a FES unit,
and the BCI system. Next, it elaborates how these components are
integrated and used to assist the users in performing goal-directed
motor tasks. Finally, we present the experimental procedures used
in this study. All of the methods within this study were in com-
pliance with the declaration of Helsinki (Bosnjak, 2001) and were
approved by the Simon Fraser University (SFU) Office of Research
Ethics (# 2012s0527).

BCI TRAINING DEVICE
The BCI training device we developed operated to assist stroke
individuals in performing a pre-defined goal-directed motor task.
This device consists of (1) a lightweight and portable exoskele-
ton arm, (2) a FES unit, and (3) a BCI. The exoskeleton provides
assistance to perform elbow extension and flexion. The FES unit
assists in performing finger flexion and extension, which enables

grasping or releasing an object. Finally, the BCI allows the users to
drive both the exoskeleton arm and the FES unit by motor imagery.

Exoskeleton arm
Figure 1 depicts the prototype of the exoskeleton arm developed in
our lab. The exoskeleton arm has two degrees of freedom (DOF),
i.e., elbow flexion/extension and forearm pronation/supination.
Each DOF can be controlled independently. The elbow flex-
ion/extension and forearm pronation/supination are actuated via
“Joint 1”and“Joint 2,”respectively.“Joint 1”is actuated via a brush-
less DC (BLDC) motor and a customized gearbox. The BLDC
motor provides a torque of 69.5 mNn at a nominal speed of 3480-
rpm at 79% max efficiency. The customized gearbox consists of
a casing and six reduction stages. The casing is rapid prototyped
from acrylonitrile butadiene styrene (ABS) plastic. The six reduc-
tion stages are made of off-the-shelf plastic spur gears and each
stage has a reduction ratio of 1:3. The angular displacement of
“Joint 1” is measured via a 256–2048 CPT, 2 channels, with line
drive Maxon MILE Encoder. Theoretically,“Joint 1” is able to pro-
vide 40 Nm torque. However, for safety purposes, we limited the
output torque to 10 Nm. The angular speed is also limited to 2 /s.

“Joint 2” is actuated via a brushed DC planetary gear motor and
a single-stage customized gearbox. The brushed DC geared motor
provides a torque of 1247 mNm at a nominal speed of 38.7 rpm
at 24.11% efficiency. The customized single-stage gearbox has a
ratio of 1:3.5 and is rapid prototyped from ABS plastic. The angu-
lar displacement of the wrist pronation/supination is measured
via a low profile and long life EVWAE Panasonic potentiometer.
Theoretically, the wrist joint is able to provide 4.36 Nm torque
at a nominal speed of 11 rpm. However, for safety purposes, we
limited the output torque to 2 Nm. The angular speed was, on the
hand, limited to 15°/s. The range of motion (ROM) was limited to
45° for wrist extension and 45° for wrist flexion with the use of a
mechanical stop.

There are several advantages of the exoskeleton. First, the
exoskeleton is lightweight (total weight approximately 1 kg). Its’
actuator is driven by three 12 V batteries and thus, the exoskele-
ton is portable. Second, the user can wear the exoskeleton in <30 s
when aided by another person. Both of the exoskeleton’s joints can
be positioned in such a way that the exoskeleton does not to inter-
fere with the user’s natural arm position when he/she is relaxed
or performing tasks. These features are desirable and enhance the
usability of the exoskeleton when assisting the users in perform-
ing goal-directed movements in daily activities and exercises for
rehabilitation purposes.

Functional electrical stimulation
The FES unit used in this study is the RehaStim I (Hasomed
GmbH, Magdeburg, Germany), which has eight stimulation chan-
nels. RehaStim I has the capacity to generate biphasic rectangle
pulses with a frequency range of 1–140 Hz, a pulse width range of
20–500 µs, and a current output range of 0–130 mA.

Brain–computer interface
The BCI used in this study is a non-invasive and EEG-based
system. EEG signals are acquired from the users using an inex-
pensive wireless EEG system, i.e., Emotiv EPOC neuroheadset
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FIGURE 1 | Exoskeleton prototype. The exoskeleton is composed of
three parts: the metallic structure, the elbow joint (Joint 1), and the
forearm joint (Joint 2). The metallic structure is an off-the-shelf Breg
T-Scope Elbow brace, which has telescoping struts to allow maximum
customization of fit. The Breg T-Scope Elbow brace also provides an

extension and flexion control from 10° to 120°. Moreover, for safety
purposes, it has an adjustable mechanical lockout. Besides, the Breg
T-Scope Elbow brace has four straps: two for the forearm and two for the
upper arm. These straps ensure full attachment between the brace and
the user’s arm.

(Emotiv SDK Research Edition Specifications, 2010). The sam-
pling rate of the EEG signals is 128 Hz. The headset consists of 14
channels: AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8,
and AF4; with reference electrodes at the P3/P4 locations.

