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Background: Gliomas are the most malignant central nervous system tumors. With the
development of sequencing technology, more potential biomarkers related to the
treatment, prognosis, and molecular classification of glioma have been identified. Here,
we intend to investigate the potential biological function and clinical value of a new
biomarker in glioma.

Methods: KDELR1 expression data and the corresponding clinical information were
downloaded from public databases and then preprocessed using R language.
Correlation, Kaplan–Meier survival, and Cox regression analyses were performed to
explore the clinical significance of KDELR1 in glioma patients. Furthermore, the immune
infiltration and microenvironment parameters were evaluated via TIMER and CIBERSORT.
Immunohistochemistry was conducted to confirm the KDELR1 expression and its
correlation with immunity infiltration and prognosis.

Results: KDELR1 was upregulated in glioma samples compared with normal brain
tissues, and its expression was significantly correlated with age, the World Health
Organization (WHO) grade, recurrence, necrosis, microvascular proliferation, molecular
classification, isocitrate dehydrogenase (IDH) mutation, and 1p/19q codeletion status. In
addition, survival analysis showed that glioma patients with KDELR1 overexpression
had shorter overall survival (OS) and disease-free survival times, and Cox regression
analysis revealed that KDELR1 acted as an independent prognostic factor of OS in
glioma patients. Gene set enrichment analysis indicated a significant enrichment of
metabolism-associated pathways. KDELR1 expression was positively associated with
immune infiltration (including infiltration by CD8+ T cells, CD4+ T cells, macrophages,
and so on) and microenvironment parameters (including stromal, immune, and
ESTIMATE scores) in gliomas. The expression of KDELR1 and its correlation with the
tumor grade and prognosis were confirmed by immunohistochemistry in clinical
samples (n = 119, P < 0.05).
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Conclusions: Taken together, these findings suggest that KDELR1 is correlated with the
tumor grade, molecular classifications, and immune infiltration; highlighting that KDELR1
is a novel and promising biomarker for molecular classification, treatment, and prognostic
assessment may further indicate the treating effect of immune therapy.
Keywords: KDELR1, biomarker, immunity, prognosis, glioma
INTRODUCTION

Gliomas are the most common primary malignant tumors of the
central nervous system (CNS), accounting for approximately
40%~60% of intracranial tumors, and have high morbidity and
mortality (1). Low-grade gliomas (LGGs) and high-grade
gliomas (HGGs) describe grade I/II and grade III/IV gliomas,
respectively. Grade IV glioma, or glioblastoma multiforme
(GBM), has a poor prognosis, with a median survival time of
only 14–16 months from the first diagnosis (2, 3). Currently, new
strategies like precise surgery, adjuvant radiotherapy, and
chemotherapy (4, 5) have been conducted, while the prognosis
of glioma has not improved significantly to date, and the
recurrence rate is still high (6).

Compared with the World Health Organization (WHO)
classification of CNS tumors published in 2007 and 2016, the
main change in the 2021 classification is laying more emphasis
on genetic parameters into the strategy of glioma diagnosis,
breaking with the century-old standard of diagnosis based
entirely on microscopy (3, 7) . The Cancer Genome Atlas
(TCGA) team has subclassified GBMs into four subtypes:
proneural, mesenchymal, neural, and classical (8). In addition,
Phillips et al. divided HGGs into proneural, mesenchymal, and
proliferative subtypes (9). Notably, patients with mesenchymal
subtype glioma usually have a worse prognosis than patients with
the proneural subtype (10). In addition, mutations in the
telomerase reverse transcriptase (TERT) promoter and IDH
were found to be beneficial for the classification and risk
stratification of grade II/III glioma patients (11, 12).

Given the limited effectiveness of traditional treatments, a
series of new treating strategies have been tried in gliomas with
the help of advancing genomics. In recent years, high hopes have
been placed on tumor immunotherapy, which has not only
gradually become a research hotspot in the scientific studies
(13) but also achieved amazing curative effects in the clinical
treatment of some patients. Unfortunately, only limited patients
with gliomas prolong the survival time after immune treatments
(14). At present, relevant basic studies have revealed that the
expression (15) or combinations (16–18) of immune-related
indicators can be used to predict the prognosis of GBM
patients, which suggests that finding a molecular target that
can effectively predict the immune status of patients is urgent for
guiding treatment (19).

KDEL Endoplasmic Reticulum Protein Retention Receptor 1
(KDELR1), a 24.5-kDa seven-transmembrane protein encoded
by ERD2, which is located on 19q13.33, is responsible for the
retrieval of soluble endoplasmic reticulum (ER) residents from
the Golgi back to the ER (20). Some studies reported that
2

KDELR1 mainly regulates the retention of soluble ER residents
and the transporting processes in the secretory pathway (21, 22).
Some recent studies showed that KDELR1 might participate in
maintaining cellular homeostasis (23) along with a potential role
that involves the regulation of integrated stress responses (ISRs)
in T cells (24), which is a possible way of regulating the immune
homeostasis. However, the roles of KDELR1 in the biological
functions and molecular mechanisms of gliomas are not clear.

