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Abstract. A clone coding for the F-actin cross-linking 
protein ct-actinin was obtained by screening a genomic 
library of Dictyostelium discoideum DNA in ~,gtll 
with monoclonal antibodies specific for Dictyostelium 
¢t-actinin. The 1.2-kilobase (kb) genomic clone was 
confirmed as containing part of the ¢t-actinin gene by 
comparing its nudeotide sequencev cith the amino acid 
sequence of tryptic peptides from purified a-actinin. 
The clone recognized a 3.0-kb message in a Northern 
blot. Hybridization to RNA isolated from different de- 
velopmental stages of several D. discoideum strains in- 
dicated that the mRNA content increased during early 
development. A similar result was obtained when the 
¢t-actinin content of the cells was followed by Western 
blot analysis. Hybridization of the clone to DNA from 

different wild-type strains of D. discoideum indicated a 
polymorphism on the DNA level that coincided with a 
polymorphism on the protein level. The data suggest 
(a) continuous transcription of the ~t-actinin gene 
throughout the development of D. discoideum, (b) up- 
and down- regulation of the levels of ¢t-actinin mRNA 
and protein with maximum levels at the onset of 
aggregation, and (c) a high diversity of ¢t-actinin at the 
DNA and protein level among different D. discoideum 
strains. The structural data make it conceivable that 
the highly conserved nature of ¢t-actinin resides only 
at the functional sites, whereas the helical portions of 
the ~t-actinin molecule allow a higher level of diversity 
throughout evolution. 

A C T I N  is the major component of the microfilament sys- 
tem. Rearrangements of this system d u n g  cell move- 

at ,Ik ment are controlled by myosin and its regulatory pro- 
teins, by tropomyosin, and by regulatory proteins that bind 
to G- or F-actin (9, 20, 45). From their function in vitro one 
can distinguish four classes among the actin-binding pro- 
teins: G-aetin binding proteins (5, 25, 34), F-actin severing 
proteins (2, 18), F-aetin capping proteins (19, 3"/), and F-ae- 
tin cross-linking proteins (1, 4, 7, 8, 10, 13, 16). ~t-Actinin, 
a cross-linking protein, can be isolated from both muscle and 
nonmuscle cells, a-Actinin, as isolated from higher organ- 
isms, is composed of two subunits of 100 kD (13) compared 
with 95 kD per subunit in lower organisms (8, 16). A protein 
that resembles the nonmuscle ¢t-actinin has been described 
for Dictyostelium discoideum (8, 16). 

The primary structures of actin and myosin have been de- 
termined (6, 14, 24, 35, 40, 41), the corresponding genes 
have been isolated and characterized, and their transcription 
and transcriptional regulation are being investigated (3, 35). 
In contrast, little is known about the primary structure, 
genes, and transcriptional regulation of the aetin-binding 
proteins. So far, only eDNA clones coding for erythrocyte 
spectrin and ankyrin have been described (26). 

We have isolated a genomic clone that codes for ,050% of 
the D. discoideum tt-aetinin molecule. This clone and differ- 
ent monoclonal antibodies against ¢t-aetinin enabled us to in- 

vestigate the transcription of the a-actinln gene in relation 
to the protein level during the developmental cycle of several 
D. discoideum strains. In addition, we have sequenced the 
clone and present the first data on the primary structure of 
an ¢t-actinin. 

Materials and  Methods  

Growth and Development of D. discoideum 

D. discoideum strain AX2, an axenically growing derivative of NC4, and 
various wild-type strains (NC4, VI2, WS380B, OHIO, AC4, WS2162, WST, 
WS51, WSU2, WS269A, WS472, WS526, WS576, WS582, WS583, WS584, 
WS655, WS656, WS1956, WS2054, ZA3A, KI0, MFD, DIM4, and DD61) 
(15) were used. They were grown at 21oc on solid medium (38) with Kleb- 
siella aerogenes as food source or in axenic medium (for strain AX2) (43). 
For development on filters, strains were grown in suspension culture on 
washed E. coli B/r (1 x 10 j° cells/ml) in 17 mM phosphate buffer (pH 6.0). 
Amebas were collected before the bacteria were consumed, centrifuged free 
of bacteria, and deposited on Millipore filters (Milllpore Corp., Bedford, 
MA) (28). The filters were incubated at 21"C. Cells were harvested from 
the filters at different stages of development, and aliquols were used for iso- 
lation of RNA and sample preparation for immunoblots. 