The EEG signals acquired from the headset were first processed
by a signal processing unit that extract useful features the signals.
Then, the features were translated by a classifier to control sig-
nals that were used to activate the exoskeleton and the FES unit.
The BCI discriminated two classes of EEG signals, i.e., rest and
motor imagery. Thus, the output of the classifier had one of the
two discrete states “0” (rest) or “1” (motor imagery). The logical
states “1” indicated the user’s intention to activate the device (the
exoskeleton arm or the FES in this case). The logical states “0,” on
the other hand, implied that the user did not intend to activate the
device.

System integration and control
Figure 2 illustrates the functional components of the BCI training
device with system software running on a laptop. The BCI sys-
tem was integrated with the FES unit and the exoskeleton using
LabVIEW. First, the EEG data of a user were transmitted from the
Emotiv headset to the laptop via Bluetooth. Then, the EEG data
were processed using the BCILAB software. The BCI generated
an output every 0.5 s. As per established two-class classification,
if the BCI output was a “0,” nothing happened. If the BCI output
was a “1,” a control signal was sent to: the motor driver through

a NI USB-6341 Data Acquisition System (DAQ) to trigger the
exoskeleton or the FES unit to assist hand opening. Meanwhile,
the angular position of the exoskeleton was continuously sent to
the laptop via the DAQ. This data served as a feedback signal to
move the exoskeleton to the desired position.

The training device operated in a preprogramed movement
sequence to assist its users in performing a goal-directed motor
task. The task was divided into 11 phases (Figure 3). Each phase
involved movements of the shoulder, the elbow, or the hand.
Depending on which phase the participant was at, the BCI would
trigger (1) the exoskeleton to assist elbow extension/flexion; (2)
the FES unit to assist hand opening/closing; or (3) no device for
phases that involve shoulder/trunk movements. More details of the
different phases of the exercise are provided in Section “Training
Protocol.”

EXPERIMENTAL PROTOCOL
To evaluate the performance of the BCI training device, nine
stroke participants were recruited. During the training ses-
sion of the experiment, the participants went through BCI
training (30–45 min) and the FES unit set up (10–20 min).
Next, they used the training device to perform goal-directed
motor tasks (15–30 min). The participants were also assessed for
their motor-proprioception ability before and after the training
session using a motor-proprioception assessment protocol we
developed.
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Elnady et al. BCI-controlled arm exoskeleton

FIGURE 2 | Functional components of the training system. EEG data were collected and processed by the BCI software embedded in the laptop. Control
signals were then generated by the BCI to trigger the exoskeleton or the FES unit.

FIGURE 3 | Flowchart of the goal-directed motor task. The task required one to move a cup from an initial position to a new position. It was divided into 11
phases (movements). All of these phases are triggered by the positive outputs of the BCI, except Phase 3, 6, and 9.
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Participants
Participants with chronic stroke (>6 months post) were recruited
through local rehabilitation hospitals and stroke clubs. All poten-
tial participants were screened to meet the following inclusion
criteria: (a) age range from 35 to 85 years, (b) post-stroke dura-
tion≥6 months, (c) Montreal Cognitive Assessment (MoCA)≥25
(Aggarwal and Kean, 2010), or pass any other cognitive assessment
test, (d) shoulder active ROM in all directions of 10°–15°, (e) elbow
passive extension and flexion ROM of 0°–130°, (f) wrist passive
extension ROM of 0°–15°, and (g) fingers full passive extension.
The exclusion criteria included (a) any other neurological condi-
tions in addition to stroke, (b) unstable cardiovascular disease, (c)
contraindications to FES, or (d) other conditions (e.g., poor sitting
balance) that precluded them from undergoing the study.

Further, we used the upper-extremity subtest of the Fugl-Meyer
(FM) test to examine the impairment severity of all stroke partici-
pants (Gladstone et al., 2002). We also used kinesthetic and visual
imagery questionnaire short version (KVIQ-10) (Malouin et al.,
2007) to quantify the motor imagery ability of the participants.

Nine male stroke participants (mean age 66± 11.9 years)
agreed to participate in this study. The demographics and pre-
assessment results of the participants are presented in Table 1. One
participant (P01) had expressive aphasia [15/30 on the Frenchay
Aphasia Assessment (Al-Khawaja et al., 1996)] and was unable to
complete the MoCA test. Nevertheless, he was still included in this
study to explore if individuals with expressive aphasia could oper-
ate the training device. The FM scores of the participants ranged
from 11 to 63, suggesting mild to severe motor impairments. All
participants were also tested on the KVIQ to assess their imagery
ability. All participants scored above 29 out of 50.

Training protocol
All the stroke participants learn how to use the training device
to perform a pre-defined goal-directed motor task. The training
protocol involved three consecutive steps as explained below: the
setup of the BCI and the FES unit, and the use of the BCI-driven
device to perform the goal-directed motor task.

