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A B S T R A C T   

Alzheimer’s disease (AD) is characterized neuropathologically by β-amyloid (Aβ) plaques, hyperphosphorylated 
tau neurofibrillary tangles, and neurodegeneration, which lead to a phenotypically heterogeneous cognitive- 
behavioral dementia syndrome. Our understanding of how these neuropathological and neurodegeneration 
biomarkers relate to each other is still evolving. A relatively new approach to measuring structural brain change, 
gray matter to white matter signal intensity ratio (GWR), quantifies the signal contrast between these tissue 
compartments, and has emerged as a promising marker of AD-related neurodegeneration. We sought to validate 
GWR as a novel MRI biomarker of neurodegeneration in 29 biomarker positive individuals across the atypical 
syndromic spectrum of AD. Bivariate correlation analyses revealed that GWR was associated with cortical 
thickness, tau PET, and amyloid PET, with GWR showing a larger magnitude of abnormality than cortical 
thickness. We also found that combining GWR, cortical thickness, and amyloid PET better explained observed tau 
PET signal than using these modalities alone, suggesting that the three imaging biomarkers contribute inde-
pendently and synergistically to explaining the variance in the distribution of tau pathology. We conclude that 
GWR is a uniquely sensitive in vivo marker of neurodegenerative change that reflects pathological mechanisms 
which may occur prior to cortical atrophy. By using all of these imaging biomarkers of AD together, we may be 
better able to capture, and possibly predict, AD neuropathologic changes in vivo. We hope that such an approach 
will ultimately contribute to better endpoints to evaluate the efficacy of therapeutic interventions as we move 
toward an era of disease-modifying treatments for this devastating disease.   

1. Introduction 

Alzheimer’s disease (AD) is characterized neuropathologically by 
β-amyloid (Aβ) plaques, hyperphosphorylated tau neurofibrillary tan-
gles, and neurodegeneration (Hyman et al., 2012), which lead to a 
phenotypically heterogeneous cognitive-behavioral dementia syn-
drome. The ATN classification system, which focuses on in vivo bio-
markers to identify the presence or absence of amyloid (A), tau (T), and 
neurodegeneration (N) in each individual (Jack et al., 2018), has been a 

useful research framework. However, our understanding of how bio-
markers of these neuropathologic features relate to each other is still 
growing. Magnetic resonance imaging (MRI) biomarkers of the neuro-
degenerative component of AD—most commonly MRI-based cortical 
thickness (Dickerson et al., 2009) or volumetric measurements—may be 
limited in their sensitivity to detect early pathology given that atrophy 
typically follows amyloid and tau spread (Jack et al., 2013). Addition-
ally, regional brain atrophy is non-specific, also reflecting non-AD 
pathological processes such as vascular disease (Wirth et al., 2013) or 
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other co-occurring pathologies (Brenowitz et al., 2017). There is a 
critical need to improve the sensitivity and specificity of measurements 
of cerebral structural integrity in order to better inform diagnosis, 
prognostication, and outcomes monitoring. 

A relatively new approach to measuring structural brain change 
relevant to aging and AD has focused on MRI-based tissue signal prop-
erties. The gray matter to white matter signal intensity ratio (GWR), 
which quantifies the signal contrast between these tissue compartments, 
has emerged as a promising marker of AD-related neurodegeneration 
that can be measured using conventional MRI scans. Reports indicate 
that a decrease in the contrast between the tissue classes is observed 
with increasing disease severity. Changes in GWR have been reported 
with a spatial pattern associated with traditional markers of neuro-
degeneration, including cortical atrophy in “AD-signature” regions in 
the medial and lateral temporal cortex, posterior cingulate, and pre-
cuneus in individuals with amnestic AD (Salat et al., 2011; Westlye et al., 
2009). Abnormal GWR also tracks with scores on the Clinical Dementia 
Rating (CDR) scale (Grydeland et al., 2013; Jefferson et al., 2015; Salat 
et al., 2011). GWR appears—at least from cross-sectional analyses—to 
sensitively identify brain regions in the early stages of the illness that 
develop atrophy subsequently as the illness progresses (Salat et al., 
2011), although there is no longitudinal evidence to date that has 
confirmed this hypothesis. Critically, these earlier studies demonstrated 
that GWR signal changes were observed even after controlling for 
changes in morphometric properties (i.e., the effects of AD on GWR went 
beyond cortical atrophy or volume loss alone), suggesting that GWR is a 
uniquely sensitive in vivo microstructural marker of neurodegenerative 
change in AD and may reflect pathological mechanisms that occur prior 
to cortical atrophy (Salat et al., 2011). 

