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ABSTRACT

Differences in methylation across tissues are critical
to cell differentiation and are key to understanding
the role of epigenetics in complex diseases. In this
investigation, we found that locus-specific methyla-
tion differences between tissues are highly consist-
ent across individuals. We developed a novel
statistical model to predict locus-specific methyla-
tion in target tissue based on methylation in surro-
gate tissue. The method was evaluated in publicly
available data and in two studies using the latest
IlluminaBeadChips: a childhood asthma study with
methylation measured in both peripheral blood
leukocytes (PBL) and lymphoblastoid cell lines;
and a study of postoperative atrial fibrillation with
methylation in PBL, atrium and artery. We found
that our method can greatly improve accuracy of
cross-tissue prediction at CpG sites that are
variable in the target tissue [R2 increases from 0.38
(original R2 between tissues) to 0.89 for PBL-to-
artery prediction; from 0.39 to 0.95 for PBL-to-
atrium; and from 0.81 to 0.98 for lymphoblastoid
cell line-to-PBL based on cross-validation, and
confirmed using cross-study prediction]. An ex-
tended model with multiple CpGs further improved
performance. Our results suggest that large-scale

epidemiology studies using easy-to-access surro-
gate tissues (e.g. blood) could be recalibrated to
improve understanding of epigenetics in hard-
to-access tissues (e.g. atrium) and might enable
non-invasive disease screening using epigenetic
profiles.

INTRODUCTION

Tissue-specific gene expression patterns that determine cell
types and functions are regulated in part by tissue-specific
methylation at CpG sequences (1). It has been shown that
epigenetic variation in the methylation of DNA is related
to transcription regulation, cell differentiation, diseases
and cancers (2). Recent advances in genome-wide
technologies make it possible to study the impact of epi-
genetics on health outcomes in areas such as cardiovascu-
lar epigenetics (3), environmental epigenomics (4), and the
role of early life social environment and associations with
long-term disorders (5). To understand the variation of
methylation in the human genome and its relation to
common disease, large-scale population-based studies are
needed. However, the target tissues directly relevant to the
outcome of interest are often impossible or extremely dif-
ficult to collect in a substantial number of samples, which
often makes large human studies based on target tissues
infeasible. Also, use of DNA methylation data from
biospecimens that can be easily and non-invasively
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collected from human individuals, such as blood, would
be critical to develop novel epigenetic biomarkers for
clinical diagnosis and prevention. For example, Barault
et al. (6) showed that leukocyte DNA methylation levels
of selected imprinted genes may serve as surrogate
markers of DNA methylation in mammary tissue in the
study of breast cancer, and Ursini et al. (7) showed that
methylation in prefrontal cortex target tissue can also be
well correlated with methylation in blood lymphocytes.
Previous studies have shown that DNA methylation

patterns are largely conserved across tissues, although
intra-individual variation exceeds inter-individual vari-
ation (2,8,9). For example, Byun et al. (2009) reported
that the intra-individual correlations for 11 tissues were
0.852 (range: 0.738–0.941) using the IlluminaGoldenGate
Bead Array, which integrates 1505 CpG sites in 807 genes.
This suggests that it is possible to develop a model to
study DNA methylation in target tissues for population-
based epidemiological studies using easily accessible
tissues. To determine whether methylation markers from
surrogate tissues can be used as a proxy for methylation in
target tissues to study an outcome of interest, it is neces-
sary to determine whether methylation in surrogate tissues
can adequately predict target tissue methylation.
In this study, we systematically addressed this question

using the latest high-throughput technologies (Illumina
HumanMethylation27 and HumanMethylation450
arrays) to collect data from multiple tissues in the same
individuals participating in two independent studies as
well as data from public databases. Specifically, first we
investigated related tissues including Epstein-Barr virus
(EBV)-transformed lymphoblastoid cell lines (LCL) and
blood. LCLs have been used to increase the amount of
DNA that can be obtained from peripheral blood leuko-
cytes (PBLs) for genetic studies, such as the HapMap
(10,11) and the 1000 Genomes Project (12). They have
been used to study genetic and epigenetic determinants
of gene expression (13–18) and are found to recapitulate
the naturally occurring gene expression and methylation
variation in primary B- and T cells (8). LCLs are particu-
larly attractive in epigenetic studies because they could
potentially allow for DNA methylation analyses even
when the amount of blood that can be collected is
limited. In the next stage, we examined methylation
across differentiated tissues including PBLs, right atrial
appendage and left internal mammary artery (subse-
quently abbreviated as ‘atrium’ and ‘artery’, respectively).
We then examined the prediction accuracy using cross-
validation and systematically evaluated the performance
by predicting methylation status in independent data
obtained from a public database repository.

MATERIALS AND METHODS

Subject and tissue collection

PBL and LCL samples
DNA methylation data were collected from 195 siblings
and their parents in 95 nuclear pedigrees identified
through a proband with asthma. These data were
derived from a previous family study of childhood

asthma (19) and gene expression quantitative trait loci
mapping exercise for global expression in LCL from a
subset of individuals (13). PBL samples were collected
from 39 children (18 male) derived from 20 nuclear
families collected through a proband with asthma.
Among these 39 samples, 22 were asthmatic (see Moffatt
et al., 2007, for criteria). DNA from PBLs and paired EBV-
transfected LCLs were available from each individual. The
transformation of peripheral blood lymphocytes in all 39
samples was carried out by the European Collection of Cell
Cultures (ECACC, http://www.hpacultures.org.uk/collec-
tions/ecacc.jsp). Previously transformed cryopreserved
EBV cell lines were grown as 500-ml roller cultures. Once
log phase was reached, cells were pelleted, medium was
discarded and a mixture of RLT buffer (RNeasy Lysis
Buffer, Qiagen, Valencia, CA, USA) and b-
mercaptoethanol was added. Pellets were vortexed to
ensure thorough re-suspension, after which they were
frozen at �70�C and stored at �80�C (13). DNA was ex-
tracted from PBL and LCL using the PromegaWizard Kit.