In this study, genetic and clinical data related to KDELR1
were downloaded from public databases, including TCGA, Gene
Expression Omnibus (GEO), and Chinese Glioma Genome Atlas
(CGGA). After data preprocessing was completed, correlation,
survival, and Cox regression analyses were performed to explore
the potential function of KDELR1. We aimed to develop a novel
diagnostic biomarker for glioma, thus assisting disease
stratification and precise treatment.
MATERIALS AND METHODS

Data Downloading and Preprocessing
The datasets of expression profiles with corresponding clinical
information were obtained from public databases, including
TCGA (https://cancergenome.nih.gov/), CGGA (http://www.
cgga.org.cn/), and GEO (https://www.ncbi.nlm.nih.gov/geo/).
The TCGA database classifies gliomas into two types: LGG and
GBM; therefore, the three cohorts (glioma, LGG, and GBM) were
named TCGA_glioma, TCGA_LGG, and TCGA_GBM,
respectively. These three datasets contained 698, 529, and 169
samples, respectively. For Chinese cohorts, CGGA contained three
datasets: mRNA-array_301, mRNAseq_325, and mRNAseq_693,
each with 301, 325, and 693 glioma samples, respectively. The
CGGA database contains abundant clinical information, such as
age, sex, WHO grade, TCGA subtype, histology, IDH mutation
and 1p/19q codeletion status, and OS time and status. In addition,
microarray datasets were obtained from GEO, including GSE4271
(generated from GPL96), GSE4290 (GPL570), GSE4412 (GPL96),
GSE68848 (GPL570), and GSE13041 (GPL96, GPL570, or
GPL8300). After retrieval, all the gene expression profiles were
preprocessed, including background correction, normalization,
and log2 conversion, using R software (version 3.5.1). When a
gene matched multiple probes, the average was computed and
adopted for subsequent analyses.

To explore the expression levels of KDELR1 in brain or CNS
cancer (especially gliomas) and normal samples, the KDELR1
gene was submitted to Oncomine (https://www.oncomine.org)
with the criteria of P < 0.01, fold-change (FC) > 1.5 and gene
rank = all (24, 25). In addition, Gene Expression Profiling
June 2022 | Volume 12 | Article 783721
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Interactive Analysis 2 (GEPIA2; http://gepia.cancer-pku.cn/
index.html), based on gene expression and clinical data from
TCGA and GTEx, was used for the survival analyses of OS and
disease-free survival (DFS) (26). Gene set enrichment analysis
(GSEA) was used to analyze enrichment in high-risk and low-
risk groups defined by KDELR1 expression levels (27).

Analysis of Immune Infiltration and
the Microenvironment
The R package “ESTIMATE” was used to analyze the
communities of immune and stromal cells according to the
characteristics of gene expression and then to obtain immune,
stromal, and ESTIMATE scores (28). The significance of
immune cells in the prognosis of glioma patients was explored
in the Tumor Immune Estimation Resource (TIMER) site (29).
TIMER was also used to provide an analysis of the clinical
correlation between immune cell infiltration and patient survival.

Clinical Specimen Collection and
Immunochemistry Staining
Samples from 119 patients (5 patients with WHO grade I, 33
patients with WHO grade II, 28 patients with WHO grade III,
and 53 patients with WHO grade IV glioma) were collected from
Shanghai OutDo Biotech. Co., Ltd., Shanghai, China. Informed
consent was obtained from all patients, and the experimental
protocols were approved by the Ethics Committee of Shanghai
OutDo Biotech Co., Ltd.

Antigen retrieval was performed by heating in the citrate
buffer (10 mM, pH 6.0) for 10 min. The slides were incubated
with the KDELR1 antibody (1:100, Cat# NBP2-12873-25 µg;
Novus, Inc.), CD4 antibody (1: 200, Cat# ab 133616, Abcam,
Inc.), and CD8 antibody (1:200, Cat# ab217344, Novus, Inc.,
Englewood, CO, US; Abcam, Inc.,Cambridge, UK; Agilent
Technologies Inc., SantaClara, CA, US) for 1.5 h at room
temperature. Immunoreactive elements were visualized using
an EnVisio Detection kit (Cat# GK500705; Dako, Agilent
Technologies, Inc.) containing the secondary antibody and
peroxidase/3,3-diaminobenzidine (DAB) chromogen. Next, the
cell nuclei were counterstained with hematoxylin. Slides in which
the primary antibody was omitted were used as negative controls.
KDELR1 immunoreactivity scores (IRS) were calculated based
on the staining intensity (SP) and the positive staining
percentage (SI) of the cells (the score was evaluated by two
pathologists individually). SI was scored as follows: 0: <5%; 1:
5%–25%; 2: 25%–50%; 3: 51%–75% and 4: 75%–100%. SP was
subjectively scored as follows: 0, no staining; 1, weak but definite
staining; 2, moderate staining; and 3, intense staining. The IRS
was calculated as IRS = SP + SI. The total possible score was 7,
and specimens were assigned to one of the 4 levels based on the
score: 0–1 (–), 2–3 (+), 4–5 (++), and more than 6 (+++).