Although GWR may reflect disease severity, there has not yet been an 
investigation of how GWR signal is related to AD molecular neuropathic 
changes (regional amyloid and tau deposition). Furthermore, no inves-
tigation of GWR to date has examined atypical syndromes of 
AD—Posterior Cortical Atrophy (PCA; the visual variant) and logopenic 
variant of Primary Progressive Aphasia (lvPPA; the language variant), 
which are characterized by neurodegenerative spatial topographies 
different from typical amnestic AD. In the current study, we sought to 
validate GWR as a novel MRI biomarker of neurodegeneration in A+/ 
T+/N + individuals across the symptomatic atypical syndromic spec-
trum of AD. To do this, we examined the relationships between signal 
from GWR, MRI-based cortical thickness, amyloid PET, and tau PET. We 
then used GWR, cortical thickness, and amyloid PET as predictor vari-
ables to investigate how these measures would explain the variance in 
the spatial distribution of tau PET signal. We hypothesized that the 
topography of GWR would be overlapping but not identical to the 
topography of cortical atrophy observed in our patients with atypical 
AD. Based on prior work suggesting that GWR and cortical thickness 
may reflect distinct neurobiological mechanisms (Grydeland et al., 
2013; Westlye et al., 2010), we also expected that GWR and cortical 
atrophy would be associated with tau PET signal in different regions 
relevant to the various stages of AD progression. Specifically, we ex-
pected to see spatial overlap between GWR and tau PET signal in pre-
frontal cortical regions which are thought to represent regions with 
faster tau accumulation as the disease progresses (Sintini et al., 2019). In 
contrast, we did not expect to see this spatial overlap between cortical 
atrophy and tau PET in prefrontal cortical regions, given our previous 
observations of cortical atrophy in predominantly posterior cortical re-
gions in this patient sample at this level of disease severity (Putcha et al., 
2019). Since the topography of amyloid PET signal generally does not 
reflect syndromic variability and does not reliably co-localize with re-
gions of neurodegeneration at this stage of disease progression (Day 
et al., 2017; Putcha et al., 2019; Xia et al., 2017), we hypothesized 
weaker relationships between both measures of neurodegeneration 
(GWR and cortical atrophy) and amyloid PET signal compared with tau 
PET signal. Finally, we hypothesized that GWR and cortical thickness 
would have partially independent and complementary effects on 

explaining regional variability in tau PET signal. 

2. Methods 

2.1. Participants 

Twenty-nine amyloid-, tau-, and neurodegeneration positive (A+/ 
T+/N + ) (Jack et al., 2016) individuals with atypical variants of AD 
were included in this study, all of whom were recruited from the Mas-
sachusetts General Hospital (MGH) Frontotemporal Disorders Unit Pri-
mary Progressive Aphasia (Sapolsky et al., 2010) and Posterior Cortical 
Atrophy (Putcha et al., 2018; Wong et al., 2019) programs (Table 1). All 
participants received a standard clinical evaluation comprising a struc-
tured history obtained from both patient and informant to inform 
clinician scoring on the CDR, comprehensive neurological and psychi-
atric history and exam, and neuropsychological assessment. All were 
administered the Montreal Cognitive Assessment (MoCA), a brief 
screening tool for cognitive impairment covering domains of orienta-
tion, executive functions, visuospatial cognition, memory, and language 
(Nasreddine et al., 2005). The total score on this test was calculated out 
of the maximum of 30; the means and standard deviations of our sample 
are included in Table 1. Clinical diagnostic formulation was performed 
through consensus conference by our multidisciplinary team of neurol-
ogists, neuropsychologists, and speech and language pathologists, with 
each patient classified based on all available clinical information as 
having a 3-step diagnostic formulation of mild cognitive impairment or 
dementia (Cognitive Functional Status), a specific Cognitive-Behavioral 
Syndrome, and a likely etiologic neuropathologic diagnosis (Dickerson 
et al., 2017). Regarding cognitive-behavioral syndrome, 16 individuals 
met diagnostic criteria for Posterior Cortical Atrophy (PCA) (Crutch 
et al., 2017; Mendez et al., 2002; Tang-Wai et al., 2004), 10 met criteria 
for logopenic variant primary progressive aphasia (lvPPA) (Gorno- 
Tempini et al., 2011), and three individuals met criteria for a dysex-
ecutive variant of Alzheimer’s disease (Ossenkoppele et al., 2015; 
Townley et al., 2020). All individuals underwent neuroimaging sessions 
which included structural MRI, 11C-Pittsburgh Compound B (PiB) PET, 
and 18F-flortaucipir (FTP) PET scans. Aβ positivity was determined by 
visual read according to previously published procedures (Rabinovici 
et al., 2010) as well as a summary distribution volume ratio (DVR) of 
frontal, lateral temporoparietal, and retrosplenial (FLR) regions >1.2 
(Villeneuve et al., 2015). Determination of tau and neurodegeneration 
positivity was conducted also by visual read using internal methods 

Table 1 
Demographic and clinical characteristics of the sample.  

Demographics All 
patients 
(n = 29) 

PCA 
(n = 16) 

lvPPA 
(n = 10) 

Dysexecutive 
(n = 3) 

Aβ- CN 
(n =
24) 

Age (years) 69.2 ± 7.6 68.4 ±
8.5 

71.0 ±
6.1 

66.7 ± 8.1 67.4 
± 4.9 

Sex (M/F) 17/12 6/10 4/6 2/1 12/12 
Education 

(years) 
16.9 ± 2.7 16.3 ±

2.9 
17.4 ±
2.7 

18.0 ± 0 †15.7 
± 2.3 

MoCA 17.7 ± 5.8 20.4 ±
6.4 

14.2 ±
3.7 

19.5 ± 0.7 – 

CDR CDR 0.5 
(N = 18) 
CDR 1  
(N = 10) 
CDR 2 (N 
= 1) 

CDR 0.5 
(N = 9) 
CDR 1  
(N = 6) 
CDR 2 
(N = 1) 

CDR 0.5 
(N = 8) 
CDR 1  
(N = 2) 

CDR 0.5 (N =
1)CDR 1  
(N = 2) 

– 

CDR-SOB 3.8 ± 2.2 4.5 ±
2.4 

2.7 ±
1.4 

3.8 ± 1.6 – 

PiB FLR DVR 1.90 ± 0.3 1.87 ±
0.3 

1.92 ±
0.3 

1.97 ± 0.2 1.11 
± 0.05 

Note: MoCA = Montreal Cognitive Assessment. CDR = Clinical Dementia Rating 
scale. SOB = Sum of Box scores. PiB FLR DVR = Pittsburgh Compound B Fronto- 
Lateral-Retrosplenial Distribution Value Ratio. †Data based on n = 13. 