DNA and RNA Isolation 

Chromosomal DNA was isolated from partially purified nuclei. To prepare 
nuclei, whole cells (•5 x 109 cells) were lysed with 100 ml of Nonidet 
P-40 buffer (10 mM magnesium acetate, 10 mM NaC1, 30 mM Hepes pH 

© The Rockefeller University Press, 0021-9525/86/09196917 $1.00 
The Journal of Cell Biology, Volume 103, September 1986 969-975 969 



7.5, 10% [wt/vol] sucrose, 2% [wt/vol] Nonidet P-40), and the nuclei 
pelleted by a low-speed spin. 

The nuclei were then lysed at 60°C with EDTA-sarcosyl (2 % [wt/vol] 
sareosyl, 0.2 M EDTA; the pH was adjusted with NaOH to 8.4), and the 
lysate subjected to a CsCl-ethidium bromide density gradient centrifugation 
(0.92 g CsCI per gram solution) (31). Total cellular RNA olD. discoideum 
was isolated after lysis of the cells with SDS (0.5 % final concentration) and 
purified with several phenol-chloroform extractions (30). 

Immunoblot Analysis 

Cells were pelleted, washed in a small volume of phosphate buffer (17 raM, 
pH 6.0), immediately lysed by the addition of boiling SDS/EDTA solution 
(1% [wt/vol] SDS, 2 mM EDTA), and kept in a boiling waterbath for 3 rain. 
Equal amounts of protein (determined by the method of Lowry [22] with 
bovine albumin as standard) were subjected to SDS PAGE, electrophoreti- 
cally transferred to nitrocellulose filters (39), and the filters probed with io- 
dinated monoclonal antibodies. 

Preparation and Screening of Genomic Libraries 

EcoRI-digested DNA from D. discoideum strain AX2 was used to prepare 
a genomic DNA library in Zgtll (47). The library was amplified once and 
screened with iodinated monoclonal antibodies directed against D. dis- 
coideum a-actinin, as described previously (29). Purification of positive 
clones, DNA isolation, and subsequent cloning of the genomic DNA insert 
into a plasmid cloning vector was done by standard methods (23). 

Nucleic Acid Analysis 

For Northern blots, RNA was separated on 1.2% agarose gels in the pres- 
ence of 6 % formaldehyde; for Southern blots, restriction enzyme-digested 
DNA of D. discoidewn was separated on agarose gels in Tris-phosphate 
buffer (23). Hybridization of the filters was done with nick-mmslated probes 
for 16-18 h at 37°C in 2x standard saline citrate (SSC), formamide as indi- 
cated, 4 mM EDTA, 1% sarcosyl, 0.1% SDS, 4x Denhardt's solution, and 
0.12 M phosphate buffer, pH 6.8. DNA fragments for nick-translation were 

Figure 1. Hybridization of the a-  
actinin gene probe to DNA from D. 
discoideum strain AX2, Nuclear 
DNA (10 ~tg each) was digested 
with HindHI (a) or EcoRI (b), 
separated on a 0.7% agarose gel, 
transferred to nitrocellulose, and 
probed with the nick-translated 
1.2-kb fragment. Hybridization was 
done in the presence of 50% for- 
mamide and 2× SSC. The sizes (in 
kilobases) of the restriction frag- 
ments of HindIII digested lambda 
DNA as marker are indicated at the 
right. 

separated in agarose gels containing Tris-borate buffer (23) and were sub- 
jeered to electrophoresis onto DESbpaper. Elution from the paper was done 
as described (12). 

DNA Sequencing 

DNA fragments were subcloned in phage MI3 mpl8 or mpl9 (46) using the 
E. coil strain JM101 as host and sequenced by the dideoxy nucleotide chain 
termination method of Sanger et al. (36). The sequences were analyzed with 
the program "word-search" of the University of Wisconsin (Genetic Com- 
puter Group, J. Devereux). 