Statistical Analysis
GraphPad Prism 7.0, SPSS Statistics 20, and R language were
used for statistical analysis. The box plots of the expression level
of KDELR1 across different groups were generated and
calculated by GraphPad Prism 7.0. Kaplan–Meier survival
analysis and Cox regression analysis were performed and
Frontiers in Oncology | www.frontiersin.org 3
generated via the R language. Immunoreactivity scores were
analyzed and generated via SPSS Statistics 20. Differences with
P<0.05 were considered statistically significant.
RESULTS

KDELR1 Expression Is Significantly
Associated With Clinical Features and the
Molecular Subtypes of Gliomas
We initially evaluated KDELR1 transcription levels in different
human tumors by analyzing TCGA RNA-seq data using the
TIMER database (Figure 1). KDELR1 mRNA expression was
markedly higher in GBM tissue than in normal brain tissue. In
addition, KDELR1 was found to be highly expressed in bladder
urothelial carcinoma (BLCA), breast-invasive carcinoma
(BRCA), cholangiocarcinoma (CHOL), colon adenocarcinoma
(COAD), esophageal carcinoma (ESCA), glioblastoma (GBM),
head and neck squamous cell carcinoma (HNSC), kidney renal
clear cell carcinoma (KIRC), liver hepatocellular carcinoma
(LIHC), lung adenocarcinoma (LUAD), lung squamous cell
carcinoma (LUSC), pheochromocytoma and paraganglioma
(PCPG), prostate adenocarcinoma (PRAD), rectum
adenocarcinoma (READ), stomach adenocarcinoma (STAD),
thyroid carcinoma (THCA), and uterine corpus endometrial
carcinoma (UCEC) tissues and was significantly lower in head
and neck squamous cell carcinoma that were positive for human
papillomaviruses (HNSC-HPV+) than in the respective control
tissues. These results demonstrated that KDELR1 was
abnormally expressed in multiple tumors. Overall, these results
indicated that KDELR1 expression was higher in GBM tissues
than in normal counterparts.

The Oncomine search yielded seven analyses indicating
KDELR1 upregulation and only one analysis indicating
KDELR1 downregulation between brain or CNS cancer and
normal samples with the criteria of P < 0.01, FC > 1.5, and
gene rank = all (Figure 2). These results indicate that KDELR1
might be upregulated in CNS cancers, such as gliomas, compared
with the corresponding normal samples.

Overexpression of KDELR1 Is Positively
Associated With Older Age, Recurrence,
Necrosis, and Microvascular Proliferation
in Gliomas
To further clarify the relationship between KDELR1 expression and
the clinical features of glioma patients, the glioma samples were
classified into two or more groups according to each clinical feature
in each dataset. Several datasets showed that KDELR1 expression
was higher in glioma patients aged ≥45 years than in those aged <45
years, including mRNA-array_301 and mRNAseq_325 of CGGA,
TGGA_glioma, GSE4271, and GSE13041 (GPL96) (P < 0.05;
Figures 3A–E). In addition, recurrent glioma samples showed a
higher expression level of KDELR1 than primary samples in the
CGGA mRNA-array_693 dataset (P < 0.05; Figure 3F). Moreover,
microvascular proliferation and necrosis are the diagnostic criteria
of GBMs, and the analysis of the GSE4271 dataset showed that
June 2022 | Volume 12 | Article 783721
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FIGURE 1 | The expression level of KDELR1 is upregulated in GBM. The level of KDELR1 expression in different tumor types from TCGA data analyzed in TIMER.
KDELR1 was highly expressed in bladder urothelial carcinoma (BLCA), breast invasive carcinoma (BRCA), cholangiocarcinoma (CHOL), colon adenocarcinoma
(COAD), esophageal carcinoma (ESCA), glioblastoma (GBM), head and neck squamous cell carcinoma (HNSC), kidney renal clear cell carcinoma (KIRC), liver
hepatocellular carcinoma (LIHC), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), pheochromocytoma and paraganglioma (PCPG), prostate
adenocarcinoma (PRAD), rectum adenocarcinoma (READ), stomach adenocarcinoma (STAD), thyroid carcinoma (THCA), and uterine corpus endometrial carcinoma
(UCEC) tissues and lowly expressed in the positive human papillomaviruses of head and neck squamous cell carcinoma (HNSC-HPV+). *P < 0.05, **P < 0.01,
***P < 0.001.
FIGURE 2 | The expression levels of KDELR1 between brain or CNS cancer and corresponding normal samples with the criterion of P < 0.01, fold-change (FC) >
1.5 and gene rank = all using the database Oncomine.
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grade IV gliomas with necrosis or microvascular proliferation had
much higher KDELR1 expression than those without necrosis (P <
0.05; Figures 3G, H).