D. Putcha et al.                                                                                                                                                                                                                                  



NeuroImage: Clinical 37 (2023) 103303

3

similar to published work (e.g., Fleisher et al., 2020; Rabinovici et al., 
2011; Sonni et al., 2020). 

We included a group of amyloid-negative (Aβ-) cognitively normal 
(CN) individuals, all of whom performed within normal limits on neu-
ropsychological testing, had normal brain structure based on MRI, and 
low cerebral amyloid based on quantitative analysis of PiB PET data 
(FLR DVR < 1.2), resulting in a CN sample of 24 individuals (see 
Table 1). This control sample was used as a reference for quantifying 
elevated signal in each modality in our patients. Individuals were 
excluded from our patient and control groups if they had a primary 
psychiatric or other neurologic disorder including major cerebrovascu-
lar infarct or stroke, seizure, brain tumor, hydrocephalus, multiple 
sclerosis, HIV-associated cognitive impairment, or acute encephalopa-
thy. This work was carried out in accordance with The Code of Ethics of 
the World Medical Association (Declaration of Helsinki) for experiments 
involving humans. All participants and their informants/caregivers 
provided informed consent in accordance with the protocol approved by 
the MassGeneral Brigham HealthCare System Human Research Com-
mittee Institutional Review Board in Boston, Massachusetts. 

2.2. Neuroimaging data acquisition and preprocessing 

Structural MRI data were acquired from each participant on a 
Siemens Tim Trio 3.0 Tesla scanner using a T1-weighted multi-echo 
magnetization prepared rapid acquisition sequence (MEMPRAGE) 
(repetition time = 2530 ms, echo times = 1.64/3.5/5.36/7.22 ms, flip 
angle = 7◦, slice thickness = 1 mm, field of view = 256 mm, 0 % slice 
gap). Each participant’s MEMPRAGE data underwent intensity 
normalization, skull stripping, and an automated segmentation of ce-
rebral white matter to locate the gray matter/white matter boundary via 
FreeSurfer v6.0, which is documented and freely available for download 
online (https://surfer.nmr.mgh.harvard.edu). Defects in the surface to-
pology were corrected (Fischl et al., 2001), and the gray/white bound-
ary was deformed outward using an algorithm designed to obtain an 
explicit representation of the pial surface. We visually inspected each 
participant’s cortical surface reconstruction for technical accuracy and 
manually edited it when necessary. Cortical thickness was calculated as 
the closest distance from the gray/white boundary to the gray/CSF 
boundary at each vertex on the tessellated surface (Fischl & Dale, 2000). 
The ratio of gray to white matter signal intensity (GWR) was calculated 
for each vertex based on white matter signal intensity (W) sampled at 1 
mm subjacent to the gray-white interface as well as gray mater signal 
intensity (G) sampled at 30 % through the thickness of the cortical 
ribbon normal to the gray/white border, using the following formula: 

GWR =
100 × (W − G)

0.5 × (W + G)

W and G were measured at these locations to be (1) relatively close to 
one another while minimizing partial volume effects and (2) not 
crossing surfaces (e.g., going too far into white matter and ending up in 
gray matter). While these parameters were not derived empirically, they 
have proven to be sensitive in prior studies of GWR (e.g., Salat et al., 
2009, 2011). Whole-brain maps of cortical thickness and GWR were 
registered to a template surface (fsaverage) and smoothed geodesically 
with full-width-half-maximum (FWHM) of 10 mm. 

All participants underwent FTP and PiB PET scans. The FTP radio-
tracer was prepared at MGH with a radiochemical yield of 14 ± 3 % and 
specific activity of 216 ± 60 GBq/μmol (5837 ± 1621 mCi/μmol) at the 
end of synthesis (60 min) and validated for human use (Shoup et al., 
2013). The PiB radiotracer was prepared as described previously (Becker 
et al., 2011). All PET data were acquired using a Siemens (Knoxville, TN) 
ECAT HR + scanner: 3D mode, 63 imaging planes, 15.2 cm axial field of 
view, 5.6 mm transaxial resolution, and 2.4 mm slice interval. FTP PET 
images were acquired from 80 to 100 min after a 10.0 ± 1.0 mCi bolus 
injection in 4 × 5 min frames. PiB PET images were acquired with an 8.5 

to 10.5 mCi bolus injection followed immediately by a 60 min dynamic 
acquisition in 69 frames (12 × 15 sec, 57 × 60 sec). All PET data were 
reconstructed and attenuation corrected; each frame was evaluated to 
verify adequate count statistics and interframe head motion was 
corrected. 