Purification and Proteolytic Digestion of a-Actinin 

a-Actinin was purified to homogeneity from aggregation competent cells 
(AX2) essentially as described (8). The protein was cleaved with N-tosyl-L- 
phenylalanine chioromethyl ketone-treated trypsin (CooperBiomedical, 
Inc., Malvern, PA) in the presence of 50 mM ammonium bicarbonate for 
15 h at 37°C, at a substrate concentration of I mg/mL Protease was added 
in two portions with a final enzyme/substrate ratio of 1:50 (wt/wt). The 
resulting peptides were separated and rechromatographed by high perfor- 
mance liquid chromatography on a C18-colunm using 0.1% trifluoroacetic 
acid and 0.1% trifluoroacetic acid in acetonitrile as elution solvents. 

Protein Sequencing 

N-terminal amino acid sequence analyses were performed on a gas phase 
sequencer 470 A from Applied Biosystems, Inc. (Foster City, CA). The 
phenylthiohydantoin amino acid derivatives were analyzed by a high per- 
formance liquid chromatography system which separates all components 
isocratically (21). 

Results 

Isolation and Characterization of a Genomic Clone 
of the a-Actinin Gene olD. discoideum 

A genomic  l ibrary constructed in the expression vector Zgtll  
was screened with three different monoc lona l  ant ibodies  
directed against D. discoideum a-ac t in in .  These antibodies,  
m A b  47-62-17, m A b  47-19-2, m A b  47-18-9, are highly 
specific for a -ac t in in  and recognize different epitopes of  
the molecule  (37; Schleicber,  M. ,  manuscr ip t  in  prepara-  
t ion).  12 positive phages were isolated which reacted with 
m A B  47-62-17 but  with none  of  the other  antibodies.  Al l  of  
these recombinan t  phages harbored an identical  inser t  of  
"~1.2 ki lobases (kb). This  1.2-kb inser t  recognized a frag- 
men t  of  the same size in a Southern blot  conta in ing AX2-  
D N A  cut with EcoRI, and  two fragments  of  •10 and  1.35 
kb of  A X 2 - D N A  cut  with HindRI (Fig. 1). The  hybridizat ion 
pattern of  the cloned fragment  to chromosomal  D N A  sug- 
gests that D. discoideum harbors  one  gene for a-actinin. The 
result  f rom the hybridizat ion to HindlH cut  genomic  D N A  
is explained by the presence of a HindlH site in the 1.2-kb 
EcoRI  fragment .  In  a Nor thern  blot  analysis this probe hy- 
br idized to a message of 3.0 kb, a size sufficient to code for 
a protein of  the size of a -ac t in in  (molecular  mass of 95 kD 
per  subunit) .  

Identification of the Clone by DNA 
and Protein Sequence Analysis 

DNA Sequencing. To conf i rm that the c lone codes for the 
a -ac t in in  of  D discoideum, we de te rmined  the complete  
nucleot ide sequence of  the cloned D N A  fragment .  A restric- 
t ion map was established (Fig. 2 a), and fragments  covering 
the complete  insert  were subcloned into suitable M13- 
c loning vectors. The sequencing strategy is shown in Fig. 2 
a. Fig. 2 b presents the complete  sequence of  the 1,244-base 

The Journal of Cell Biology, Volume 103, 1986 970 



a 

X b a  I 
E c o R  ! E c o  R I 

S a u 3 A  I S a u 3 A  I 

5' i a i 
1 ~ o f o 5' t2&z" 

b i0 30 50 
CATATTGAATCACATGGTGTTAAATTGGTTGGTATTGGTGCTGAAGAGTTAGTTGATAAA 
HisIleGluSerHisGlyValLysLeuValGlyIleGlyAlaGluGluLeuValAspLys 

70 90 ii0 
AACTTAAAGATGACTTTGGGTATGATTTGGACAATCATTCTTCGTTTTGCCATTCAAGAT 
A s n L e u L y s M e t T h r L e u G l y M e t I l e T r p T h r I l e I l e L e u A r ~ P h e A l a I l e G l r ~ s p  

130 150 170 
ATTTCAATTGAAGAATTGAGTGCCAAAGAAGCCCTTTTACTTTGGTGTCAAAGAAAGACC 
IleSerIleGluGluLeuSerAlaLys~luAlaLeuLeuLeuTrpCysGlnArgLysThr 

190 210 230 
GAAGGTTATGACCGTGTTAAAGTTGGTAATTTCCATACCTCATTCCAAGATGGTCTTGCC 
GluGlyTyrAspArgValLysValGlyAsnPheHisThrSerPheGlnAspGlyLeuAla 