KDELR1 Expression Is Positively Related
to the WHO Grade and Pathological
Classification of Gliomas
Using the information from databases including GEO, CGGA,
and TCGA, we wanted to determine whether the expression level
of KDELR1 was related to the WHO grade and pathological
classification of gliomas. The results showed that KDELR1
expression significantly increased with the WHO grade in
several cohorts, including mRNA-array_301, mRNA-array_325,
and mRNA-array_693 of CGGA, TCGA_glioma, GSE4271,
GSE4290, and GSE4412 (P < 0.05; Figures 4A–G). Moreover,
the expression level of KDELR1 was gradually upregulated along
the sequence from control samples to oligodendrogliomas,
astrocytomas, and GBMs in the GSE4290 dataset (P < 0.05;
Figure 4H). Similarly, KDELR1 expression was upregulated
from control samples to oligodendrogliomas, astrocytomas, and
GBMs in the GSE68848 dataset (P < 0.05; Figure 4I). Taken
together, these results indicate that KDELR1 expression is
significantly related to the clinical features of gliomas and plays
an important positive role in glioma progression.
Frontiers in Oncology | www.frontiersin.org 5
KDELR1 Expression Is Strongly Correlated
With Molecular Classification and
Biomarkers in Gliomas
With new developments in sequencing technology, more
biomarkers of important clinical value have been identified and
applied to clinical practices such as molecular classification,
which improves risk stratification and treatment accuracy. To
date, several similar molecular classifications of gliomas have
been proposed by different research teams; the relationships
between their corresponding subtypes and KDELR1 expression
were analyzed in this study. The results from both CGGA
mRNA-array_301 and TCGA_glioma showed that KDELR1
was frequently highly expressed in the classical and
mesenchymal subtypes and weakly expressed in the proneural
and neural subtypes of GBM (P < 0.05; Figures 4J, K). Similarly,
mesenchymal-subtype gliomas had a significantly higher
expression level of KDELR1 than proneural-subtype gliomas
(P < 0.05; Figures 4L–O).

Further, KDELR1 expression was found to be strongly
correlated with molecular biomarkers such as IDH mutation
and the 1p/19q codeletion status in the three datasets from
CGGA (P < 0.05; Figure 5). The results showed that glioma
patients with IDH mutation had lower KDELR1 expression than
gliomas with IDH wildtype (P < 0.05; Figures 5A–C). KDELR1
A C DB

E G HF

FIGURE 3 | The relationships between KDELR1 expression and clinical features in glioma samples from different databases. (A–E) KDELR1 expression is
significantly associated with age in mRNA-array_301 and mRNA-array_325 of CGGA, TCGA_glioma, GSE4271, and GSE13041 (GPL96), respectively. (F) The
recurrent gliomas had a higher expression level of KDLER1 in CGGA mRNA-array_693. (G) The expression of KDLER1 is highly upregulated in grade IV gliomas with
necrosis than ones without necrosis in the dataset GSE4271. (H) Gliomas with microvascular proliferation had a higher expression level of KDLER1 than gliomas
without microvascular proliferation in GSE4271. **,P < 0.01; ***,P < 0.001.
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A C DB

E G HF

I KJ

L N OM

FIGURE 4 | The associations between KDELR1 expression, and the WHO grades, histology, and molecular classification of gliomas. (A–G) KDELR1 expression
significantly increased as the WHO grades of gliomas, including mRNA-array_301, mRNA-array_325, and mRNA-array_693 of CGGA, TCGA_glioma, GSE4271,
GSE4290, and GSE4412. (H) Expression level of KDELR1 was gradually upregulated in the order of control, oligodendrogliomas, astrocytomas, and GBMs in
GSE4290. (I) KDELR1 expression was upregulated in the order of control, oligodendrogliomas, astrocytomas, and GBMs in the dataset GSE68848.
(J–O) Distribution of KDELR1 expression among distinct classification subtypes of gliomas in different datasets, including CGGA mRNA-array_301,
TCGA_glioma, GSE4271, GSE4290, and GSE13041 (GPL96, GPL570, and GPL8300). *P < 0.05; **P < 0.01; ***P < 0.001.
Frontiers in Oncology | www.frontiersin.org June 2022 | Volume 12 | Article 7837216

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Yuan et al. Roles of KDELR1 in Glioma
overexpression frequently occurred in glioma samples without
1p/19q codeletion (P < 0.05; Figures 5D–F).

EstimateScore, ImmuneScore, StromalScore, and TumorPurity
were analyzed between the two groups in CGGA301 and
CGGA325 through the ESTIMATE algorithm (Figures 6A–H).
ImmuneScore in IDH mutation samples was higher than in IDH-
wildtype samples (Figures 6B, F). In summary, KDELR1 is
strongly related to certain molecular biomarkers and the glioma
classification, which indicates that KDELR1 could play a critical
role in the development and molecular classification of gliomas.