BCI setup. The Emotiv headset was applied to the participant’s
head. Each participant was seated comfortably in front of a laptop.
To set up a BCI model, the participant had to first go through a
procedure called stimulus presentation. During stimulus presen-
tation, the participant was asked to perform different repetitive
imagery tasks according to the stimulus or visual cues displayed
on the laptop. Two different visual cues were presented to the par-
ticipant in this study: rest and imagery grasp movements with the
affected arm. Each trial lasted from 9 to 11 s, i.e., the participant
was asked to perform each designated task for 5 s, followed by 4–6 s
of rest. The stimulus presentation stage consisted of two sessions
and each session lasted 7 min. Each session consisted of 20 trials
for each task. Throughout the experiment, the participant could
take a break whenever needed.

Next, the two classes of EEG data collected from the stimu-
lus presentation procedure (i.e., rest and motor imagery) were
processed to generate a customized BCI model for each participant
using BCILAB (Delorme et al., 2011). To generate a BCI model, a
feature extraction algorithm was first applied to extract relevant

Table 1 | Stroke participants’ demographics and pre-assessment data.

Participant ID Age DAS

(months)

HH AA MOCA FM KVIQ

P01 64 102 R R N/A 11 29

P02 60 99 R L 30 31 43

P03 69 18 R L 26 13 35

P04 67 37 R L 25 27 43

P05 72 43 L L 25 57 32

P06 38 18 R L 26 31 40

P07 78 14 R L 25 30 35

P08 66 42 R L 26 63 37

P09 82 36 R L 26 22 36

M&SD 66.2±11.6 45.4±33 – – – – –

DAS, duration after stroke; HH, handedness; AA, affected arm; FM, Fugl-Meyer

score; KVIQ, kinesthetic and visual imagery questionnaire score; M&SD, mean

and standard deviation.

features from the EEG data. Then, a classifier was trained to dis-
criminate the two classes of EEG data. In this study, we used the
common spatial pattern (CSP) algorithm (Ramoser et al., 2000;
Blankertz et al., 2008) to extract features from the EEG signals.
For each electrode, three features were generated by the CSP algo-
rithm. Meanwhile, linear discriminant analysis (LDA) was used as
a classifier (Christopher, 2006). To evaluate the performance of the
BCI, the 10× 10 cross-validation method was employed (Christo-
pher, 2006). More specifically, the data set was randomized and
divided into 10-folds. Nine of the folds were used to set up the
classifier and the remaining onefold was used to test the classifier.
This procedure was repeated for ten times. Then, the average BCI
cross-validation classification accuracy was computed.

For online testing, the BCI classified the EEG features as “0”
or “1” and delivered a decision output every 0.5 s. This decision
output was used to trigger the exoskeleton arm or the FES unit. An
output with a logical state “1” would trigger the next movement of
the training device. An output with a logical state “0,” on the other
hand, would not trigger anything.

FES setup. The RehaStim FES unit was used in the training
device to assist the participants in grasping and releasing an object.
For each participant, two self-adhesive rectangular electrodes were
attached to the stroke affected extensor digitorum. The stimulus
amplitude and the electrode positions were carefully adjusted until
hand opening was achieved. Whenever the FES unit was triggered,
symmetrical biphasic pulses, with a fixed frequency of 35 Hz and a
peak duration of 150 µs (Bigland-Ritchie et al., 1979) were applied
to open the hands of the participants. This helped the participants
to adjust hand position to get ready to grasp a cup. Then, the FES
unit was deactivated to release hand extension and grasp the object.

Goal-directed motor task. After setting up the BCI and the FES
unit, the investigators helped the participant to wear the exoskele-
ton. The exoskeleton was secured to the participant’s arm with four
straps that were fastened distally and proximally to the participant
forearm and lower arm (Figure 1).

Frontiers in Human Neuroscience www.frontiersin.org March 2015 | Volume 9 | Article 168 | 5

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Elnady et al. BCI-controlled arm exoskeleton

FIGURE 4 | (A) Test bench setup for motor-proprioception assessment.
The test bench has a table with two identical plates (upper and lower).
The size of each plate is 50 cm×70 cm. Each plate contains six identical
circles with a diameter of 2 cm. The circles on the two plates are coaxial.

(B) Target positions for the motor-proprioception assessment. Five of the
circles on the plate (denoted by the numbers 1–5) are the target
positions used for motor-proprioception assessment. H is the initial or
home position.

Next, an explanation on how to use the training device to per-
form a pre-defined goal-directed motor task was given to each
participant. This task required the participants to move a cup from
an initial position to a new position. This exercise was divided into
11 phases as shown in Figure 3. The participants placed the hand
at an initial position where the elbow was totally flexed. At Phase 1,
the participants performed motor imagery to activate the BCI and
consequently trigger the exoskeleton to extend the elbow. Then,
the participant would activate the BCI to trigger the FES unit to
open the hand in Phase 2. At Phase 3, the participants moved the
shoulder and trunk to bring the hand close to a cup on the table.
Once the hand position was adjusted, the participant would use
BCI control to deactivate the FES unit in Phase 3. The deactiva-
tion of the FES unit would assist the participants to close the hand
and grasp the cup. At Phase 5, to lift up the cup, the participants
used the BCI-controlled exoskeleton to flex the elbow. At Phase
6 and 7, the participants moved the cup to a new position using
shoulder and trunk movements and the assistance from the BCI-
controlled exoskeleton (elbow extension), respectively. To release
and place the cup on the table, the FES unit was triggered by
motor imagery (Phase 8). Finally, to return to the initial position,
the participants moved the hand away from the cup using shoul-
der and trunk movements (Phase 9), performed motor imagery
to deactivate the FES unit to close the hand (Phase 10), and per-
formed motor imagery again to flex the elbow (Phase 11). Note
that all the phases involved BCI control except shoulder and trunk
movements, as the participants had active control to move their
shoulder and trunk. Each participant was trained to repeat the
task multiple times without break until he/she reported muscle or
mental fatigue.