250 270 290 
TTTTGTGCTCTCATCCATAAACATAGACCAGATTTAATCAACTTTGACTCTTTAAACAAA 
PheCysAlaLeuIleHisLysHisArgProAspLeuIleAsnPheAspSerLeuAsnLys 

310 330 350 
G~TGATAAAGCTGGTAACTTACAATTGGCTTTTGATATTGCCGAAAAAGAATTGGATATC 
AspAspLysAlaGlyAsnLeuGlnLeuAlaPheAspIleAlaGluLysGluLeuAspIle 

370 390 410 
CCAAAGATGTTGGATGTTTCCGATATGCTCGATGTCGTTCGTCCAGATGAAAGATCAGTC 
ProLysMetLeuAspValSerAspMetLeuAspValValArgProAspGluArgSerVal 

430 450 470 
ATGACCTACGTCGCTCAATACTACCATCACTTTTCTGCCTCTAGAAAAGCTGAAACCGCC 
MetThrTyrValAlaGlnTyrTyrHisHisPheSerAlaSerArgLysAlaGluThrAla 

490 510 530 
GGTAAACAAGTTGGTAAAGTTTTAGATACCTTTATGTTGTTAGAACAAACCAAATCTGAT 
GlyLysGlnValGlyLysValLeuAspThrPheMetLeuLeuGluGlnThrLysSerAsp 

550 570 590 
TATCTTAAAAGAGCCAATGAACTCGTTCAATGGATTAACGATAAACAAGCATCACTTGAA 
TyrLeuLysArg~laAsnGluLeuValGinTrplleAsnAs~Lys~lnAlaSerLeuGlu 

610 630 650 
TCACGTGATTTTGGTGATTCCATCGAATCTGTTCAAAGTTTCATGAACGCTCATAAAGAA 
SerArg~spPheGly~spSerlleGluSerValGlnSerPheMetAsnAlaHfsL~s~lu 

670 690 710 
TATAAAAAAACCGAAAAACCACCAAAGGGTCAAGAAGTCTCTGAATTGGAAGCTATCTAC 
TyrLys~ysThrGluLysProProL~sGl~GlnGluValSerGluLeuGluAla~leTyr 

730 750 770 
AATTCATTACAAACTAAATTACGTTTAATTAAACGTGAACCATTTGTTGCACCAGCTGGT 
AsnSerLeuGlnThrLysLeuArgLeuIleLysArgGluProPheValAlaProAlaGly 

790 810 830 
CTCACTCCAAATGAAATCGATTCACCTTGGTCCGCTTTAGAGAAAGCTGKACAAGAACAT 
LeuThrProAsnGluIleAspSerProTrpgerAlaLeuGluLysAlaGluGlnGluHis 

85O 87O 89O 
GCTG~AGCCCTCCGTATTGAACTCAAACGTCAAAAGAAAATTGCAGTTCTCTTACAAAAA 
AlaGluAlaLeuArgIleGluLeuLysArgGlnLysLysIleAlaValLeuLeuGlnLys 

910 930 950 
TACAATCGTATTCTCAAGAAACTCGAAAACTGGGCCACCACCAAATCTGTCTACCTCGGT 
TyrAsnArgIleLeuLys~ysLeuGluAsnTrpAlaThrThrLys~erValTyrLeuGly 

970 990 i010 
TCCAATGAAACCGGTGACAGTATCACTGCTGTTCAAGCTAAATTAAAGAATTTAGAAGCT 
SerAsnGluThrGlyAspSerIleThrAlaValGlnAlaLysLeuLysAsnLeuGluAla 

1030 1050 1070 
TTTGATGGTGAATGTCAATCATTGGAAGGTCAATCAAACTCTGATCTCCTCAGCATTCTT 
PheAspGlyGluCysGlnSerLeuGluGlyGlnSerAsnSerAspLeuLeuSerIleLeu 

1090 III0 1130 
GCTCAATTAACTGAACTCAACTACAATGGTGTACCAGAACTCACTGAACGTAAAGATACA 
AlaGlnLeuThrGluLeuAsnTyrAsnGlyValProGluLeuThrGluArgLysAspThr 