KDELR1 Acts as a Poor Prognostic Factor
in Glioma Patients
The above results showed that KDELR1 overexpression is
positively associated with unfavorable clinical features, such as
higher WHO grades, the mesenchymal subtype, recurrence,
older age, and GBM, which indicates that KDELR1 might be
an unfavorable prognostic factor in gliomas. When KDELR1 was
submitted to the online tool GEPIA2, survival analyses indicated
that glioma samples with KDELR1 overexpression had shorter
OS and PFS (progression-free survival) times than those with low
KDELR1 expression (P < 0.05; Figures 7A, B). Similarly, survival
analyses revealed that the high-KDELR1-expression group had a
Frontiers in Oncology | www.frontiersin.org 7
shorter OS time than the low-KDELR1-expression group in six
different datasets, including mRNA-array_301, mRNA-
array_325, and mRNA-array_693 of CGGA, GSE4271, and
GSE68848 (P < 0.05; Figures 7C–G).

Cox Regression Analysis of KDELR1 as an
Independent Predictor of Survival in
Glioma Patients
As KDELR1 was associated with the prognosis of glioma patients,
we wanted to determine whether it was an independent predictor of
OS in gliomas using univariate andmultivariate survival analyses. In
the CGGA mRNA-array_301 dataset, univariate analysis showed
that KDELR1 expression as well as age, the WHO grade, primary/
recurrent/secondary type, histology, TCGA subtype, radiotherapy,
chemotherapy, IDH mutation, and 1p/19q codeletion status were
significantly associated with OS, and further multivariate analysis
showed that KDELR1 expression and the chemotherapy status were
independent prognostic predicators of OS in gliomas (Table 1).
Moreover, similar results in the CCGA mRNA-array_325 and
TCGA_glioma datasets showed that KDELR1 expression acts as
an independent prognostic predicator in gliomas (Tables 2, 3).
Collectively, Cox regression analyses showed that KDELR1 is an
independent prognostic predictor in glioma.
A B C

D E F

FIGURE 5 | The relationships between KDELR1 expression and IDH mutation and the 1p/19q codeletion status in the database CGGA. (A–C) Gliomas with IDH
mutation had a lower KDELR1 expression than gliomas with IDH wildtype. (D–F) Overexpression of KDELR1 was frequent to occur in the glioma samples without
1p/19q codeletion. ***P < 0.001.
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KDELR1 Is Correlated With Immune
Infiltration and the Microenvironment
In Glioma
To explore KDELR1 and immune infiltration in LGG and GBM,
KDELR1 was analyzed using the TIMER database. KDELR1 was
Frontiers in Oncology | www.frontiersin.org 8
significantly correlated with dendritic cells in GBM and B cells,
CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and
dendritic cells in LGG (Figure 8A). Moreover, the results
showed that B cell, CD8+ T cell, CD4+ T cell, macrophage,
neutrophil, and dendritic cell infiltration significantly affected
A B C

E F G

D

FIGURE 7 | Survival analyses of KDELR1 in different datasets. (A, B) The low-KDELR1-expression group had a shorter overall survival (OS) and disease-free survival
(DFS) time than the high-KDELR1-expression group using the online tool GEPIA2, respectively. (C–G) The low-KDELR1-expression group had a shorter OS time
than the high-KDELR1-expression group using R language in the different datasets, including mRNA-array_301, mRNA-array_325, and mRNA-array_693 of CGGA,
GSE4271, and GSE68848, respectively.
A B C D

E F G H

FIGURE 6 | Correlation of the IDH mutation status with the tumor environment. (A–H) Violin plot showed the four differential scores (EstimateScore, ImmuneScore,
StromalScore, TumorPurity) between IDH wildtype and mutation glioma samples by using the ESTIMATE algorithm in CGGA301 and CGGA325 datasets, respectively.
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TABLE 2 | Cox regression analysis of KDELR1 expression as an independent survival predictor of gliomas in CGGA mRNAseq_325.

Parameter Univariate Analysis Multivariate Analysis

P HR 95%CI P HR 95%CI

Age P<0.001 1.03 1.02–1.04 0.023 1.02 1.00–1.03
Gender 0.613 0.93 0.71–1.23 NA NA NA
WHO grade P<0.001 2.74 2.28–3.30 P<0.001 1.92 1.47–2.51
PRS_type P<0.001 2.12 1.75–2.57 0.016 1.95 1.13–3.35
Histology P<0.001 1.12 1.08–1.16 0.597 0.97 0.88–1.08
Radio_status P<0.001 0.52 0.36–0.74 0.168 0.75 0.51–1.13
Chemo_status 0.004 1.55 1.15–2.1 0.031 0.68 0.49–0.97
IDH_mutation_status P<0.001 0.38 0.29–0.51 0.912 0.98 0.66–1.46
1p19q_codeletion_status P<0.001 0.17 0.10–0.28 P<0.001 0.36 0.20–0.64
KDELR1 expression P<0.001 2.43 2.06–2.87 0.028 1.33 1.03–1.71
Frontiers in Oncology | www.frontiersin.o
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CGGA, the Chinese Glioma Genome Altas; WHO, World Health Organization; A, astrocytomas; AA, anaplastic astrocytomas; AO, anaplastic oligodendrogliomas; AOA, anaplastic
oligoastrocytomas; GBM, glioblastoma multiforme; O, oligodendrogliomas; OA, oligoastrocytomas; rA, recurrent astrocytomas; rAA, recurrent anaplastic astrocytomas; rAO, recurrent
anaplastic oligodendrogliomas; rAOA, recurrent anaplastic oligoastrocytomas; rGBM, recurrent glioblastoma multiforme; rOA, recurrent oligoastrocytomas; sGBM, secondary
glioblastoma multiforme; NA, not analyzed.
bold value: p value was less than 0.05 and the results were statistically significant.
TABLE 1 | Cox regression analysis of KDELR1 expression as an independent survival predictor of gliomas in CGGA mRNA-array_301.