Motor-proprioception assessment protocol
The ability of the stroke participants to use proprioceptive infor-
mation to update movements was assessed twice during the exper-
iment: once before setting up the FES unit (pre-assessment) and
once after the robotic-assisted cup exercises (post-assessment).

The duration between the pre- and post-assessment tests was
approximately 1 h.

To assess the motor-proprioception ability of the participants,
we have developed a protocol using the setup shown in Figure 4.
The setup consists of a test bench and a two-DOF passive manip-
ulandum with a handle. Two potentiometers were embedded on
the manipulandum handle to measure its position. The circles
on the test bench are the initial (Home) and target positions the
participants should aim to reach for.

During the assessment protocol, the participant’s vision of the
hand, elbow, and shoulder under investigation was occluded with
a drape. The participant was requested to move the handle such
that the hand was placed on any of the five target positions speci-
fied by the investigator. Then, the distance error (DE) between the
target position and the position achieved by the participant was
calculated and recorded.

Five different sequences of target positions were used in the
assessment protocol. These sequences are presented in Table 2.
Each sequence contained 10 instructions that specified where
the participant should reach. In each sequence, the participant
was asked to reach a target position according to vocal instruc-
tions from the investigators. In these sequences, the letter “H”
means that participant must return to the home position “H” and
then advance to the next target position according to the vocal
instruction. All sequences start from “H.”

Motor-proprioception assessment: validity and reproducibility
To evaluate the validity of the developed method, we compared the
obtained results with the test scores obtained from two other stan-
dard clinical tests for proprioception, i.e., the “up-or-down” test
and the tactile sensation test. The FM test protocol for the “up-
or-down” test has been used clinically to evaluate the upper-limb
proprioception of a patient (Trinh, 2005). The tactile sensation
test, on the other hand, was done to assesses the upper-limb
tactile sensation and motor deficits quantitatively (Trinh, 2005;
Dros et al., 2009). Both the “up-or-down” test and the tactile
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sensation test were administered to all the participants by physical
therapist.

Ten healthy and eight stroke participants (all in Table 2 except
P08) agreed to participate in this part of the study. All participants
gave informed written consent to participate in the study. The
10 healthy participants consisted of 8 males and 2 females (aged
from 22 to 37, with a mean of 27.9± 5.5 years; 9 right-handed, 1
left-handed).

To assess the reproducibility of the results obtained using the
developed motor-proprioception assessment method, four healthy
participants were asked to perform the assessment protocol twice.
Two tests were conducted 7 days apart.

Subjective evaluation (questionnaire feedback)
At the end of the experiment, the participants were asked to com-
plete a questionnaire to evaluate their perceived workload of using
the BCI-controlled system to perform the goal-directed motor
task. The questionnaire used was the NASA “task load index”
(TLX) questionnaire (Hart, 2006). This questionnaire is a multi-
faceted assessment tool that rates perceived workload with six sub-
scales, i.e., mental demand, physical demand, temporal demand,
performance, effort, and frustration. Each participant was asked
to evaluate the TLX subscales with a scale of 0–20.

RESULTS
MOTOR-PROPRIOCEPTION ASSESSMENT TEST: VALIDITY AND
REPRODUCIBILITY
Validity
The validity of the developed motor-proprioception assessment
method was examined using the correlation values between the
DE obtained from this method and the scores of two other tests
(Leibowitz et al., 2008). The results are presented in Table 3. The
strong correlation values between DE and the test scores from
either of the standard clinical proprioception test suggest that the
developed method is valid.

Test–retest reliability
Two tests were conducted among four healthy participants,
7 days apart. For the dominant hand, the deviations (in mil-
limeters) between the two tests’ results for each participant were
0.8, 2.8, 6.7, and 0.8, respectively (mean= 2.87± 2.85 mm). For
the non-dominant hand, the deviations for each participant
are 3.9, 5.9, 2.2, and 0.75, respectively, for non-dominant arm
(mean= 3.25± 2.25 mm).

To quantify the reliability of the motor-proprioception assess-
ment method, the intra-class correlation coefficient (ICC) between
the data from the first test and the second test is calculated. A high
intra-class correlation of 0.900 (p < 0.05) was demonstrated. This
supports the reliability of the method.