1150 1170 1190 
TTCTTTGCTCAACAATGGACTGGTGTTAAATCATCTGCTGAAACCTACAAAAACACTCTT 
PhePheAlaGlnGlnTrpThrGlyValLys~rSerAlaGluThrTyrL~s~snThrLeu 

1210 1230 
TTAGCTGAACTTGAAAGACTCCAAAAGACTGAAGACTCATTGG* 
LeuAlaGluLeuGluArgLeuGlnLysThrGluAspSerLeu 

Figure 2. Restriction enzyme map of 
the a-actinin genomic clone and its 
nucleotide sequence. A restriction 
map of the 1.2-kb Eco RI fragment was 
established using several restriction 
endonucleases. Appropriate fragments 
were subcloned into M13mpl8 or 
M13mpl9 and sequenced using the 
dideoxy chain termination method ac- 
cording to Sanger et al. (36). In a, a 
map of restriction endonuclease sites 
within the genomic clone and the se- 
quencing strategy are shown. The top 
line in b presents the nucleotide se- 
quence and the bottom line, the 
deduced amino acid sequence. The 
tryptic peptides, whose amino acid se- 
quences have been determined, are in- 
dicated by boxes. 
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acid sequences derived from the nucleotide sequence. These 
matches at different positions of  the nucleotide sequence 
proved unequivocally that the 1.2-kb DNA fragment is part 
of the 1). discoideum ~t-actinin gene. 

Quantitative Changes of  a-Actinin 
and Its Message during Development 

D. discoideum undergoes a developmental cycle in which, 
upon starvation, the amebas start to aggregate and form fruit- 
ing bodies. D. discoideum strain AX2 was harvested at vari- 
ous time points during development, RNA was isolated, and 
equal amounts per time point separated on a denaturing gel. 
Hybridization of the 1.2-kb fragment to the RNA showed an 
increase in the amount of  tz-actinin RNA during the first 6 h 
of  development. The RNA level remained nearly the same 
for several hours, but a t  later stages of development the 
amount of  tx-act inin-s~if ic  message dropped (Fig. 3 a). 
Samples were taken in parallel for analysis of  tx-actinin on 
the protein level. They showed a similar rise and fall in the 
amount of  tx-actinin protein present in the cells (Fig. 3 b). 

a-Actinins of  Different V~ld-type Strains Show 
Polymorphisms on Both the Protein and DNA Level 

While probing a Western blot that contained cell lysates of 
different D. discoideum wild isolates, we noted that out of  25 

Figure 3. Expression of et-actinin RNA and protein during the de- 
velopment of D. discoideum strain AX2. AX2 was grown on 
E. coli B/r, harvested, washed free of bacteria, and developed on 
filters. The cells started to aggregate between 6 (t6) and 9 (t9) h after 
deposition on the filters and had reached the tight aggregate stage 
at t15 and the culmination stage at about t18. Most of the aggregates 
were in the late culmination stage at t21 and a few had formed fruit- 
ing bodies already. At the indicated time points (given in hours after 
the begin of starvation) ceils were harvested and used for RNA iso- 
lation. Samples for analysis of the proteins were taken in parallel. 
Total RNA from the different developmental stages (10 pg per lane) 
was separated on a 1.2% agarose gel containing 6% formaldehyde, 
blotted onto nitrocellulose, and hybridized with the 1.2-kb ¢t-actin- 
in-specific probe (a). The RNA size (in kilohases) was determined 
relative to ribosomal RNA. In b, an immunoblot of total cellular 
proteins (20 pg per lane) from cells harvested at the same time as 
in a is shown. After transfer to nitroeeUulose the blot was incubated 
with labeled tt-actinin-specific monoclonal antibody 47-19-2. 

pair Cop) fragment. This stretch of DNA contains one unin- 
terrupted open reading frame coding for 413 amino acids. 