We performed further processing of FTP and PiB PET data via the 
PetSurfer tools (Greve et al., 2014, 2016). Each participant’s PET data 
were first rigidly coregistered to their anatomical volume and the ac-
curacy of cross-modal spatial registration was confirmed by visual in-
spection. PET data were then corrected for partial volume effects. 
Specifically, based on each participant’s high-resolution tissue seg-
mentation derived by the standard Desikan-Killiany atlas (Desikan et al., 
2006), the symmetric geometric transfer matrix (GTM) method was used 
to correct for spill-in and spill-out effects between adjacent brain tissue 
types, with a point spread function of 6 mm (Greve et al., 2014, 2016). 
Using partial volume-corrected data, we derived the FTP and PiB stan-
dard uptake value ratio (SUVR) image per participant with whole 
cerebellar gray matter as a reference region (Johnson et al., 2016). Non- 
partial volume corrected PiB SUVR maps were also used to derive FLR 
DVR for the confirmation of Aβ positivity. FTP and PiB SUVR maps were 
resampled to fsaverage space and smoothed geodesically with FWHM of 
8 mm. 

To identify areas of the cerebral cortex showing elevated signal in 
each modality and in each AD patient, we calculated a vertex-wise W- 
score map (Katsumi et al., 2022a,b; Putcha et al., 2022). W-scores are 
analogous to Z-scores adjusted for specific covariates of no interest, 
which in this study were age and sex. Briefly, we first performed a 
vertex-wise multiple regression analysis using surface maps of cortical 
thickness, GWR, FTP SUVR, and PiB SUVR obtained from Aβ- CN par-
ticipants, which resulted in whole-cortex beta coefficient maps of age 
and sex as well as individual maps of residuals for each modality. We 
then computed W-scores for each patient and at each vertex using the 
following formula: 

W =
Y − Ŷ

SDresiduals  

where Y = the observed signal for a given patient and modality, Ŷ = the 
predicted signal for a given modality based on age and sex of a given 
patient as well as beta coefficients obtained from Aβ- CN participants, 
and SDresiduals = the standard deviation of the individual residual maps 
for a given modality obtained from Aβ- CN participants. 

2.3. Statistical analysis 

Using individual cortical thickness, GWR, FTP SUVR, and PiB SUVR 
maps as inputs, we first created a series of whole-cortex vertex-wise 
general linear models (GLM) in FreeSurfer to identify areas of the ce-
rebral cortex where AD patients showed abnormal signal in each mo-
dality than Aβ- CN participants. To quantify signal abnormality in each 
modality, we derived a vertex-wise map of effect size (Cohen’s d) 
calculated as the difference in group means divided by the pooled 
standard deviation at each vertex. 

To investigate the relationships across modalities, we reduced the 
dimensionality of group-level W-score maps into 400 cortical regions 
based on an established functional parcellation (Schaefer et al., 2018), 
which has been spatially mapped to canonical functional networks of the 
cerebral cortex (Yeo et al., 2011). For a given pair of modalities, we then 
computed the Pearson’s correlation coefficient to examine the strength 
of bivariate association at the group level. In addition, we secondarily 
performed similar bivariate correlation analyses separately for each 
functional network and for each cerebral cortical lobe by focusing on a 
subset of cortical parcels. Functional network assignment was deter-
mined by the original network labels provided by Schaefer et al. (2018), 
which consisted of the following: Visual, Somatomotor, Dorsal Atten-
tion, Ventral Attention, Limbic, Frontoparietal, and Default. Lobar 
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assignment was determined using vertex-wise labels based on the PALS- 
B12 atlas available in FreeSurfer: Frontal, parietal, limbic, temporal/ 
insular, and occipital. 

Finally, we constructed linear mixed-effects models (LMEMs) to test 
the relative contribution of each non-FTP modality to explaining the 
variance in regional FTP uptake. LMEMs included all cortical regions 
from all individual patients as observations (400 parcels × 29 patients), 
with FTP as the dependent variable. We tested a total of seven models 
with one for each non-FTP modality, one for each pairwise combination, 
and the full model including all fixed predictors. Random intercepts and 
slopes for patients were included in all models. Detailed model specifi-
cations are as follows: 

Model 1 (cortical thickness only): 
FTP ~ 1 + cortical thickness + (1 + cortical thickness | patient). 
Model 2 (GWR only): 
FTP ~ 1 + GWR + (1 + GWR| patient). 
Model 3 (PiB only): 
FTP ~ 1 + PiB + (1 + PiB | patient). 
Model 4 (cortical thickness and GWR): 
FTP ~ 1 + cortical thickness + GWR + (1 + cortical thickness +

GWR | patient). 
Model 5 (cortical thickness and PiB): 
FTP ~ 1 + cortical thickness + PiB + (1 + cortical thickness + PiB | 

patient). 
Model 6 (GWR and PiB): 
FTP ~ 1 + GWR + PiB + (1 + GWR + PiB | patient). 
Model 7 (cortical thickness, GWR, and PiB): 
FTP ~ 1 + cortical thickness + GWR + PiB + (1 + cortical thickness 

+ GWR + PiB | patient). 
All LMEMs were constructed and tested using the lme4 package 

(Bates et al., 2015) run on R v4.2.1 and used the restricted maximum 
likelihood method for parameter estimation. To statistically compare 
performance between a given pair of models, we refit each model with 
maximum likelihood estimation and conducted a likelihood ratio test. 
All variables were converted to Z-scores prior to model fitting. 