Parameter Univariate Analysis Multivariate Analysis

P HR 95%CI P HR 95%CI

Age P<0.001 1.04 1.03–1.06 0.723 1.01 0.97–1.04
Gender 0.163 1.24 0.92–1.67 NA NA NA
WHO grade P<0.001 2.70 2.23–3.26 0.130 1.37 0.91–2.07
PRS_type P<0.001 2.21 1.67–2.94 0.758 1.17 0.44–3.09
Histology P<0.001 1.13 1.08–1.19 0.343 1.10 0.90–1.34
TCGA_subtypes P<0.001 0.62 0.53–0.72 0.186 1.28 0.89–1.86
Radio_status 0.012 0.58 0.37–0.89 0.036 0.44 0.21–0.95
Chemo_status 0.021 1.43 1.05–1.94 0.244 0.66 0.32–1.33
IDH_mutation_status P<0.001 0.38 0.28–0.52 0.630 0.81 0.34–1.91
1p19q_codeletion_status P<0.001 0.13 0.04–0.40 0.090 0.32 0.09–1.19
KDELR1 expression P<0.001 2.80 2.11–3.71 0.008 3.00 1.33–6.77
CGGA, the Chinese Glioma Genome Altas; WHO, World Health Organization; A, astrocytomas; AA, anaplastic astrocytomas; AO, anaplastic oligodendrogliomas; AOA, anaplastic
oligoastrocytomas; GBM, glioblastoma multiforme; O, oligodendrogliomas; OA, oligoastrocytomas; rA, recurrent astrocytomas; rAA, recurrent anaplastic astrocytomas; rAO, recurrent
anaplastic oligodendrogliomas; rAOA, recurrent anaplastic oligoastrocytomas; rGBM, recurrent glioblastoma multiforme; sGBM, secondary glioblastoma multiforme; TCGA, The Cancer
Genome Atlas; NA, not analyzed.
bold value: p value was less than 0.05 and the results were statistically significant.
TABLE 3 | Cox regression analysis of KDELR1 expression as an independent survival predictor of gliomas in TCGA.

Parameter Univariate Analysis Multivariate Analysis

P HR 95%CI P HR 95%CI

Age P<0.001 1.06 1.05–1.07 P<0.001 1.05 1.03–1.07
Gender 0.047 1.28 1.00–1.64 0.287 1.28 0.81–2.04
Race 0.749 0.94 0.64–1.39 NA NA NA
WHO grade P<0.001 4.50 3.69–5.49 0.002 2.42 1.37–4.28
Histology P<0.001 0.82 0.77–0.88 0.067 0.87 0.76–1.01
TCGA_subtypes 0.688 0.97 0.83–1.13 NA NA NA
KPS 0.044 0.57 0.33–0.99 0.118 0.61 0.33–1.13
Treatment_or_therapy P<0.001 1.99 1.45–2.73 0.862 0.95 0.51–1.75
KDELR1 expression P<0.001 3.32 2.80–3.94 0.009 1.75 1.15–2.68
TCGA, The Cancer Genome Atlas; WHO, World Health Organization; GBM, glioblastoma multiforme; KPS, Karnofsky performance score; NA, not analyzed.
bold value: p value was less than 0.05 and the results were statistically significant.
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the prognosis (P<0.05) and was correlated with KDELR1
expression in LGG patients but not in GBM patients
(Figure 8B). We analyzed the proportions of 22 immune cells
in the two groups by the CIBERSORT algorithm, which revealed
that there were significant differences in the proportions of CD8+
T cells, activated NK cells, monocytes, M1 macrophages, M2
macrophages, and neutrophils between the groups with high-
and low-KDELR1-expression levels (Figure 9A). The ESTIMATE
algorithm was performed to assess the immune levels of glioma
patients and showed significant differences (p<0.001) in the
immune score, stromal score, and ESTIMATE score between the
patients with high and low KDELR1 expression. Specifically, the
immune score, stromal score, and ESTIMATE score were all
higher in the patients with high KDELR1 expression
(Figures 9B–D). A similar analysis was conducted in the
IDHmut and IDHwide subgroups; the abundances of several
immune cells (including CD4 naive T cells, gamma delta T cells,
monocytes, M0 macrophages, M1 macrophages, and neutrophils)
were different among the two groups (Figures 9E, F).