Protein Sequencing. Because only one out of  a series of 
different monoclonal antibodies recognized the polypeptide 
encoded by the 1.2-kb fragment, we could not rule out the 
isolation of a "false positive" phage. To prove that the cloned 
fragment is part of  the tt-actinin gene, we purified the protein 
from D. discoideum strain AX2, cleaved the protein with 
trypsin, separated the resulting peptides by high perfor- 
mance liquid chromatography, and determined the amino 
acid sequences of  several peptides. The boxes in Fig. 2 b 
show the localization of six tryptic peptides whose primary 
structures matched completely the corresponding amino 

Figure 4. Immunoblots of total cellular protein from D. discoideum 
strains. Equal amounts of protein from growth phase cells of strains 
WS526, AX2, WS584, and NC4 (the parent strain of AX2) were 
separated in a 10% SDS polyacrylamide gel and transferred to 
nitrocellulose. The blots were incubated with different monoclonal 
antibodies directed against the ¢t-actinin of strain AX2. No protein 
was detected by mAb 47-18-9 in either WS526 or WS584. 
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different restriction enzyme digests of nuclear DNA from 
strains WS584, WS526, and, for comparison, AX2, were 
probed with the 1.2-kb EcoRI-fragment. A different hybrid- 
ization pattern was observed with HindIII-cut DNA, where 
the ~t-actinin-specific probe recognized two fragments of 
~10 and 1.35 kb in AX2 DNA, whereas in similarly digested 
WS526 and WS584 DNA, a fragment of 1.4 kb was seen. 
Instead of the 10-kb fragment two new bands appeared. The 
polymorphism was even more pronounced with Sau 3A I-di- 
gested DNA, yielding fragments of differing sizes (Fig. 5). 
No diff-erenee was seen when the size of the ¢t-actinin- 
specific mRNA of WS526 and WS584 was compared with 
that of the AX2 strain. Looking at Q-actinin on the transcrip- 
tional level, WS526 and WS584 were comparable to strain 
AX2 and its parent NC4 with regard to the pattern of expres- 
sion during the development. However, the hybridization 
signals in blots containing WS526 and WS584 RNA were 
much weaker than the ones obtained with AX2 and NC4 
RNA, although identical amounts of total RNA were loaded 
and the hybridizations were done in parallel with an identical 
probe. This result could either be explained by the fact that 
in WS526 and WS584 less ~t-actinin-specific message is 
present or by assuming that the genes in AX2 and the two 
strains in question had diverged from each other sufficiently 
that the normal hybridization conditions did not allow the 
formation of a stable hybrid between the AX2 probe and 
their RNA. The latter explanation is supported by results that 
were obtained when the hybridization and the following wash 
were done at a reduced stringency (hybridization in the pres- 
ence of 30% formamide instead of 50% formamide)(Fig. 6). 

Figure 5. Restriction enzyme polymorphisms in strains WS526 and 
WS584 detected with the ¢t-actinin gene probe. Total nuclear DNA 
was isolated from strains AX2, WS526, and WS584, purified in a 
CsCl-ethidium bromide gradient, and digested with HindlII or Sau 
3AI. The DNA fragments (10 ~tg) were separated in a 1% agarose 
gel, transferred to nitrocellulose, and hybridized with the nick- 
translated cloned 1.2-kb fragment. The sizes (in kilobases) of the 
HindlII-generated lambda DNA fragments as molecular weight 
markers are indicated at the right. 

strains, the two strains WS526 and WS584 showed binding 
of the ct-actinin-specific monoclonal antibody 4%19-2 to a 
protein that was slightly larger in size than the a-actinin of 
strain AX2 and the 23 other wild isolates. The monoclonal 
antibody 4%62-17 also recognized this protein, whereas 
mAb 47-18-9 did not react with any protein in strains WS526 
and WS584 (Fig. 4). This result indicated that the ct-actinin 
molecules of strains WS526 and WS584 are altered in size 
compared with the ct-actinin of strain AX2 and, in addition, 
lack the epitope that was recognized by mAb 47-18-9. The ob- 
served differences on the protein level were accompanied by 
differences on the DNA level. Southern blots containing 

Figure 6. Northern blot analysis of the ¢t-actinin transcript in wild- 
type strain WS584. Total RNA (10 gg per lane) isolated from 
several stages of development of strain WS584 was separated on a 
1.2% agarose gel in the presence of 6% formaldehyde, transferred 
to nitrocellulose, and probed with the tt-actinin-specifie 1.2-kb 
fragment in the presence of 50% (a) or 30% (b) formamide. After 
the hybridization with the probe in the presence of 50% formamide, 
the counts were melted off and the blot was rehybridized with an 
identical probe (same specific activity) in the presence of 30% for- 
mamide. The salt concentration and the hybridization temperature 
were kept constant in both experiments. The numbers on top indi- 
cate the time (in hours) of harvest of the cells after the beginning 
of starvation. The size of the RNA was determined relative to 
ribosomal RNA. 
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Discussion 