PBL, atrium and artery samples
Patients undergoing coronary artery bypass graft surgery
at Beth Israel Deaconess Medical Center were recruited to
participate in a study of DNA methylation and atrial fib-
rillation. PBL, atrium and artery tissue were collected
from 18 participants using PaxGene tubes for blood and
PaxGene (Qiagen, Valencia, CA, USA) tissue containers.
After surgery, six participants developed atrial fibrillation.
Blood DNA was extracted using the PAXgene Blood
DNA Kit (Qiagen, Valencia, CA, USA); atrial and
artery tissue DNA was extracted using the PAXgene
Tissue DNA Kit (Qiagen, Valencia, CA, USA) according
to the manufacturer’s protocol. Among the four samples
with duplicates, correlation R2 between duplicates was
>99%. For 18 participants, one or more tissue types
were available. There were 14 individuals with methyla-
tion measures in all three tissues that met quality control
standards and were included in downstream analysis.

DNA methylation profiling

Illumina Infinium HumanMethylation27 array
DNA samples were quantified using a NanoDrop spectro-
photometer (Thermo Scientific, Wilmington, DE, USA)
and bisulfite converted using the Zymo EZ DNA
Methylation Kit (Zymo Research, Orange, CA, USA)
with an input of 1000 ng. The assay was carried out as
per the IlluminaInfinium Methylation instructions. Each
conversion assay included a commercially available
positive control (Universal Methylation DNA Standard,
Zymo Research) and in-house–generated negative control
(whole-genome amplified genomic DNA). Bisulfite-
converted samples were eluted in a volume of 8 ml and
re-quantified on the NanoDrop spectrophotometer using
the RNA settings (because recovered DNA is single
stranded and exhibits similar absorption properties to
RNA at 260 nm). Dilution plates were constructed from
these bisulfite-converted samples at a concentration of
60 ng/ml in a total volume of 6 ml. These plates (from
which 4 ml was ultimately taken) formed the input for

3516 Nucleic Acids Research, 2014, Vol. 42, No. 6

(6) 
 (7)
 to 
,
population 
high 
 cells
peripheral blood leukocytes (
)
,
 (eQTL)
Peripheral blood leukocytes
st
peripheral blood leukocytes (
)
Epstein-Barr virus (
)
lymphoblastoid cell lines (
)
http://www.hpacultures.org.uk/collections/ecacc.jsp
http://www.hpacultures.org.uk/collections/ecacc.jsp
cryo-
-
-
k
6 
4 
was
3 
k
since 
bisulfite 
u
u
u


the IlluminaInfinium Methylation assay using the
HumanMethylation27 BeadChips (IlluminaInc, San
Diego, CA, USA). This assay interrogates 27 578 CpG
sites for the extent of DNA methylation. The plates
were processed as per the manufacturer’s instructions,
including the positive and negative controls from each
bisulfite conversion assay. Data were visualized using
the BeadStudio software, and examined using both
sample-dependent and sample-independent quality
control criteria. Samples that failed quality control
were repeated. Signal intensities of methylated and
unmethylated probes were exported from the
BeadStudio interface, along with detection of P-values
representing the likelihood of detection relative to
background.

Illumina Infinium HumanMethylation450 array
DNA was quantified using a NanoDrop spectrophotom-
eter (NanoDrop Technologies, Wilmington, DE, USA)
and PicoGreenQuant-iT TM PicoGreen dsDNA Kit
(Invitrogen, Carlsbad, CA, USA). DNA was bisulfite-
converted using the Zymo EZ DNA Methylation Kit
(Zymo Research, Orange, CA, USA) with an input of
1000 ng using the EZ DNA Methylation Kit (Zymo
Research, Orange, CA, USA) according to the manufac-
turer’s protocol. Final elution was performed with 30 ml
M-elution buffer. Bisulfite-treated DNA was ali-
quoted and stored at �80�C until ready for use.
HumanMethylation450 BeadChips (IlluminaInc, San
Diego, CA, USA) were used to interrogate �450 000
DNA methylation sites covering 14 000 genes including
CpG islands and shores, non-coding regions, microRNA
promoter, and disease-associated regions plates were pro-
cessed as per the manufacturer’s instructions, including
the positive and negative controls from each bisulfite con-
version assay. Data were visualized using the BeadStudio
software and were examined using both sample-dependent
and sample-independent quality control criteria. Samples
that failed quality control were repeated. Signal intensities
were exported from the BeadStudio interface both before
and after background correction, along with detection
P-values representing the likelihood of detection relative
to background.

Methylation normalization

Methylation b values normalization
For PBL and LCL samples using the
HumanMethylation27 array, we normalized the probe
intensity by applying quantile normalization to all
methylated and unmethylated probes together across all
samples, similar to the approach used in the lumi package
(R, Bioconductor) (20). The methylation b values were
recalculated as the ratio of methylated probe signal/
(total signal+100). Individual data points with detection
P> 0.05 were treated as missing data.

