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Abstract: Due to its antimicrobial and healing-promoting effects, the application of cold atmospheric
plasma (CAP) appears to be a promising modality in various fields of general medicine and dentistry.
The aim of the present study was to evaluate the antibacterial and anti-biofilm activity of a handheld
device utilizing ambient air for plasma generation. Suspensions of 11 oral bacteria (among them Fu-
sobacterium nucleatum, Porphyromonas gingivalis, Parvimonas micra, Streptococcus gordonii, and Tannerella
forsythia) were exposed to CAP for 10, 30, 60, and 120 s. Before and after treatment, colony forming
unit (CFU) counts were determined. Then, 12-species biofilms were cultured on dentin and titanium
specimens, and CAP was applied for 30, 60, and 120 s before quantifying CFU counts, biofilm mass,
and metabolic activity. A reduction of ≥3 log10 CFU, was found for ten out of the eleven tested species
at 30 s (except for T. forsythia) and for all species at 60 s. For biofilm grown on dentin and titanium
specimens, the log10 reductions were 2.43 log10 CFU/specimen and by about 4 log10 CFU/specimen
after 120 s of CAP. The CAP application did not reduce the biomass significantly, the metabolic
activity of the biofilms on dentin and titanium decreased by 98% and 95% after 120 s of CAP. An
application of 120 s of CAP had no cytotoxic effect on gingival fibroblasts and significantly increased
the adhesion of gingival fibroblasts to the titanium surface. These results are promising and underline
the potential of CAP for implementation in periodontal and peri-implantitis therapy.

Keywords: cold atmospheric plasma; non-thermal; atmospheric pressure; periopathogens;
Porphyromonas gingivalis; periodontal; peri-implant; titanium

1. Introduction

According to epidemiologic data, the prevalence of periodontitis is very high, about
10% of the global population is affected by a severe form of the disease [1]. Periodontitis is
associated with an impairment of the host response, an imbalance of oral microbiota leading
to an overgrowth of putative pathogens (e.g., Porphyromonas gingivalis, Tannerella forsythia,
and Filifactor alocis), disruption of tissue homeostasis, and periodontal destruction [2–5].
Moreover, the prevalence of peri-implantitis is high, a recent systematic review reported
a weighted mean prevalence of 22% across Europe and North and South America [6].
Similar to periodontitis, the microbiota associated with peri-implantitis is dominated by
well-known periodontal pathogens, such as P. gingivalis, T. forsythia, and Treponema denticola
which suggests a similar biofilm-induced and host-mediated pathogenesis and therefore
a similar anti-infective treatment of peri-implantitis and periodontitis [7], although there
may be some differences in the specific biofilm formation and final composition due to
surface properties and corrosion of titanium [8].
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An essential part of periodontal and peri-implant therapy is the mechanical removal
of the subgingival or peri-implant biofilm. In many cases, the sole mechanical debridement
is not sufficient and adjunctive measures such as antiseptics or antibiotics have to be ap-
plied [9,10]. In particular, the high consumption of antibiotics in the therapy of periodontitis
and especially peri-implantitis [11,12] necessitates the search for alternatives. One possible
option might be the adjunctive application of cold atmospheric plasma (CAP).