a-Actirtin is a rod-shaped protein molecule that can cross- 
link actin filaments (8, 16). The functional molecule is a 
dimer. Electron microscopic data indicate that the subunits 
bind to each other in an antiparallel fashion and that the inter- 
action with the actin filaments is confined to the head part 
only (42). Biochemical data from D. discoideum, i.e., the 
purification of only one protein subunit, suggest that a-acrin- 
in is a homo- rather than a heterodimer (8, 16). The data of 
the Northern and Southern blots indicate the presence of a 
single gene for a-actinin in the genome ofD. discoideum and 
support the presence of a homodimer. The amino acid se- 
quence derived from the cloned fragment suggests a helical 
structure for this part of the protein. A comparison of the 
amino acid sequence to a data bank (11) indicates a mild ho- 
mology with myosin from Caenorhabditis elegans (24), an- 
other rod-shaped molecule. The homology resides in the tail 
region of the myosin molecule. This region also has a helical 
structure and it is conceivable that the formation of a rod-like 
secondary structure leads to homologies among different, 
possibly unrelated molecules. Hybridization and sequencing 
data of the a-actinin-specific fragment did not reveal any in- 
tron/exon structures as is often observed with genes coding 
for cytoskeletal proteins (3). The relatively small number of 
introns in Dictyostelium genes (32) enhances the efficiency 
of cloning long, uninterrupted reading frames. This fact may 
have facilitated the isolation of the a-actinin clone from a 
genomic expression library. 

During the development ofD. discoideum from the amebal 
stage to the formation of fruiting bodies, different regulatory 
mechanisms of gene expression take place. The appearance 
of the contact site A molecule is strictly regulated and the 
mRNA as well as the corresponding protein are present at 
a very distinct time during the development (27, 29). In con- 
trast, the gene coding for the lectin-like molecule discoidin 
is transcribed only at the onset of development, whereas the 
protein itself is present at high concentrations until the for- 
marion of fruiting bodies (33). The expression of a-actinln 
is clearly distinguishable from these two examples. The mes- 
sage and protein are present throughout development. A 
slight increase in amount on both the RNA and protein level 
is consistently found in aggregating cells. However, these 
changes are too small to consider the expression of the a-ac- 
tinin gene as being developmentally regulated. The exact 
function of a-actinin in vivo is not clarified yet (42), but, as- 
suming a certain role in regulation of the cytoskeleton, the 
constitutive expression of a-actinin during the developmen- 
tal cycle may be the consequence of these regulatory func- 
tions. 

Polymorphisms on the DNA as well as on the protein level 
have been previously described in D. discoideum (17, 44). 
During our studies we detected in two out of 25 different 
wild-type strains polymorphic a-actinin using monoclonal 
antibodies. Compared with AX2 and its parent strain NC4, 
these two strains, WS526 and WS584, contain a-acrinin that 
differs in size and lacks an epitope recognized by one of the 
monoclonal antibodies used. The missing epitope is not due 
to a deletion as judged by the apparent molecular weight in 
SDS PAGE but is rather the result of a different primary 
structure in some parts of the molecule. Consistent with this 
interpretation, there exists in WS526 and WS584 a polymor- 

phism on the DNA level as well. The strongly reduced hy- 
bridization signals with RNA from these strains suggest that 
translated sequences of the a-actinin gene have diverged 
among these strains. Other actin-binding proteins (severin 
and capping protein) were apparently unchanged in these 
strains (37; Schleicher, M., unpublished observations). 

In preliminary experiments we have used the a-actinin- 
specific DNA fragment to probe Southern blots containing 
DNA from other organisms such as Xenopus, mouse, rat, 
and man. Using conditions of fairly low stringency during 
the hybridization, we could not detect a signal. Although 
a-actinin is a conserved molecule throughout evolution with 
respect to its structure and function, this result can be ex- 
plained by assuming that the molecule functions by having 
a rod-shaped structure where only the ends interact with the 
actin filament and need to be conserved. The intervening rod 
that keeps the actin filaments apart can then be built from any 
amino acid sequence that can form a rod-like structure. The 
results obtained with the WS526 and WS584 strains could 
be explained similarly. 
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