For the PBL, atrium and artery samples using
HumanMethylation450 array, we used the pipeline de-
veloped by Touleimat and Tost (21). Individual data
points with detection P> 0.01 or number of beads <3
were treated as missing data. Samples with >20%

missing probes were treated as missing data. Probe
overlaps with any common single-nucleotide polymorph-
isms (MAF> 0.05) in the HapMap CEU population and
single-nucleotide polymorphisms within 10 bp of query
sites were removed. The lumi package (20) was used for
background and color bias correction. Quantile normal-
ization across samples was then applied to probes within
each functional category (CpG island, shelf, shore, etc.)
separately to correct the shift of methylation b value
between Infinium I and Infinium II probes by aligning
the distribution of Infinium II probes to the reference dis-
tribution built on the Infinium probes (21).

Statistical models for prediction

Methylation pattern across tissues
We first examined correlations between PBL and LCL
from the asthma study and between PBL, atrium and
artery in the atrial fibrillation study. We then removed
CpGs with extreme high or low methylation in all
samples to assess the correlation between tissues at inter-
mediate level of methylation, as many CpG sites are either
completely methylated or unmethylated across individuals
and tissues. The first correlations evaluated could be po-
tentially inflated by these CpG sites at both extremes of
methylation distribution. This would artificially increase
the between-tissue correlation coefficient and mask the
relationship at CpGs that shows more tissue specificity.

Cross-tissue prediction of methylation level

Linear prediction model
The linear model was developed using a training data set
to predict methylation in a testing data set. Suppose that
methylation values in the training data set are organized
into two n�m matrices, X and Y, where X is the surro-
gate tissue and Y is the target tissue. There are n samples
and m CpG probes. Each sample is a row and each probe
is a column in the matrix. Let xij and yij, i=1,2, . . . ,n and
j=1,2, . . . ,m be the element of matrices X and Y, respect-
ively. The linear regression model for prediction of the j-th

probe is yij ¼ �j+�jxij+eij, i=1,2, . . . ,n. Let �̂j and �̂j be
the estimates of this model. For a particular sample in the
testing data set, the predicted methylation value at the

target tissue is y�j ¼ �̂j+�̂jx
�
j , j=1,2, . . . ,m, where x�j is

the methylation value at the surrogate tissue from the
sample being predicted.

Support vector machine prediction model
Support vector machine (SVM) is one of the most popular
supervised learning methods used to analyze data and rec-
ognize patterns (22). SVM represents a powerful technique
for general (nonlinear) classification, regression and
outlier detection and has been widely used in many bio-
informatics applications. The SVM function in R package
e1071 was used to build the statistical prediction model
(23). Default parameters for eps-regression were used with
radial basis kernel and e=0.1. The prediction using the
SVM model is constructed in a similar manner as the
linear regression method. For a given CpG site j, we
used xij and yij, i=1,2, . . . ,n as the training data set to
build an SVM model, denoted as f(x). For a new sample,
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the predicted value y�j is obtained by applying the SVM
model to x�j , i.e. y

�
j ¼ fðx�j Þ, where x�j is the methylation

value at the surrogate tissue from the sample being pre-
dicted. To allow other users to apply our method to their
data set, we have prepared an R package to do cross-tissue
methylation prediction. This R package is available to
download from our Web site (http://www.hsph.harvard.
edu/liming-liang/cross-tissue-methylation/).

Assessment of prediction accuracy using cross-validation
Cross-validation was used to estimate prediction accuracy
without overfitting. It consists of the following steps:

(i) Leave-one-family out or leave-one-sample out
One sample was removed, and the remaining
samples were used as training data set. The left-
out sample was used as testing data set. Because
the PBL–LCL asthma data consist of family
members, we removed the entire family in each it-
eration so that the training data set and the testing
data set are completely independent.

(ii) Statistical prediction model (linear regression model
or SVM) was estimated using the training data set.

(iii) Applying the prediction model (linear regression
model or SVM) to the left-out families or samples,
we obtained the predicted value for the samples in
testing data set.

(iv) Repeat (i)–(iii) for all families or samples.
(v) After we obtained the predicted value for

all n samples and all m CpG sites,
y�ij,i ¼ 1, . . . ,n,j ¼ 1, . . . ,m. The prediction

accuracy was measured by correlation coefficient
R2 and mean absolute error MAE for specific
sample (R ¼ corðy�i:,yi:Þ, MAE ¼ 1

m

Pm
j¼1 jy

�
ij � yijj) or

specific CpG site (R ¼ corðy�:j,y:jÞ,

MAE ¼ 1
n

Pn
i¼1 jy

�
ij � yijj), where yi: is the ith row

and y:j is the jth column of the experimentally
obtained methylation matrix Y. Similar definition
for y�i: is the i-th row and y�:j is the j-th column of

the predicted methylation matrix.

Single probe versus multiple probes

Methylation at a particular CpG site may be correlated
with other CpG sites either at nearby regions or elsewhere
on the genome. Including these correlated CpG sites in the
prediction model might further improve performance. We
examined the utility of including multiple CpG sites in the
prediction of atrium methylation based on PBL for 1000
target CpG sites with substantial variation but relatively
poor prediction performance (randomly selected from
probes with standard deviation in atrium between 0.1
and 0.2, and R2 between PBL and atrium <0.3).