Plasma is defined as the fourth state of matter, besides solid, liquid, and gaseous. It
can be generated by ionizing gas in an electric field between two electrodes separated by
a dielectric barrier [13]. These plasma-generating devices can be indirect devices such as
jet or surface dielectric barrier discharge (SDBD) devices. Direct plasma devices use the
treated surface as grounded electrode, and the plasma can be ignited utilizing ambient air,
such as a corona discharge or volume dielectric barrier discharge (VDBD) [13]. Commer-
cially available devices are, among others, the direct DBD device plasma ONE (plasma
Medical Systems, Nassau, Germany), the indirect DBD PlasmaDerm (Cinogy, Dulderstadt,
Germany), and the jet device kINPen med (neoplas med, Greifswald, Germany). The
application of CAP has emerged in the medical field, including the dental field, in the
recent decade and the areas of application are manifold, e.g., treatment of chronic and acute
wounds, regenerative medicine [14], orthopedic and vascular surgery, ophthalmology [15],
and oncology [16]. In dentistry, CAP application might be of interest for many indications,
such as instrument sterilization, disinfection of cavities after the removal of dental caries,
teeth bleaching, increase of the bonding of adhesive restorations and wound healing, treat
Candida infections and remove biofilm [17]. In terms of an anti-biofilm effect, the use of
CAP is discussed in endodontics [18] and non-surgical periodontal therapy [19], but in par-
ticular in implantology and the therapy of peri-implant diseases [20]. In animal studies, the
combination of mechanical debridement and adjunctive CAP application on contaminated
dental implants led to superior periodontal outcomes such as alveolar or peri-implant bone
level, less inflammation, and a decreased detection rate of periopathogens [21–23]. In a
recent split mouth clinical study, periodontitis patients with adjunctive application of CAP
showed a better clinical and microbiological outcome compared to the controls without
CAP [19].

The antimicrobial effect of CAP is primarily based on the generation of reactive oxygen
(ROS) and nitrogen species (RNS), accompanied by electrons, ionized particles, electric
fields, and radiation [24]. In general, the generation of ROS and RNS affects various micro-
bial structures. The cell wall could be etched and the membrane damaged by disruption
and lipid peroxidation. The bacterial DNA and RNA could be compromised by oxidative
damage, base modification, and strand breaks, and proteins may become unfolded or mod-
ified [24]. The antimicrobial effects are dependent on many factors including the device
parameters and the experimental setup, but also the treated pathogens [25]. Most available
studies investigating the antimicrobial effect of CAP used argon or helium with or without
an admixture of oxygen as working gases. In terms of clinical implementation, gas cylinders
are needed which makes the application more complicated concerning administration and
occupational safety [25].

Therefore, devices operating with ambient air might be advantageous. Every man-
ufacturer uses his own configuration to create an electric field to induce plasma genera-
tion. The recent advancement of a handheld plasma device series, originally designed for
non-medical surface modification, uses the underlying principle of a piezoelectric direct
discharge (PDD). The heart of such a device consists of a piezoelectric transformer. A high
conversion ratio and thus, high electric field strengths are achieved with Rosen-type [26]
transformers where a resonant longitudinal wave is excited in a piezoceramic rod-shaped
element (e.g., PZT, lead zirconium titanate) via the electrical excitation. To work with
low input voltages, the first half of the element consists of multilayers polarized perpen-
dicular to the applied electric field, and the second half of the rod consists of a region
of the piezoelectric material polarized parallel to the oscillation axis. In resonance, the
entire rod is deformed at high frequency (25–100 kHz) in the micrometer range, and the
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secondary side generates a high voltage with a transformation ratio of up to 10,000 with
respect to the input voltage due to the inverse piezoelectric effect. This principle achieves a
sufficiently high voltage to ignite corona type plasma in ambient air [27]. The device was
originally developed to optimize manufacturing processes in terms of coating and bonding.
In the medical and dental field, studies with plasma generated by this PDD technology
showed an antibacterial effect against single species biofilms of Staphylococcus aureus, Lis-
teria monocytogenes, and Salmonella [28–30] and increased adhesion of host tissue cells on
titanium surfaces [28,31]. At present, there is no data on the potential activity of CAP
using this direct handheld PDD device on oral planktonic bacteria and on multi-species
biofilms associated with periodontal and peri-implant diseases established on titanium or
dentin surfaces.

The aim of this in-vitro study was to analyze the activity of CAP using a direct
handheld PDD device against planktonic oral bacteria and periodontal/peri-implant multi-
species biofilms and on adhesion of oral fibroblasts on dentin and titanium specimens.
Exposure times applicable in a dental practice were used in the experimental designs.