TRAINING EXERCISE RESULTS
Table 4 presents the BCI cross-validation accuracy for each stroke
participant. On average, the cross-validation accuracy achieved is
68.8%, with a standard deviation of 9.0%. The results obtained
from this study are similar to those reported in other BCI studies
in the literature (Ang et al., 2011).

All the stroke participants (n= 9) completed the training exer-
cise at least two times. The average number of training exercise

Table 2 | Motor-proprioception task sequences.

Vocal instruction steps Sequence No.

1 2 3 4 5

1 1, H 1 3 4 1, H

2 2, H 2 4 1 2, H

3 3, H 3 2 3 3, H

4 4, H 4 3 5 4, H

5 5, H 5, H 5 2 5, H

6 5, H 5 3 4 5, H

7 4, H 4 1 1 4, H

8 3, H 3 3 5 3, H

9 2, H 2 4 2 2, H

10 1, H 1 2 1 1, H

H, home target point.

Table 3 | Validation results for the developed motor-proprioception

assessment test.

DE vs. “up-or-down”

test scores

DE vs. tactile

sensation test scores

Correlation value −0.764 (p < 0.001) 0.763 (p < 0.001)

that was completed is 3± 0.7 (ranged from 2 to 5). The time taken
to complete a trial, T c was used to evaluate the performance of the
participants. On average, the participants completed one exercise
in 7.4± 2.8 min. All the participants successfully reduced the T c

value of the last trial (with an average of 39.3± 16.81 s). For three
out of the nine participants (P03, P04, and P06), the reduction was
<2 s. For the remaining participants, the reduction ranged from
4.9 to 128.8 s. The time to complete a trial was reduced signifi-
cantly in some participants (e.g., 128.8 in P05) because after a few
trials, they quickly became familiarized with the different phases
of the protocol and the BCI system. Next, the difference between
the T c of the first and last trial as well as the difference between the
BCI positive output of the first and last trials were also examined.
No correlation was found (r=−0.12, p > 0.5) as they had gained
a better control of the training device.

For each trial of the training exercise, the following data were
recorded in real-time: the BCI output: rest (“0”) or activate (“1”);
the FES status: deactivate (“0”) or activate (“1”); the angular posi-
tion of the exoskeleton; and the time taken to complete a trial (T c).
In Figure 5, an example of the time course of the BCI output [rest
(“0”) or activate (“1”)], the FES status, and the angular position
of the exoskeleton for participant P05 is presented. This example
shows a typical behavior of the system output in real-time when the
participant was in good control of the training device. As shown in
Figure 5, the participant successfully generated positive BCI out-
puts (“1”) that triggered the exoskeleton and the FES. However,
not all positive BCI outputs in the figure are true positives. Three
of the positive BCI outputs labeled as “PO” did not trigger any
device. These “PO” occurred at 1.52, 0.55, and 5.65 s, respectively,
after a true positive. The first and the last POs were very likely false
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Table 4 | BCI cross-validation accuracy.

Participant ID P01 P02 P03 P05 P06 P07 P08 P09 P10

Accuracy (%) 81.10 65.20 83.20 69.26 62.87 64.25 55.78 63.31 73.90

Mean±SD 68.76±9.03

FIGURE 5 |Time course of the system response for P05. The following
data were recorded in real-time: the BCI output: rest (“0”) or activate
(“1”); the FES status: deactivate (“0”) or activate (“1”); and the angular
position of the exoskeleton. This figure demonstrates a typical behavior of
the system. It consists of 12 regions denoted by letters from “A” to “L.”
Section “A” describes the start of the trial till triggering the elbow
extension, which initiates elbow extension from the initial position; Section
“B” (Phase 1) describes elbow extension (to reach the cup); In Section
“C,” the participant generates the trigger to activate the FES (to open the
hand, Phase 2) and adjusts the shoulder/trunk (Phase 3); In Section “D,”
the participant is supposed to generate a trigger to deactivate the FES (to
close the hand and grasp, Phase 4); In Section “E,” the participant is

supposed to generate a trigger to initiate the elbow flexion; Section “F”
elbow flexion (to elevate the cup, Phase 5); In Section “G,” the participant
is supposed to generate a trigger for elbow extension and adjusts the
shoulder/trunk (Phase 6); Section “H” elbow extension (to place down the
cup, Phase 7); In Section “I” the participant is supposed to generate a
trigger to activate the FES (to open the hand and leave the cup, Phase 8);
Section “J” describes the section in which the participant moves her/his
shoulder/trunk away from the cup (Phase 9), and is supposed to generate
a trigger to deactivate the FES (to close the hand, Phase 10); in Section
“K” the participant is supposed to generate a trigger to initiate the elbow
flexion; and Section “L” elbow flexion (to return to initial position,
Phase 11).

positives because they took place more than 1 s after a true posi-
tive. These undesired positive outputs, however, did not affect the
overall system performance. This is because when the exoskeleton
was in operation, no other devices could be triggered.

MOTOR-PROPRIOCEPTION RESULTS OF STROKE PARTICIPANTS
The motor-proprioception of the stroke participants before (pre-
assessment) and after (post-assessment) the BCI training protocol
were compared. Motor-proprioception was assessed using the
DE values obtained from the motor-proprioception assessment
protocol.