Prediction generalizability across studies

We further evaluated the prediction performance by
applying our prediction model to an independent data
set described in Caliskan et al. (2011) (GEO accession
ID: GSE26211). This data set contains six individuals.
Each individual has two T cell samples and 12 LCL

samples (24 LCL-T cell pairs for each individual). For
each LCL-T cell pair, we applied the SVM and linear
model built using our 39 LCL-PBL samples to the LCL
sample and compared the predicted value with the T cell
methylation value.

Prediction performance in other tissue settings

To evaluate ourmodel performance in other tissues, we have
obtained data fromByun et al. (2009) (2), where there are six
cases and each has 11 tissues: brain, bladder, colon, esopha-
gus, heart, kidney, liver, lung, pancreas, spleen and stomach.
We examined all tissue pairs (55 pairs). For each pair, we
applied our SVMmodel to predict methylation in one tissue
using the other tissue in the pair.

Cross-tissue prediction and utility of surrogate tissue

To examine the utility of the predicted methylation value,
we carried out association analysis between postoperative
atrial fibrillation (PostOpAF, the outcome of primary
interest) with the following linear regression model:

methylation ¼ �+�1 � PostOpAF+�2 � sex

where outcome is the methylation of individual probe and
PostOpAF is the postoperative atrial fibrillation. We then
performed a clustering analyses using PBL, atrium and
predicted atrium methylation to evaluate hierarchical clus-
tering by AF status based on peripheral blood leukocytes
and tissue methylation as well as predicted methylation
levels.

Sample size effect on prediction accuracy

We hypothesized that a training data set with a larger
sample size would increase the precision of model param-
eters and reduce the effect of outliers. We evaluated the
sample size effect by randomly choosing a subset of our 39
PBL-LCL samples as training data set and predicted the
methylation in the GSE26211 data set. We varied the size
of the training data set from 3, 4, 5, 6, 7, 8, 10, 20, 30 to 39.
For each size of the training data set (except n=39), we
randomly selected a different training data set 10 times
and reported the average performance across the 10
replicates.

RESULTS

Methylation pattern across tissues

Consistent with previous studies (2,8), we also observed
that DNA methylation values were largely conserved
across tissues. The correlation R2 between PBL and
LCL for the 39 samples ranged from 0.81 to 0.95 with
mean 0.92 (Supplementary Figure S1 and W-S1). In the
14 atrial fibrillation study (AF) samples, the correlation
between tissues was substantially high (for PBL-artery, R2

ranged from 0.76 to 0.89 with mean 0.81, for PBL-atrium,
R2 ranged from 0.81 to 0.87 with mean 0.83, for artery-
atrium, R2 ranged from 0.91 to 0.97 with mean 0.94,
Supplementary Figure S2 and W-S2). After removing
CpG sites with minimum methylation b value> 0.9 or
maximum b value< 0.1 among all subjects and tissues,
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correlations were reduced. They were further reduced after
removing CpG sites with minimum methylation b values
>0.8 or maximum b values <0.2 among all subjects and
tissues (Table1).

Despite the high level of overall correlation R2, there
were many CpG sites that exhibited differences in methy-
lation across tissues (14% CpGs have methylation differ-
ence >0.1 in PBL-LCL data set, 26% in PBL-artery, 24%
in PBL-atrium and 14% in artery–atrium data sets).These
CpG sites determined tissue-specific methylation patterns.
We first examined how cross-tissue differences in methy-
lation at each locus were distributed across individuals
and found that they were largely consistent. For
example, a CpG site that had higher methylation level in
target tissue than surrogate tissue in one individual gener-
ally had higher methylation level in target tissue than
surrogate tissue in other individuals. In addition, the mag-
nitude of difference was similar across individuals
(Supplementary Figure S3, S4, W-S3 and W-S4).

Cross tissue prediction of methylation level

We explored the utility of methylation prediction by using
two statistical models based on linear regression model
(LM) and SVM and two independent data sets with five
tissues. Leave-one-out cross-validation procedure is used
to estimate the prediction accuracy and avoid overfitting.

PBL and LCL
After iterating through all 20 families, we had a vector of
39 predicted methylation levels in PBL and a vector
of their observed methylation levels as measured by the
Illumina array. Correlation R2 between these two vectors
was used to evaluate the prediction performance for the
CpG site (CpG-specific or probe-specific accuracy). We
applied this leave-one-out procedure on all probes of the
Illumina array and obtained a predicted methylation
vector for all CpG sites for each sample. Results showed
that the predicted PBL methylation level was much closer
to its experimental counterpart (methylation measured
directly in PBL). The improvement was illustrated
through the scatter plots of LCL versus PBL and
predicted PBL versus PBL for sample #1 in Figure 1a
(based on SVM prediction) and Supplementary

Figure S8a (based on LM prediction). The difference
between predicted PBL and PBL is greatly reduced
and consistent across samples (Table 2, Figure 1b and
Supplementary Figure S8b for sample #1 and #2).
Similar improvement was observed for all 39 samples
(Supplementary Figure S5 and W-S5) and the overall cor-
relation R2 between true and predicted PBL methylation
from the same individual increased from 0.92 to 0.99
(average across all 39 samples for both linear regression
model and SVM model). After eliminating CpG sites that
were completely methylated or unmethylated, we still
observed substantial increases in the R2. The mean
absolute error is mostly below one standard deviation of
methylation in PBL. Smaller error was observed for
probes with large variation.