Functional Enrichment Analysis
of KDELR1
To explore the potential function of KDELR1, a total of 100 genes
co-expressed with KDELR1 were identified using the GEPIA2
database, and these genes were uploaded to DAVID online.
Further Gene ontology (GO) enrichment analysis revealed that
these 100 co-expressed genes may be associated with chaperone-
mediated protein folding, cell redox homeostasis, the regulation
Frontiers in Oncology | www.frontiersin.org 10
of mitochondrial membrane potential, Wnt signaling, planar cell
polarity, extracellular exosome, focal adhesion, endoplasmic
reticulum membrane, protein binding, glycoprotein binding,
and protein disulfide isomerase activity (Figures 10A–C).
Interestingly, Kyoto Encyclopedia of Genes and Genomes
(KEGG) analysis further suggested that KDELR1 may be
involved in protein processing in the endoplasmic reticulum, N-
glycan biosynthesis pathway, and Epstein–Barr virus infection
(Figure 10D). In addition, GSEA indicated that the gene sets
specific to the high-KDELR1-expression group were mainly
enriched in metabolism-associated pathways (Figure 10E).

Verification of KDELR1 Expression in
Glioma Tissues by Immunohistochemistry
(IHC)
To verify the results of the bioinformatics analysis, IHC staining
was performed on tissue microarray slides containing the
samples of 119 gliomas (5 WHO grade I, 33 WHO grade II, 28
WHO grade III, and 53 WHO grade IV). The level of expression
was determined semiquantitatively by the staining index based
on staining intensity (SP) and the positive staining percentage
(SI). The pathological characteristics and IRS of 119 patients are
summarized in Supplementary Table 1. The exemplar staining
patterns of KDELR1 in the tumors of different grades are shown
in Figure 10. The expression level of KDELR1 was significantly
higher in high-grade glioma than in low-grade glioma tissues
(p<0.001), which was consistent with the results of
bioinformatics analysis at the RNA level. The relevance
A

B

FIGURE 8 | The relationship between the KDELR1 expression level, tumor purity, and immune cell infiltration was explored via the TIMER database. (A) KDELR1 was
significantly correlated with immune cell infiltration in GBM and LGG patients. (B) Kaplan–Meier survival analysis of several immune cells in GBM and LGG patients.
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A

B

E

F

C D

FIGURE 9 | Relationship between the ESTIMATE score and the KDELR1 expression level and proportions of the immune cells in KDELR1 groups in TCGA.
(A) Proportions of the 22 types of tumor-infiltrate immune cells in two KDELR1 groups in TCGA. The high-KDELR1-expression group has a higher (B) stromal score,
(C) immune score, and (D) ESTIMATE score than the low group in TCGA. The red represents the high-KDELR1-expression group, and the green indicates the low
group. ****p < 0.0001. Violin plot showed the ratio differentiation of 22 kinds of immune cells between IDH mutation and wildtype glioma samples using the
CIBERSORT algorithm in (E) CGGA301 and (F) CGGA325 cohorts. *p < 0.1, **p < 0.01, ***p < 0.001.
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between the expression of KDELR1 and immune infiltration was
confirmed by the IHC of CD4 and CD8; a positive trend of
immune infiltration was consistent with data obtained from the
algorithm (Figure 11).
DISCUSSION

Gliomas are the most common primary CNS tumor, accounting
for more than 80% of primary brain tumors (30). Among them,
GBM is prone to recurrence and has a median survival time of
less than 2 years (4). Using bioinformatics analyses, in this study,
we found that KDELR1 expression levels were higher in glioma
samples than in the corresponding normal tissues. In addition,
further evaluation confirmed that KDELR1 was closely related to
the clinical features of glioma. These findings suggest that
KDELR1 may be a promising biomarker for the precise
Frontiers in Oncology | www.frontiersin.org 12
diagnosis, molecular characteristics, treatment, and prognostic
evaluation of gliomas.

It has been established that several clinical features, including
age, recurrence, and pathology, are responsible for clinical
prognosis in glioma patients (31–33). A previous study also
suggested that older glioma patients would have a poorer
prognosis than younger patients, which indicates that KDELR1
expression levels might possess an indirect clinical value in
prognosis (34). Consistently, our findings also reveal that older
patients had higher KDELR1 expression than younger patients.
In pathologic analysis, we found that HGGs had higher KDELR1
expression than LGGs. In addition, previous studies (35–37)
have demonstrated that mesenchymal-subtype gliomas are
associated with poor prognosis, which are confirmed by our
finding that mesenchymal -subtype gliomas had a higher
expression level of KDELR1 than proneural subtype gliomas.
Subsequently, we further explored whether the expression of
A B

C

E

D

FIGURE 10 | Functional enrichment analyses for top 100 co-expression genes of KDELR1. (A–C) Top 5 GO terms of BP, CC, and MF. (D) Three KEGG pathways.
(E) gene set enrichment analysis revealed potential associations between KDELR1 and several metabolism-associated pathways.
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KDELR1 is related to recurrence. As expected, KDELR1 was
more frequently highly expressed in the recurrent group
compared with the initial diagnosis group. Taken together,
these findings indicate that KDELR1 might act as a novel
promising biomarker for the diagnosis, treatment, and
prognosis of gliomas.