For the pre-assessment test, the DE values for the
affected and non-affected arms ranged from 24.9 to 146.2 mm

(mean= 60.93± 39.5) and 24.9 to 88.2 mm (mean= 42.3± 11.6),
respectively. For the post-assessment test, the DE values the range
for the affected arm was 28.4–124.2 mm (mean= 65.4± 31.13)
and the range for the non-affected arm was 31.8–61.5 mm
(mean= 45.47± 11.4). Table 5 reports the absolute difference
between the DE values for the affected and non-affected arm
(DDE). As the data were non-Gaussian, the Wilcoxon signed rank
test was used to determine if there was any difference between
the DDE values for the pre and post-assessments. The analysis
suggested that there was no significant difference (p= 0.36).

The Wilcoxon signed rank test was also used to determine if
there was any difference between the DDE values for the healthy
and stroke participants. The analysis showed that the DDE values
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for the healthy and the pre-assessment DDE values for the stroke
participants were statistically significant (p < 0.05). Interestingly,
the DDE values for the healthy and the post-assessment DDE
values for the stroke participants were not statistically different
(p= 0.13). The pre-assessment DDE values for three of the stroke
participants (P05, P06, and P07) were within the 95% confi-
dence interval of the DDE values for the healthy participants, i.e.,
5.5± 4.8 mm.

QUESTIONNAIRE FEEDBACK
At the end of the experiment,all the stroke participants subjectively
evaluated the training device using the NASA TLX questionnaire.
The factors taken into consideration in the questionnaire and the
average ratings obtained from the participants are presented in
Table 6. The results show that the mental demand is the main
contributor to the workload as it has the highest average rating
(14.4± 4.7).

CORRELATION BETWEEN VARIABLES
Based on the data collected from the stroke participants, the bivari-
ate correlations between 15 different variables were examined.
This exploratory analysis allowed us to discover the relationships

Table 5 | Difference between both arms’ DE.

Participant ID DDE (mm)

Pre-assessment Post-assessment

P01 31.6 1.2

P02 27 34.5

P03 29.2 37.1

P04 6 4.4

P05 6.3 0.5

P06 8.6 18.8

P07 16.7 8.8

P08 111.8 82.4

P09 39.7 9.2

Mean±SD 30.8±32.7 21.9±26.4

between these variables, which could be useful in generating
hypothesis for future work. These variables include:

(1) age of the stroke individuals
(2) duration of stroke (months)
(3) upper-extremity FM scores
(4) KVIQ/KI/VI
(5) BCI cross-validation accuracy
(6) time taken to complete a trial, T c

(7) motor-proprioception ability (pre-assessment), denoted as
DDEpre

(8) motor-proprioception ability (post-assessment), denoted as
DDEpost

(9) difference between DDEpost and DDEpre, denoted as DDEdif
(10) mental demand (from TLX)
(11) physical demand (from TLX)
(12) temporal demand (from TLX)
(13) participants’ perceived performance (from TLX)
(14) effort (from TLX)
(15) frustration (from TLX).

Six of the variable pairs have demonstrated significant correla-
tion values (p < 0.05), i.e., motor-proprioception ability before
(DDEpre) and after (DDEpost ) assessment (r = 0.855); age
and frustration (r = 0.756); physical demand and frustration
(r = 0.680); temporal and physical demand (r = 0.682); BCI cross-
validation accuracy and FM scores (r =−0.678); DDEdif and
mental demand (r =−0.805). The scatter plots of these variable
pairs are presented in Figure 6.

The motor-proprioception ability of the stroke participants
before and after the assessment was highly correlated (r = 0.855) as
demonstrated in Figure 6A. Their ICC value was 0.910 (p < 0.05),
which also demonstrated the reproducibility of the results of the
developed motor-proprioception assessment method.

The correlation analysis showed that the participant’s age and
duration of stroke did not have a significant correlation with either
the BCI cross-validation accuracy or the time taken to complete a
robotic-assisted exercise, T c. The age of the participants, however,
was correlated with their frustration level when operating the BCI-
driven device (see Figure 6B). Another variable that had a positive

Table 6 | NASATLX questionnaire’s results.

Participant ID TLX scale (1–21)

Mental demand Physical demand Temporal demand Performance Effort Frustration

P01 20 6 5 2 11 6

P02 11 5 4 0 11 0

P03 6 5 4 0 15 11

P04 17 14 16 0 15 13

P05 17 7 6 11 17 10

P06 9 3 11 3 5 0

P07 15 11 15 9 9 10

P08 19 6 12 9 13 6

P09 16 6 9 14 10 10

Mean±SD 14.4±4.7 7.0±3.4 9.1±4.6 5.3±5.1 11.8±3.7 7.3±4.7
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FIGURE 6 | Scatter plots of the variable pairs that demonstrate
significant correlation values. (A) The scatter plot of the
motor-proprioception ability of the stroke participants before and after the
assessment. (B) The scatter plot of the frustration level and age of the
stroke participants. (C) The scatter plot of the frustration level and mental

demand of the stroke participants. (D) The scatter plot of the temporal
and physical demand of the stroke participants. (E) The scatter plot of the
BCI accuracy and the Fugl-meyer scores. (F) The scatter plot of the
motor-proprioception ability and mental demand of the stroke
participants.

correlation with frustration was physical demand (r = 0.680) as
shown in Figure 6C. On the other hand, mental demand was not
correlated with frustration. More specifically, those who consid-
ered the BCI-driven exercise mentally demanding (P01 and P08)
did not feel more discouraged and frustrated.