PBL, artery and atrium
The relatively close relationship between PBL and LCL
methylation might contribute to the good prediction
accuracy. We next extended the same prediction proced-
ures (linear regression model and SVM model) to the
second data set where three tissues (atrium, internal
mammary artery and PBL) using IlluminaInfinium
HumanMethylation450 array were collected from 14 indi-
viduals. We treated PBL as the surrogate tissue and artery
and atrium as the target tissues. The correlations between
artery-raw PBL (R2=0.81) and atrium-raw PBL
(R2=0.83) are less than PBL-LCL but are similar to cor-
relations reported in other studies (2). Again, we observed
that the predicted artery or atrium methylation level is
much closer to its experimental counterpart (Figure 1c–f
and Supplementary Figures S6, S7, S8c–S8f, W-S6, W-S7)
and the overall correlation R2 increased from 0.81 (raw
PBL-artery) to 0.97 (calibrated PBL-artery) or from 0.83
(raw PBL-atrium) to 0.99 (calibrated PBL-atrium). After
removing CpG sites with minimum methylation
b value> 0.9 or maximum b value< 0.1 among all
subjects and tissues, our prediction model substantially
increased the overall R2 (Table 2). At individual CpG
sites, we observed that when there is substantial variation
[SD> 0.35 (LM)], SD> 0.33 (SVM) for artery or
SD> 0.27 (LM), SD> 0.30 (SVM) for atrium in the
target tissue (artery or atrium), the prediction accuracy

Table 1. Correlation R2 between raw data across tissues in asthma study and AF study

Tissue pair All probes Remove probes with minimum
methylation b value> 0.9 or

maximum b value< 0.1

Remove probes with minimum
methylation b value> 0.8 or

maximum b value< 0.2

Mean
correlation

range Mean
correlation

Range Probes
removed

Mean
correlation

Range Probes
removed

Illumina27k data from asthma study
PBL-LCL 0.92 0.81, 0.95 0.88 0.71, 0.92 10 543 0.81 0.53, 0.87 15 463

Illumina450k data from AF study
PBL-artery 0.81 0.76, 0.89 0.59 0.48, 0.75 174 124 0.38 0.25, 0.61 248 496
PBL-atrium 0.83 0.81, 0.87 0.61 0.57, 0.70 179 645 0.39 0.33, 0.51 257 563
Atrium-artery 0.94 0.91, 0.97 0.84 0.76, 0.91 194 004 0.71 0.59, 0.84 271 094

For ‘All probes’ column, we used the raw methylation to calculate R2. For ‘Remove probes with min methylation b value> 0.9 or max b value< 0.1’
column, we removed the extreme probes those fall within this range and used the remaining data to calculate R2, and it is similar to ‘Remove probes
with minimum methylation b value> 0.8 or maximum b value< 0.2’ column.

Nucleic Acids Research, 2014, Vol. 42, No. 6 3519

beta
beta
which 
A
A
A
-
A
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt1380/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt1380/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt1380/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt1380/-/DC1
Support Vector Machine (
)
a total of 
5 
probe 
.
P
vs.
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt1380/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt1380/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt1380/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt1380/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt1380/-/DC1
3 
-
1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt1380/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt1380/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt1380/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt1380/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt1380/-/DC1
beta
beta
(
)
)


Figure 1. Methylation pattern across tissues and between-tissue difference across individuals. (a) Scatter plots for sample #1. Red circles for PBL
versus LCL (x=PBL, y=LCL) and purple circles for PBL versus SVM-predicted PBL (x=PBL, y=predicted PBL based on LCL). R2

(PBL_LCL)=R2 between methylation in PBL and methylation in LCL. R2(SVM)=R2 between methylation in PBL and SVM predicted methy-
lation in PBL based on LCL data. (b) Scatter plot for sample #1 versus sample #2. Red circles for PBL–LCL in sample #1 versus PBL–LCL in
sample #2 (x=PBL–LCL in sample #1, y=PBL–LCL in sample #2). Purple circles for PBL–SVM-predicted PBL of sample #1 versus PBL–SVM-
predicted PBL in sample #2 (x=PBL–SVM-predicted PBL of sample #1, y=PBL–SVM-predicted PBL of sample #2). (c) Scatter plots for sample
177. Red circles for Artery versus PBL (x=artery, y=PBL) and purple circles for artery versus SVM-predicted artery (x=artery, y=predicted
artery based on PBL). R2(Ar_PBL)=R2 between methylation in artery and methylation in PBL. R2(SVM)=R2 between methylation in artery and
SVM-predicted methylation in artery based on PBL data. (d) Scatter plot for sample 177 versus sample 241. Red circles for artery–PBL in sample 177
versus artery–PBL in sample 241 (x=artery–PBL in sample 177, y=artery–PBL in sample 241). Purple circles for artery–SVM-predicted artery of
sample 177 versus artery–SVM-predicted artery in sample 241 (x=Artery–SVM-predicted artery of sample 177, y=artery–SVM-predicted artery of
sample 241). (e) Scatter plots for sample 177. Red circles for atrium versus PBL (x=atrium, y=PBL) and purple circles for atrium versus SVM-
predicted atrium (x=atrium, y=predicted atrium based on PBL). R2(At_PBL)=R2 between methylation in atrium and methylation in PBL.
R2(SVM)=R2 between methylation in atrium and SVM-predicted methylation in atrium based on PBL data. (f) Scatter plot for sample 177 versus
sample 501. Red circles for atrium–PBL in sample 177 versus atrium–PBL in sample 501 (x=atrium–PBL in sample 177, y=atrium–PBL in sample
501). Purple circles for atrium–SVM-predicted atrium of sample 177 versus Atrium–SVM-predicted atrium in sample 501 (x=atrium–SVM-
predicted atrium of sample 177, y=atrium–SVM-predicted atrium of sample 501). Asterisk: for scatter plots for all other samples; please refer
to Supplementary Figures S5 and W-S5 for LCL-PBL, S6 and W-S6 for PBL–artery, S7 and W-S7 for PBL–atrium.
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is close to 1, and the mean absolute error is mostly below 1
SD of methylation in the target tissues (Figure 2c–f and
Supplementary Figure S9c–S9f).