3. Results 

3.1. Demographic and clinical characteristics. 

Table 1 reports the demographic and clinical characteristics of our 
sample including the A+/T+/N + AD patients and Aβ- CN participants. 

Regarding cognitive functional status, the patients included in this study 
were largely either classified as having mild cognitive impairment (CDR 
= 0.5) or mild dementia (CDR = 1), with the majority of patients (18/ 
29) in this study rated at the stage of mild cognitive impairment. All 
were highly educated, and on average performed at a level of moderate 
impairment on the MoCA. All individuals in this sample self-reported 
their race to be non-Hispanic White. 

3.2. AD biomarkers of neurodegeneration and neuropathology are distinct 
but overlapping 

We first aimed to investigate the similarities and differences across 
our four metrics of interest: Cortical thickness and GWR representing 
traditional and novel metrics of AD-related neurodegeneration, as well 
as FTP PET and PiB PET, representing neuropathological tau and amy-
loid deposition, respectively (Fig. 1). We found that, when examined at 
the same threshold (Cohen’s d > 1.5), GWR was prominently abnormal 
in widespread areas of the cerebral cortex whereas abnormal cortical 
thickness was minimally observed. At a more liberal threshold (Cohen’s 
d > 0.75), cortical thickness showed abnormal signal mainly in lateral 
temporoparietal and medial parietal cortical regions, which spatially 
overlapped with the topography of abnormal GWR signal (see also 
Supplementary Fig. 1). GWR—but not cortical thickness—was abnormal 
in lateral and medial prefrontal cortices (PFC), which were observed in 
our maps of neuropathological tau (FTP) and amyloid (PiB) deposition 
as well. A secondary analysis was performed to examine the topography 
of abnormal signal in each modality separately for each AD clinical 
phenotype group (PCA, lvPPA, and dysexecutive AD). This analysis 
showed that, as was the case with the whole group analysis, GWR signal 
was more prominently abnormal than cortical thickness in the medial 
and lateral prefrontal areas in each clinical phenotype group (Supple-
mentary Figs. 2–4), thus suggesting that the spatial topography of GWR 
signal abnormality is highly replicable across AD phenotype groups. 

Abnormal FTP PET signal, reflecting hyperphosphorylated tau 
deposition, was robustly observed in posterior cortical regions with 
modest lateral PFC involvement, while abnormal PiB PET signal, 
reflecting fibrillar amyloid deposition, was prominent in much more 
widespread cortical areas, including the frontal cortex. Abnormal GWR 
signal was co-localized with abnormal FTP PET signal in lateral PFC 
regions, with only minimal co-localized abnormalities in cortical 
thickness. Abnormal GWR signal was also co-localized with abnormal 
PiB PET signal in PFC regions. These observations suggest that abnormal 

Fig. 1. Whole-cortex maps of multimodal AD-related imaging biomarkers. Group-level effect size (Cohen’s d) maps show signal abnormalities in AD patients 
relative to controls of cortical thickness, GWR, FTP PET, and PiB PET. When examined at the same threshold (d > 1.5), GWR exhibits more prominent abnormality 
than cortical thickness in widespread areas of the cerebral cortex. When a more lenient threshold is used to examine cortical thickness (d > 0.75), GWR and cortical 
thickness, two distinct T1-weighted MRI markers of neurodegeneration, demonstrate abnormal signal overlap in lateral temporoparietal and medial parietal cortical 
regions, with GWR demonstrating substantially larger effect sizes. GWR additionally shows abnormal signal in lateral and medial prefrontal cortices. Two in vivo 
measures of neuropathology show a greater dissociation: FTP PET signal, reflecting hyperphosphorylated tau deposition, is observed more heavily in posterior 
cortical regions with modest lateral prefrontal involvement, while PiB PET signal, reflecting amyloid deposition, is prominent in more widespread areas, including 
the frontal lobe. 
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GWR may reflect similar aspects of neurodegeneration as those 
measured by abnormal cortical thickness (albeit with greater sensitivity) 
in posterior cortical regions, and it may also be more sensitive to con-
current neuropathological protein deposition and potentially future sites 
of atrophy. For the interested reader, vertex-wise maps depicting mean 
cortical thickness, GWR, FTP PET, and PiB PET signal separately for AD 
patients and Aβ-CN participants are provided in Supplementary Material 
(Supplementary Figs. 5–8). 

3.3. Bivariate relationships between measures of neurodegeneration and 
neuropathology 

To clarify the relationships between these structural MRI biomarkers 
of neurodegeneration (cortical atrophy and GWR) and PET biomarkers 
measuring tau (FTP) and amyloid (PiB) across the atypical syndromic 
spectrum of AD, we parcellated data in each modality (W-scores) into 
400 nodes and plotted bivariate correlations at the group level (Fig. 2); 
the color of each node represents its assignment to a canonical func-
tional network of the cerebral cortex as defined by Yeo et al. (2011). 
Unsurprisingly, we observed a moderate correlation between cortical 
thickness and GWR (Fig. 2A; r = 0.36, p <.001). This suggests that 
although they are both structural MRI biomarkers of neurodegeneration, 
they may be sensitive to different aspects of AD neuropathologic 
changes. We observed the strongest relationship between cortical 
thickness and FTP (Fig. 2B; Pearson’s r = -0.79, p <.001), such that 
regions with the highest tau burden also had greatest atrophy. We also 
observed a strong relationship between GWR and FTP (Fig. 2C; r = -0.56, 