As shown in Figure 6E, the BCI cross-validation accuracy
had a negative correlation with the upper-extremity FM scores
(r =−0.678). This contradicts another study in the literature (Ang
et al., 2008), where the authors showed that the upper-extremity
FM scores of the hemiparetic stroke patients (n= 35) was not
linearly correlated with the BCI performance and thus, motor
impairment did not affect the stroke patients’ ability to operate
a BCI.

Next, our results showed no correlation between the FM scores
and the KVIQ/KI/VI scores. This suggested that motor impair-
ment did not affect the stroke participants’ ability to perform
motor imagery. We also found that the BCI cross-validation accu-
racy was not correlated with KVIQ, KI, or VI (p > 0.2). This was
consistent with the results reported in (Zich et al., 2015), in which

no correlations were found between the KVIQ/KI/VI and the BCI
accuracy. However, the results were not consistent with (Vuckovic
and Osuagwu, 2013), where the authors reported a correlation
between KI and BCI accuracy (r = 0.458) and VI and BCI accuracy
(r = 0.728). In this study, the KVIQ scores were not able to predict
the BCI accuracy possibly because the motor imagery task used
to operate the BCI was different from the KVIQ motor imagery
tasks. Further studies are necessary to investigate the relationship
between BCI accuracies and KVIQ scores.

It was also interesting to investigate the relationship
between the participants’ proprioceptive function and their feed-
back/performance during the online exercise protocol. The stroke
participants were categorized into three groups according to the
difference between their DDE values pre- and post-assessment:

(a) Group A (P01, P07, P08, and P09): decreased DDE values
(b) Group B (P04, P05, and P06): DDE values are in the range of

those of the healthy participants
(c) Group C (P02 and P03): increased DDE values.
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We found strong correlation between the change in the DDE
values and the mental effort in the questionnaire (r=−0.801,
p < 0.05). Group A reported that the training exercise was men-
tally demanding but not physically demanding. Group C reported
that the training exercise was neither mentally nor physically
demanding. For Group B, the participants (P05 and P06) who
reported that the training exercise was mentally demanding expe-
rienced a decrease in the DDE values. On the contrary, partic-
ipant P07 reported that the training exercise was not mentally
demanding and showed an increase in the DDE values.

Figure 7 shows the scatter plot of the motor-proprioception
ability and the BCI cross-validation accuracy/T c. The correla-
tion analysis showed that the participants’ motor-proprioception
ability did not have a significant relationship with either the BCI
cross-validation accuracy or the time taken to complete a robotic-
assisted exercise, T c. Our preliminary results suggested that the
motor-proprioception ability of the stroke individuals and their
age and duration of stroke did not affect their ability to use the
BCI-driven exoskeleton with FES.

DISCUSSION AND CONCLUSION
In this study, we developed a comprehensive BCI platform that
combines different rehabilitation and technological approaches.
The platform consists of a BCI training device and a motor-
proprioception assessment protocol. The BCI training device pro-
motes user engagement via the use of motor imagery to trigger the
exoskeleton or FES. It also promotes the use of goal-directed motor

task as part of the training protocol. The motor-proprioception
assessment protocol provided us with a means to assess whether
motor-proprioception ability was a critical factor in determining
for whom this therapy may be best employed.

TRAINING DEVICE
To evaluate the performance of the training device, two perfor-
mance metrics were examined: the BCI cross-validation accuracy
and the time taken to complete a goal-directed motor task. In
addition, the participants also provided subjective feedback about
the system using the TLX questionnaire.

The BCI cross-validation accuracy is an important metrics
widely used to assess the performance of the BCI model generated
offline. Our results show that the BCI cross-validation accuracy
achieved is in the range of 55.78–83.20%, which is consistent with
those in the literature (Ang et al., 2011). The accuracy for some of
the participants (P02, P04, P05, P06, P07, and P08) was not sat-
isfactory (<70%). One reason is that some participants were not
able to focus when performing motor imagery possibly due to their
age and stroke related problems. Also, the number of electrodes
placed around the motor cortex area was sparse.