For some individuals, the scatter plots in Figure 1c and
e and Supplementary Figure S8c, S8e become less inform-
ative due to the large spread of data points. Therefore, we
examined the density of predicted values by different inter-
vals of experimentally obtained methylation values. For
example, we categorized the probes according to artery
methylation values from one participant into 10 equally
spaced bins and plotted the density of predicted values for
probes within each bin (Figure 3). Our analysis shows that
the predicted values by either model were more likely to
fall within the window of the experimentally obtained
methylation level than uncalibrated methylation level
measured in PBL. The density plots from another individ-
ual show similar pattern (Supplementary Figure S10).
These results suggested that the predicted artery, atrium
or calibrated PBL methylation is a better surrogate model
than the raw PBL methylation level to study methylation
variation in artery/atrium. Although the original correl-
ation is >0.8 based on all probes, the calibrated values still
gave higher correlation R2 (0.97 for PBL-artery prediction
and 0.99 for PBL-atrium prediction, both linear regression
model and SVM model).

Linear regression versus SVM
We have used both linear regression model and SVM
model for our prediction engines. These two models gave
similar overall performance (Figure 1 and Supplementary
Figure S8). We expected that the linear regression model
would be more vulnerable to outliers for small sample size.
After examining the range of predicted values, we found
that the linear regression model can sometimes produce
methylation values out of the 0–1 range due to the effect
of outliers and extrapolation, whereas SVM regression
always gives prediction within the range spanned by the
training data set (Supplementary Figures S11, W-S8, S12,
W-S9, S14 and S15). For the larger PBL–LCL sample,
the influence of outliers is reduced (Supplementary
Figures S13, W-S10, S16).

Prediction generalizability across studies

In the independent data set of six individuals and 24 LCL
T cell pairs, the correlation R2 between predicted value
and T cell methylation was 0.95 for both SVM and LM

models (average across 144 LCL-T cell pairs) compared
with 0.92 for LCL-T cell correlation (Supplementary
Figure S17). After removing CpG sites with minimum
methylation b values> 0.9 or maximum b values< 0.1
among all subjects in both LCL and T cells, our prediction
model increased the overall R2 from 0.88 to 0.92. When
the cut-points for minimum and maximum b values were
changed to 0.8 and 0.2, respectively, the overall correl-
ation R2 increased from 0.80 to 0.87. The magnitude of im-
provement was smaller than the cross-validation estimate
in our 39 samples (Supplementary Figure S17). This is
likely because the target tissue in the training data set
is PBLs, whereas the target tissue in testing data set is
T cells. The significant improvement, especially for LCL-
T cell pairs with lower correlation (Supplementary
Figure S17), suggests that the prediction model built in a
training data set is applicable to future studies and
improves the utility of surrogate tissues.

Prediction performance in other tissue settings

To evaluate our model performance in other tissues, we
obtained data from Byun et al. 2009 (2), where there were
six cases with 11 tissues: brain, bladder, colon, esophagus,
heart, kidney, liver, lung, pancreas, spleen and stomach.
We examined all tissue pairs (55 pairs). For each pair, we
applied our SVM model to predict methylation in one
tissue using the other tissue in the pair. Figure 4
compares the R2 based on raw data and predicted data.
R2 of raw data is the R2 between raw methylation of tissue
pair by individual and average across all six subjects, R2 of
predicted data is the R2 between predicted and true methy-
lation in the target tissue by individual and average across
all six subjects. Our results demonstrate that cross-tissue
methylation prediction is feasible and its performance
depends on actual tissue pairs and sample size. In the
future, collection of additional paired tissue data could
be used to re-train the prediction model, and would be
useful for other large-scale study based on blood, which
was not included in this study.

Cross-tissue prediction improves utility of surrogate tissue

Using effect size for AF derived from atrium methylation
as the gold standard, we found that predicted atrium
methylation (or calibrated PBL methylation) gave less
bias in the effect size than uncalibrated PBL methylation
in 60% of loci based on SVM (59% based on LM).

Table 2. Mean correlation R2 between true and predicted methylation in asthma study and AF study

All probes Remove probes with minimum
methylation b value> 0.9 or
maximum b value< 0.1

Remove probes with minimum
methylation b value> 0.8 or
maximum b value< 0.2

Illumina27k data from asthma study
PBL-predicted PBL 0.99 0.99 0.98

Illumina450k data from AF study
artery-predicted artery 0.97 0.93 0.89
atrium-predicted atrium 0.99 0.97 0.95

For the first column, we calculated the mean R2 using true methylation and predicted methylation across all samples. For the second column, we
removed the extreme probes those fall within the range of minimum methylation b value> 0.9 or maximum b value< 0.1, and then calculated the
mean R2 using the remaining data across all samples. It is similar to the last column.
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We anticipate that improvement will increase with larger
sample size. We performed a clustering analyses using
PBL, atrium and predicted atrium methylation by SVM
(see Figure 5). When we cluster by atrium methylation, the

controls are clustered in two groups (Figure 5a). The clus-
tering by PBL methylation shows a different pattern and
cases and controls cluster together. When we use the pre-
dicted atrium methylation, we find that it better represents