Recently, with the rapid advances in next-generation
technology, research on the biomolecular markers and
associated signaling pathways that are involved in the
occurrence and development of gliomas has made substantial
progress (38). After the IDHmutation status was confirmed to be
related to the prognosis of patients with GBMs, a subsequent
study reported that the chromosome 1p/19q codeletion status,
O6-methylguanine-DNA methyltransferase (MGMT) promoter
region genotype, a-thalassemiamental retardation syndrome X
(ATRX), and amplification of the epidermal growth factor
receptor (EGFR) played more important roles in the prognosis
and treatment prediction of gliomas (39, 40). Our study
demonstrates that KDELR1 is downregulated in the 1p/19q
codeletion group compared with the 1p/19q non-codeletion
group. Thus, KDELR1 might be a negative prognostic factor in
gliomas from the 1p/19q codeletion perspective. On the other
hand, our results indicated that the IDH mutation group had a
lower expression level of KDELR1 than the IDH-wildtype group.

In 2010, a study classified GBMs into proneural, neuronal,
classical, and mesenchymal subtypes according to the status of
Platelet-derived growth factor alpha receptor (PDGFRA),
isocitrate dehydrogenase 1 (IDH1), Epidermal growth factor
Frontiers in Oncology | www.frontiersin.org 13
receptor (EGFR), and Neurofibromin type 1 gene (NF1) (8).
Additionally, in a study of 107 HGG samples, Phillips et al.
divided the samples into three subtypes: proneural,
mesenchymal, and proli feration. Proliferation- and
mesenchymal-subtype tumors tend to express high levels of
genes related to cell proliferation and angiogenesis (9),
respectively, and these types often occur in elder (more than
50 years old) patients who have poor prognosis (41). Notably,
our research found that KDELR1 is highly expressed in the
mesenchymal subtype and expressed at low levels in proneural-
subtype gliomas. Based on this evidence, we further inferred,
from the molecular classification, that KDELR1 was strongly
associated with an unfavorable clinical outcome.

Our previous results have indicated that the increased
expression of KDELR1 is strongly related to negative survival
factors such as older age, a higher WHO grade, recurrence, IDH
wild type, and 1p/19q non-codeletion status; therefore, we
further investigated whether the expression of KDELR1 is
related to the survival time of patients with gliomas. Survival
analyses showed that gliomas with KDELR1 overexpression were
associated with shorter OS and PFS times than gliomas with low
KDELR1 expression. This finding may provide proof that
KDELR1 can be used in predicting clinical prognosis.

We further focused on the relation between KDELR1 and
immune infiltration; CD8+ T cells, CD4+ T cells, and
macrophages were found with high expression in HGGs along
with the overexpression of KDELR1. The IHC expression of CD4
and CD8 in four different grades is consistent with the
FIGURE 11 | Immunohistochemistry validation of KDELR1 expression and immune infiltration. Columns from left to right are WHO grade I, WHO grade II, WHO
grade III, and WHO grade IV, and the rows from top to bottom are the IHC of KDELR1 (1:100, ×20 magnification), CD4 (1:200, ×40 magnification), and CD8 (1:200,
×40 magnification).
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bioinformation results, and CD8 showed more participants in
the tumoral immune microenvironment.

In summary, our findings show that KDELR1 is upregulated
in gliomas compared with normal brain tissues and that its
expression is significantly associated with clinical features such as
the WHO grade, recurrence, molecular classification, IDH
mutation, and 1p/19q codeletion status. Moreover, the survival
and Cox regression analyses of different datasets suggested that
KDELR1 expression in gliomas could be an independent,
unfavorable prognostic factor for survival time. On the other
hand, KDELR1 expression was associated with immune
infiltration (including the infiltration of CD8+ T cells, CD4+ T
cells, macrophages, and so on) and microenvironment
parameters (including stromal, immune, and ESTIMATE
scores) in gliomas. Collectively, these results indicate that
KDELR1 could be a promising novel biomarker for molecular
classification, immune treatment, and prognostic assessment
in glioma.

However, there were some limitations in this study. First, the
research on KDELR1 in glioma is still in the early stage, and our
research is limited to the bioinformatics database analysis and
experimental verification of IHC. Thus, further studies based on
surgical samples will be imperative to perform in vitro or in vivo
assays, validating these findings, and as a biomarker, diagnostic
tests will be conducted in future research. Second,
bioinformation data collected from the online database were
established and categorized based on the 2016 WHO CNS
classification system. Since the 2021 WHO classification
system has been published, a prospective study is underway to
collect samples and improve this work.
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