For the goal-directed motor task of moving a cup, the BCI
online accuracy was not available. This is because during this real-
time operation, no cues were given to the participants as to when
they should perform a motor imagery or rest. In other words, the
system was self-paced and the participants had the flexibility of
deciding when to activate the BCI and consequently trigger the

FIGURE 7 | Scatter plots of the pre- and post-assessment
motor-proprioception assessment results of the stroke participants
and the BCI cross-validation accuracy and the time to complete a
trial. (A) The scatter plot of the BCI accuracy and the motor-
proprioception ability (pre-assessment). (B) The scatter plot of the BCI

accuracy and the motor-proprioception ability (post-assessment). (C) The
scatter plot of the time taken to complete a trial and the motor-
proprioception ability (pre-assessment). (D) The scatter plot of the time
taken to complete a trial and the motor-proprioception ability
(post-assessment).
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exoskeleton or the FES unit. As a result, no true labels of the EEG
data were available. To measure the training device performance,
the time taken by the participants to complete a trial (T c) was
used. On average, the participants were able to complete three tri-
als of the exercise. The number of trials completed was small in
this study because the participants experienced fatigue toward the
end of the experiment. In real rehabilitation settings, the BCI set
up and the use of the BCI device for training could be done on
separate days. This will subsequently increase the number of trials
the participants can complete. The speed of completing a trial var-
ied across the stroke participants. The T c values ranged from 2.3
to 6.1 min and the mean was 2.5 min. This mean value is actually
quite close to that achieved when the system is ideal, i.e., approxi-
mately 2.2 min. Here, an ideal system implies that the BCI system
is perfect, i.e., its accuracy is 100%. In addition, we observed that
all the participants successfully reduced the T c value of the last
trial. This improvement possibly indicates that they had gained a
better control of the training device. The results are encouraging.
Also, our results suggest the participant with expressive aphasia
was able to use the system. This demonstrates the potential use
of the developed system in performing goal-directed motor task
multiple times in a 1 h rehabilitation intervention.

One major factor that could affect the online performance of
the system is the BCI accuracy. If the participants have a good
BCI control, less time is needed to finish an exercise. To improve
the performance of the BCI system, denser electrodes could be
placed over the scalp especially the motor cortex area. Also, EEG
signals have a low signal-to-noise ratio and are frequently cont-
aminated with artifacts. These unwanted noises either originate
from the user (e.g., ocular and facial muscle activities) or from
other non-physiological sources such as power line interference
and created artifacts in the EEG signal. As artifacts could affect
the quality of the EEG signals and subsequently degrade the BCI
performance, it is important to apply automatic artifact removal
algorithms to improve the BCI performance. Another design fac-
tor that has not received much attention from BCI researchers
is volitional inhibition, which is the ability to suppress a move-
ment due to unexpected changes in the environments (Mirabella,
2012). Neural correlates of volitional inhibition have been inves-
tigated in Mirabella et al. (2011). However, more research effort
is needed to decode volitional control using EEG signals before
this feature is incorporated into the BCI system. The ability of
the BCI to predict volitional control may potentially lead to a BCI-
controlled exoskeleton/FES that better mimics natural movements
(Mirabella, 2012).

MOTOR-PROPRIOCEPTION ASSESSMENT
We employed our new assessment method to identify stroke partic-
ipants with motor-proprioception deficits. We have demonstrated
its validity by comparing its results with two other standard clinical
tests for proprioception (i.e., the “up-or-down” test and the tactile
sensation test). The claim is supported by the results that the DE
values of the developed method has a significant correlation with
the test scores obtained from either the “up-or-down” test or the
tactile sensation test.

Our results show that participants P05, P06, and P07 have DDE
values that were in the range of the DDE values of the healthy

participants. This finding is consistent with the results obtained
from the two standard clinical tests for proprioception. In addition,
no correlation was found between the proprioceptive function
of both the hands of the healthy participants. Thus, by compar-
ing the proprioception of the affected and non-affected arms of
the stroke participants using DDE, we can quantify the degree
of which stroke has affected the proprioceptive function of the
affected arm. The difference between the DDE values for the stroke
participants for the pre- and post-assessments is not statistically
different (p < 0.16). However, the average DDE values were lower
after the BCI training session.

SUBJECTIVE EVALUATION
The stroke participants’ subjective feedback on TLX questionnaire
has suggested that the developed system and exercise protocol is
safe,neither slow nor fast, and not overly physical demanding. Even
though the participants perceive the task as mentally demanding,
they gave low frustration rating about the experiment. Based on
our personal communication with the participants, their ability to
control the exoskeleton and the FES unit with motor imagery has
boosted their confidence level in regaining the motor functions in
the future.

CONCLUSION
In summary, we have developed a comprehensive platform that
consists of (1) a BCI-controlled exoskeleton/FES training device
with proprioceptive feedback and (2) a motor-proprioception
assessment test. Despite of the small sample size in this study
(n= 9) and the limited number of training repetitions, we showed
that individuals with stroke can operate the BCI-controlled robotic
training device. All the stroke participants successfully completed
multiple trials of the goal-directed motor task of moving a cup
using the training device. It would be interesting to investigate
the use of this comprehensive platform in stroke rehabilitation at
various sites of service with a bigger sample size. In our future
work, a clinical study will be conducted to evaluate the efficacy of
the developed platform in restoring the motor and proprioceptive
functions of stroke individuals.
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