Figure 2. Probe-specific prediction accuracy based on SVM model by methylation variation within target tissues. (a) Standard deviation (SD) of
methylation in PBL versus R2 between PBL and predicted PBL based on SVM. For each dot, x= standard deviation (SD) of methylation in PBL
and y= the R2 of PBL and predicted PBL using SVM model for the same probe. (b) Standard deviation (SD) of methylation in PBL versus mean
absolute value of difference between PBL and predicted PBL based on SVM. For each dot, x= standard deviation (SD) of methylation in PBL and
y= the mean absolute value of difference between PBL and predicted PBL using SVM model for the same probe. (c) Standard deviation (SD) of
methylation in artery versus R2 between artery and predicted artery based on SVM. For each dot, x= standard deviation (SD) of methylation in
artery and y= the R2 of artery and predicted artery using SVM model for the same probe. (d) Standard deviation (SD) of methylation in artery
versus mean absolute value of difference between artery and predicted artery based on SVM. For each dot, x= standard deviation (SD) of
methylation in artery and y= the mean absolute value of difference between artery and predicted artery using SVM model for the same probe.
(e) Standard deviation (SD) of methylation in atrium versus R2 between atrium and predicted atrium based on SVM. For each dot, x= standard
deviation (SD) of methylation in atrium and y= the R2 of atrium and predicted atrium using SVM model for the same probe.(f) Standard deviation
(SD) of methylation in atrium versus mean absolute value of difference between atrium and predicted atrium based on SVM. For each dot,
x= standard deviation (SD) of methylation in atrium and y= the mean absolute value of difference between atrium and predicted atrium using
SVM model for the same probe. Asterisk: each dot represents one probe on the Illumina array. The curve represents the LOESS smoothing average
curve. The straight line in (b), (d) and (f) is the x=y line.

3522 Nucleic Acids Research, 2014, Vol. 42, No. 6



Figure 3. Density of predicted methylation level by true methylation in artery for sample 177. Asterisk: red line represents the density of methylation
in PBL. Green line represents the density of the predicted artery methylation by using linear regression model. Purple line represents predicted
methylation using SVM model. The two vertical lines represent the range of true methylation level in artery.
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the patterns showing from the true atrium methylation
data, thus improving the utility of the PBL tissue as a
surrogate of the atrium tissue. This result suggests the
predicted methylation can be particularly useful for
analyses that involve multiple CpGs, such as the clustering
analysis here and network analyses that show to be useful
for gene expression data (24,25).

Sample size effect on prediction accuracy

For each of the six individuals in the GSE26211 data set,
there are 24 LCL-T cell pairs. For each LCL-T cell pair,
we computed the average absolute difference across
all probes as prediction accuracy for the pair. In
Supplementary Figure S18, each line represents a particu-
lar LCL-T cell pair in one of the 10 replicates. The trend of
the lines shows that increasing sample size increases
overall prediction accuracy for the sample. SVM has a
generally better performance than the linear model and
is less subjective to influential outliers (the pairs with
poor prediction accuracy were all based on one LCL
sample’s prediction of T cells from the same individual,
purple lines at left panel). We also examined probe-specific
prediction accuracy. Increasing sample size can greatly
reduce prediction errors, especially when the methylation
has substantial variation (Figure 6).
We observed that prediction error rate was higher with

methylation variation at the beginning and then decreased
dramatically. We speculate that a relatively constant tech-
nical measurement error in methylation across probes
could possibly explain the increasing of prediction error

when total variance is small, which is dominated by tech-
nical measurement errors. But this hypothesis needs to be
tested with additional experiments.

When the training data set was too small (n=3 or 4),
the training samples were not able to represent the
majority of the population. Consequently, prediction
error increased along with the methylation variance, par-
ticularly for SVM, which ensures that the prediction value
falls within the range of the training samples (Figure 6).
We recommend that at least 10 samples are used in the
training data set, and this could vary by tissues and the
technology used to measure methylation.

DISCUSSION

In this study, we developed and systematically evaluated
statistical models to predict methylation level at target
tissues using surrogate tissues. Through both cross-
validation and the application to an independent data
set, we showed that methylation value at the target
tissue can be well predicted, especially for CpG sites
with substantial variation in the target tissue. It suggests
that one can improve the utility of surrogate tissues by
learning the relationship between target tissues and surro-
gate tissues in an independent data set. We expect that the
prediction accuracy could vary across tissue type and dif-
ferent populations. Predictions may be further improved
by incorporating more information, such as from
correlated CpG sites and additional samples as discussed
below.