p <.001), such that regions with the highest tau burden showed reduced 
T1-weighted MRI contrast between gray and white matter signal. Visual 
inspection of these bivariate associations led to the observation that, in 
the somatomotor network, there was abnormal GWR signal in the 
context of low tau, which weakened the magnitude of the GWR-FTP 
relationship at the whole group/parcellation level compared with the 
thickness-FTP relationship (Fig. 2C). Once we removed the parcels 
belonging to this network, the relationship between GWR and FTP 
became stronger in magnitude (Supplementary Figure 9). The other 
relationships involving PiB PET were weaker in magnitude (Fig. 2D-2F). 

The pattern of bivariate associations between cortical thickness, 
GWR, FTP, and PiB was generally replicable at the level of individual 
patients (Supplementary Fig. 10) and within each clinical phenotype of 
AD (Supplementary Figs. 11–13). Moreover, these correlations were also 
similarly identified at the level of individual functional networks (Sup-
plementary Fig. 14–20). The relationship between cortical thickness and 
FTP was consistently strong in every network, whereas the bivariate 
relationships involving GWR or PiB were more variable across networks. 
A similar pattern was also observed when bivariate correlations were 
examined in each cerebral cortical lobe (Supplementary Fig 21–25). 

3.4. GWR explains FTP signal variability after controlling for cortical 
thickness 

Table 2 reports results from linear mixed-effects models (LMEMs) 
predicting regional FTP uptake. We found that cortical thickness (Model 
1), GWR (Model 2), and PiB (Model 3) all predict FTP signal 

Fig. 2. Bivariate relationships between GWR, Cortical Thickness, FTP, and PiB. W-score maps of signal from each MRI and PET measure were parcellated into 
400 nodes and plotted against each other. Pearson’s r correlation coefficients were calculated to determine the strength of bivariate correlations at the group level. 
The color of each node represents its assignment to a canonical functional network of the cerebral cortex as defined by Yeo et al. (2011). Cortical thickness and FTP 
showed the strongest relationship to each other, followed by GWR and FTP. Cortical thickness and GWR showed a modest relationship to each other, with PiB 
showing an even weaker association with each MRI measure. 
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independently, with cortical thickness showing the strongest relation-
ship with FTP followed by GWR, reflecting our results from the bivariate 
correlation analysis reported above. When we examined pairwise 

combinations, we found that GWR explains additional variance in FTP 
signal after controlling for cortical thickness (Model 4), as revealed by a 
likelihood ratio test identifying better fit for Model 4 than Model 1: 

Table 2 
Linear mixed-effects models (LMEMs) predicting regional FTP uptake. LMEMs included all cortical regions from all individual patients as observations (400 
parcels × 29 patients), with FTP PET signal as the dependent variable. All variables were converted to Z-scores across all observations prior to model fitting. Fixed 
effects parameter estimates (with standard error in parentheses) are reported with statistical significance denoted at various levels: *p < .05, **p < .01, ***p < .001. For 
each model, the following goodness-of-fit statistics were computed: The Akaike Information Criterion (AIC), marginal R2 (proportion of variance explained by the fixed 
effect factors), conditional R2 (proportion of variance explained by the fixed and random factors), and Root Mean Square Error (RMSE). We tested a total of seven 
models with one for each non-FTP modality (Model 1: cortical thickness, Model 2: GWR, Model 3: PiB), one for each pairwise combination (Model 4: GWR and cortical 
thickness, Model 5: PiB and cortical thickness, Model 6: PiB and GWR), and the full model including all fixed predictors (Model 7). Random intercepts and slopes for 
patients were included in all models. The model including all three predictors of FTP (Model 7) was the strongest in explaining observed FTP signal (highest marginal 
R2), suggesting that cortical thickness, GWR, and PiB all contribute unique information in predicting tau pathology.   

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 

Fixed Effects        
(Intercept) 0.002 (0.083) 0.036 (0.133) 0.015 (0.102) 0.010 (0.112) 0.055 (0.116) 0.025 (0.133) 0.050 (0.131) 
Cortical thickness -0.566 (0.040)***   -0.490 (0.033)*** -0.522 (0.037)***  -0.450 (0.031)*** 
GWR  -0.556 (0.056)***  -0.332 (0.038)***  -0.501 (0.051)*** -0.305 (0.036)*** 
PiB   0.373 (0.067)***  0.317 (0.057)*** 0.345 (0.057)*** 0.311 (0.048)***  

Fit Statistics        
AIC 25531.3 28081.7 28669.8 24,243 23660.8 26183.3 22476.6 
Marginal R2 0.297 0.199 0.112 0.319 0.299 0.254 0.331 
Conditional R2 0.519 0.585 0.455 0.649 0.679 0.668 0.743 
RMSE 0.72 0.8 0.82 0.68 0.66 0.73 0.62  