Figure 4. Predicting performance across multiple tissues. Data obtained from Byun et al. (2009) Hum Mol Genet (PMID:19776032), where there are
six cases and each has 11 tissues: brain, bladder, colon, esophagus, heart, kidney, liver, lung, pancreas, spleen and stomach. We examined all tissue
pairs (55 pairs). For each pair, we apply our SVM model to predict methylation in one tissue using the other tissue in the pair. Figure 4 compares the
R2 based on raw data and predicted data. R2 of raw data is the R2 between raw methylation of tissue pair by individual and average across all six
subjects, R2 of predicted data is the R2 between predicted and true methylation in the target tissue by individual and average across all six subjects.
The straight line is the x=y line. In the legend, the surrogate tissue is on the left and target tissue is on the right.
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Prediction accuracy on independent samples

The cross-validation procedure estimates the prediction
accuracy for target tissue of an independent sample that
was drawn from the same study population and was pro-
cessed and normalized together with the surrogate tissue.
When the training data set and study data set were from
different cell populations, we expect the prediction
accuracy will be lower than the estimate from cross-valid-
ation as was seen in the prediction exercise using the
GSE26211 samples (target tissue is PBL in training data
versus target tissue is T cell in testing data). To maximize

prediction accuracy, it is ideal to collect the training
sample from the cell type as close to the target cell type
as possible and use the same technology platform for the
methylation data.

Potential limitations of cross-tissue prediction

We expect there are limitations in applying cross-tissue
prediction in epidemiology studies. It is possible that cor-
relation between tissues might not necessarily apply to the
CpG sites that are informative for a specific phenotype or
disease. In situations when an important exposure only

Figure 5. Clustering using atrium, PBL and PBL calibrated (SVM) methylation. (a) There are 14 samples: two female (white) and 12 male (red). The
PostOpAF contains four cases (red) and 10 controls (white). The controls are grouped into two groups indicated by red circles and turquoise circles.
One group contains sample #394, #286, #241, #271 and the other group includes #501, #274, #337, #397 and #412. (b) The two groups of controls
indicated by red and turquoise circles are mixed together and one control (#271) is first clustered with two cases (#511, #177) and then with other
controls (turquoise and red), and there are two controls (#501, #337) distinct from other controls. (c) The turquoise and red controls are now
clustered back together, respectively, and locate at the bottom of the tree, except control #501 that was also close to case #215 using atrium
methylation (a) and case #511 that is now clustered with the red group controls but was clustered with turquoise controls.
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affects the methylation in the target tissue but has little
impact on the surrogate tissue, the cross-tissue prediction
might not work well. Genotypes that destroy, introduce
or shift a CpG would lead to correlation between tissues.
The accurate prediction of methylation would reflect the
prediction of genotype in this case. Environmental expos-
ures applied to both tissues, especially at the developmen-
tal stage, would also lead to high correlation between
tissues. In general, processes unique to diseased tissues
would make the prediction become difficult.
In the atrial fibrillation study, we have four cases and 10

controls. For the four cases, the average R2 between raw
PBL and atrium methylation is 0.83, whereas average R2

between atrium and predicted atrium methylation by the
SVM model is 0.98. For the 10 control samples, the
average R2 between raw PBL and atrium methylation is
0.83, whereas the average R2 between atrium and pre-
dicted atrium methylation by the SVM model is 0.99. In
our data set, the prediction performance was similar in
cases and controls. If the relationship across tissues
differs in cases and controls, it would be required to
include both case and control subjects in the training
data set. We recommend that it is important for the
training data set to cover as many important conditions
as possible. In future work, we will extend our model to
explicitly take into account such information, e.g. model
the relationship separately in cases and controls and in-
corporate environmental exposure information.

Implications to epidemiology study and clinical utility

This study confirmed the finding from previous studies
that methylation level is largely conserved across tissues
and showed that methylation status measured in surrogate
tissues can be further recalibrated to better represent the
true methylation status in target tissues, which would
greatly enhance the potential utility of the surrogate
model. The utility of this method will depend on the
actual tissue pairs and sample size of the training data
set, as demonstrated in Figures 4 and 6. We note that
our method can be used to evaluate the usefulness of a
proposed surrogate tissue for a specific target tissue. It
would be important for a pilot study to evaluate the feasi-
bility for a large-scale study to use the surrogate tissue. If
the surrogate tissue would be representative of the target
tissue, our method provides a way to greatly improve the
utility of the surrogate tissue, as we have shown the pre-
dicted value is a much better surrogate than the original
raw methylation value. With the proposed methylation
recalibration or prediction, large-scale epidemiological
studies could become feasible if surrogate tissue, such as
blood, is the only available data.

The clinical utility of methylation markers identified in
surrogate tissues could be improved by using our method
to calibrate the methylation level to better represent the
status in target tissues. For example, in the study for
postoperative atrial fibrillation, our results suggest that
atrium epigenome might be informative to predict

Figure 6. Effect of training sample size on cross-study probe-specific prediction error. Asterisk: for a given sample size, we randomly chose samples
from our family data set of 39 individuals to construct the training sample and predict the T cell methylation in the GSE26211 data set. We
replicated this 10 times and computed the mean absolute prediction error for each probe. The prediction error is plotted against standard deviation
of methylation in the target tissue (T cell methylation). The left panel is prediction error by using linear regression model; the right panel is prediction
error by using SVM model.
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postoperative atrial fibrillation (which presents in �30%
of the patients). The lower accuracy in artery compared
with atrium is likely because the artery tissues collected is
in fact a mixture of endothelium, blood and smooth
muscle cells, thus increasing noise in the target methyla-
tion level. If we could identify patients with at-risk
epigenomes, we could treat them with prophylactic
therapy or intensive mornitoring. Also, if prediction
could be done with blood rather than atrium, clinical
strategy could be developed in advance of the surgery.
We have summarized potential applications of our
approach in Table 3 along with strengths and limitations.
This list is not meant to be complete but could provide
some guideline as how to better use surrogate tissue in
large-scale epidemiology studies.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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