Fig. 3. Parcel-wise linear mixed effects model residuals depicted topographically on the cortical surface. Across the whole cortex, lighter colors closer to 
white represent smaller mean absolute error (MAE) for each parcel indicating superior model performance, while darker blue colors represent greater error in 
predicting observed FTP. Model 7 including all three predictors of tau shows the best fit (the least MAE, consistent with the lowest AIC as well as the largest marginal 
R2 estimate as reported in Table 2). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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χ2(4) = 1300.9, p <.001. PiB also contributed unique variance to 
explaining FTP signal after controlling for cortical thickness (Model 5), 
yielding better fit than Model 1: χ2(4) = 1882.1, p <.001. When GWR 
and PiB were tested as predictors, both metrics contributed uniquely to 
explaining FTP signal (Model 6), with GWR signal observed to be more 
strongly related to FTP. Lastly, we found that the model including all 
three predictors (Model 7) explained the largest variance in observed 
FTP signal, statistically outperforming Model 4 (χ2(4) = 1780.7, p 
<.001), Model 5 (χ2(4) = 1199.6, p <.001), and Model 6 (χ2(4) =
3723.3, p <.001). This suggests that cortical thickness, GWR, and PiB all 
contribute unique information in predicting tau pathology. This effect is 
visualized in Fig. 3, which depicts the data presented in Table 2 topo-
graphically on the cortical surface with lighter colors representing 
reduced mean absolute error and darker blue colors representing greater 
error. 

3.5. Effect of partial volume correction. 

To investigate the effect of partial volume correction on our PET 
data, we repeated the same analyses discussed above using non-partial 
volume corrected FTP and PiB data. Overall, we obtained similar re-
sults regardless of whether partial volume correction was involved, with 
a slight decrease in the parameter estimates and an increase in the 
goodness-of-fit statistics in our LMEMs when non-partial volume cor-
rected data were used (Supplementary Figs. 26 and 27; Supplementary 
Table 1). These results suggest that partial volume correction had a 
minimal impact on driving our findings, and if anything, it appears to 
provide a small boost in model performance. 

4. Discussion 

Our ability to study the heterogeneous phenotypic spectrum of AD 
has greatly improved since the advent of in vivo molecular biomarkers of 
AD neuropathologic changes, and our understanding of the relationships 
between amyloid and tau PET signal with structural MRI measures is 
evolving. MRI measures of regional brain atrophy are co-localized with 
hyperphosphorylated tau and the magnitude of abnormalities in these 
two elements of AD pathophysiology are strongly correlated, supporting 
observations from studies of post-mortem brain tissue (Gómez-Isla et al., 
1997). This evidence suggests that cerebral atrophy (presumably 
reflecting neuronal loss, at least in part) is tightly coupled with neuro-
fibrillary and neuritic tau pathology. The results of our study show that 
GWR—a relatively new MRI-based biomarker of tissue properties 
measurable from the same T1-weighted sequence as regional brain 
volume—appears to offer information complementary to volumetrics 
regarding the pathological effects of amyloid and tau on brain structure. 
As such, GWR is a novel MRI biomarker of AD-related 
neurodegeneration. 

In this study, we investigated GWR in biomarker-confirmed (A+/ 
T+/N + ) individuals across the atypical syndromic spectrum of AD, 
which offers the opportunity to examine dissociations in the spatial 
topography of imaging biomarkers. Consistent with previous reports in 
amnestic AD (Salat et al., 2011; Westlye et al., 2009), we found that 
abnormal GWR is closely co-localized with abnormal cortical thickness 
in posterior cortical areas, but that the abnormalities in GWR are of 
much greater magnitude in those regions and extend beyond them. This 
evidence suggests that GWR may be a more sensitive metric of neuro-
degeneration than cortical thickness, possibly enabling detection of 
changes in microstructural properties that cannot be captured by 
traditional cortical morphometric measures (Salat et al., 2011). For 
example, it is possible that decreased GWR reflects changes in the 
neuropil such as synaptic loss and gliosis that occur prior to the emer-
gence of cell loss which is presumably the major driver of gray matter 
atrophy. We also observed dissociations between these two measures of 
neurodegeneration: While cortical atrophy was minimal in the PFC, 
GWR was prominently reduced in the lateral and medial PFC. Bivariate 

correlational analyses also revealed only a modest correlation between 
GWR and cortical thickness, further supporting the idea that the extent 
to which these measures show divergent sensitivity may depend on 
specific areas of the cerebral cortex. 

Previous studies also demonstrated that abnormalities of GWR were 
present in areas that were not atrophic, suggesting that GWR may be a 
uniquely sensitive microstructural biomarker of neurodegenerative 
change in AD and may reflect pathological mechanisms that occur prior 
to cortical atrophy (Salat et al., 2011). We tested this hypothesis cross- 
sectionally by examining whether GWR and cortical thickness relate 
differently to molecular neuropathological biomarkers of amyloid and 
tau. We found that abnormal GWR was present in some brain regions 
where there was elevated tau PET signal but minimal cortical atrophy, 
reinforcing the hypothesis that GWR may become abnormal in relation 
to tau pathology prior to atrophy. In addition, abnormal GWR was 
present in the medial PFC where there was elevated amyloid PET signal 
but neither tau nor cortical atrophy, suggesting that GWR may also be 
sensitive to amyloid pathology at least in some regions. Supporting this 
observation, the bivariate association between GWR and PiB PET 
became stronger in magnitude when examined in a regionally-specific 
manner (e.g., in the limbic lobe and the default mode network 
including part of the medial PFC). The strength of this association be-
tween GWR and PiB PET also exceeded that of the association between 
cortical thickness and PiB PET in these regions critical to AD. At the 
more general, whole-cortex level, however, cortical thickness was 
comparably or more strongly associated with FTP and PiB than GWR. 
More research is therefore needed to systematically characterize the 
regional specificity of GWR’s sensitivity to amyloid accumulation. As 
anticipated, the relationships between amyloid PET and cortical thick-
ness, GWR, and tau PET were relatively weak, consistent with the idea 
that amyloid deposition precedes abnormal signal in these other bio-
markers throughout the pathological cascade of AD and may plateau in 
the early symptomatic phase of AD, while the other biomarkers continue 
to increase as symptoms progress. Critical to our hypothesis that these 
two structural MRI measures provide unique information about patho-
logical processes in AD, we found that GWR signal explained additional 
variance in tau PET signal over and above cortical thickness measure-
ments. Taken together, these observations suggest that GWR is more 
sensitive than cortical thickness to some aspects of neurodegeneration, 
likely capturing local changes in these two tissue compartments in 
earlier stages of AD. When used in conjunction, GWR and cortical 
thickness may help enhance sensitivity in detecting AD-related neuro-
pathological changes, while also providing specificity for different 
processes depending on the relative involvement of microstructural and 
macrostructural effects, respectively. Furthermore, GWR may reflect 
amyloid-related changes in tissue properties and may precede future 
sites of atrophy, although this hypothesis remains to be directly tested in 
longitudinal investigations. Based on our results from linear mixed ef-
fects modeling of these different measurement modalities, we suggest 
that using GWR in addition to volumetrics may shed new light on 
diagnosis, prognosis, and monitoring. This will be of particular interest 
in amyloid-related disease-modifying clinical trials, where it will be 
important to examine whether GWR diverges from volumetric measures 
in an informative way as amyloid is cleared from cerebral tissue. 

Our study has some limitations that would be important to address, 
which we hope will inspire future research endeavors to better under-
stand and utilize GWR in studies of neurodegenerative diseases. First, 
our study focused on a relatively small sample of atypical AD cases, as 
these understudied individuals demonstrate heterogeneous topogra-
phies of AD-related tau and neurodegeneration. Future studies could 
expand this work to examine the full syndromic range of AD, including 
the typical amnestic variant. In the current study, we did not observe 
evidence of model singularity even with the most complex model 
structure, suggesting that statistically there was no indication of model 
overfitting. However, a larger and more heterogeneous sample would be 
useful in further minimizing the risk of overfitting in future work. 
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Furthermore, most of our participants were at stages of mild cognitive 
impairment and mild dementia. We may gain a better understanding of 
how the relationships between these imaging biomarkers in AD evolve 
with a broader clinical range of disease severity inclusive of preclinical 
individuals through moderate dementia. Additionally, the cross- 
sectional nature of this study and its implications for our conclusions 
postulating GWR as a harbinger of future pathological change need to be 
directly substantiated with longitudinal investigation. The results re-
ported here suggest that GWR is observed in regions where tau PET 
signal is abnormal (e.g., PFC) and may represent sites of future tau 
accumulation and atrophy. Longitudinal analyses would be additionally 
useful in directly testing our hypothesized spatiotemporal trajectories of 
the relationships between neuropathological and neurodegeneration 
biomarkers and how they relate to changes in disease severity. More-
over, given that GWR was found to be complementary to cortical 
thickness in explaining tau accumulation, further research is warranted 
to clarify what neurodegenerative processes GWR may be a proxy for. 
For instance, examination of the relationship between GWR and regional 
hypometabolism as measured by 18F-fluorodeoxyglucose (FDG) PET 
would be particularly useful, as the latter has been shown to be more 
strongly correlated with FTP PET signal than cortical thickness in AD 
(Whitwell et al., 2018). Cortical hypometabolism has also been shown to 
appear before cortical atrophy in AD (Kljajevic et al., 2014). Finally, it 
would be important for future studies to further investigate the rela-
tionship between GWR and amyloid deposition by, for example, exam-
ining how GWR can be used to differentiate Aβ + individuals from Aβ- 
individuals. Recent evidence identifies alterations in cortical micro-
structural properties (as estimated by diffusion MRI) in AD, which were 
associated with the pattern of amyloid accumulation (Spotorno et al., 
2022). Future studies should thus clarify the associations between GWR 
and other metrics microstructural integrity, with the goal to identify 
their common and dissociable sensitivity to neuropathological 
processes. 

In summary, we demonstrate that GWR is a promising measure to 
better understand the neurodegenerative component of the A/T/N 
framework used to characterize and quantify AD pathophysiology. By 
showing that GWR is associated with cortical thickness as well as tau 
deposition, even after controlling for cortical thickness, we argue that 
GWR is a uniquely sensitive in vivo marker of neurodegenerative change 
reflecting pathological mechanisms that may occur prior to cortical at-
rophy. By using all of these imaging biomarkers of AD together, we may 
be better able to capture, and possibly predict, AD neuropathologic 
changes in vivo. We hope that such an approach will ultimately 
contribute to better endpoints to evaluate the efficacy of therapeutic 
interventions as we move toward an era of disease-modifying treatments 
for this devastating disease. 
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