2. Materials and Methods
2.1. Plasma Device

For the experiments, the commercially available plasma PDD device (piezobrush®

PZ3; Relyon Plasma, Regensburg, Germany) was used, operating at about 50 kHz with
a power of about 8 W. The device was originally designed for surface treatments in the
industrial and handcraft sector. The so-called near-field nozzle with a dielectric barrier
cap was used (Figure 1). The treated surface (polystyrene, dentin, or titanium) acted as
the grounded electrode. Here, the PDD device was fixed at a working distance of 2 mm
between the nozzle and the surface to be treated (Figure 1). The respective treatment time
was set on the device (countdown) and the control signal in the display indicated the
ignition of the plasma.
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Figure 1. Experimental set-up for the effect on planktonic bacteria and biofilms; DBD: dielectric
barrier discharge.

2.2. Bacteria

The following 12 bacterial strains were used in the experiments: Streptococcus gordonii
ATCC 10558, Actinomyces naeslundii ATCC 12104 (both species represent early colonizers),
Capnocytophaga gingivalis ATCC 33624, Campylobacter rectus ATCC 33238, Eikenella corro-
dens ATCC 23834, Fusobacterium nucleatum ATCC 25586, Prevotella intermedia ATCC 25611,
Parvimonas micra ATCC 33270 (representing bacteria functioning as bridges between early
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and late colonizers), Porphyromonas gingivalis ATTC 33277, Filifactor alocis ATCC 33238,
Tannerella forsythia ATCC 43037, and Treponema denticola ATCC 35405 (late colonizers, being
strongly associated with periodontal disease).

The strains were maintained on tryptic soy agar (TSA) plates (Oxoid, Basingstoke,
UK) with 5% sheep blood under anaerobic conditions (S. gordonii with 5% CO2) at 37 ◦C. T.
denticola was maintained in modified mycoplasma broth (BD, Franklin Lake, NJ, USA) with
the addition of 1 g/mL cysteine, 1 mg/mL glucose, 400 µg/mL niacinamide, 150 µg/mL
spermine tetrahydrochloride, 20 µg/mL Na isobutyrate, and 5 µg/mL cocarboxylase under
anaerobic conditions at 37 ◦C.

2.3. Activity on Planktonic Bacteria

For the experiments, the bacterial strains (except for T. denticola) were suspended in
0.9% w/v NaCl, and adjusted to the McFarland Standard 0.5 (1.5 × 108 CFU/mL). One
milliliter of each suspension was placed in an Eppendorf tube and centrifuged for 2 min
at 7000× g at 20◦C. The supernatant was discarded, and the sediment was resuspended
in 250 µL 0.9% w/v NaCl and pipetted in a deepening of a polystyrene slice. After that,
CAP was applied for 10, 30, 60, and 120 s. The order of application time was changed in
each experimental series to avoid an influence of the suspension media on the bacterial cell
viability as a systematic error. Subsequently, the bacteria were resuspended with 1 ml of
0.9% NaCl, serially diluted, and aliquots were plated on agar plates. After an incubation
time for 8 d (S. gordonii 24 h), the colony forming units (CFU) were counted using a colony
counter (aCOLyte, Synoptics Ltd., Cambridge, UK).

2.4. Dentin and Titanium Specimen Preparation

Dentin specimens were prepared from extracted human teeth. The volunteers were
informed about the use of their extracted teeth in research, and their oral consent was
obtained. According to the guidelines, no previous approval from the Cantonal Ethi-
cal Committee Bern (KEK) was necessary as the teeth were categorized as “irreversibly
anonymized”. Dentin slices were trimmed and smoothed to a size of 5 × 5 × 1 mm
(length × width × height) using diamond burs and sandpaper. Before using, slices were
placed in water and autoclaved at 121 ◦C for 20 min. Titanium disks with a sand-
blasted and etched surface and with a diameter of 5 mm were provided by Straumann
(Basel, Switzerland).

2.5. Multi-Species Biofilm

For analyzing the effect of CAP on a multi-species biofilm, all 12-species were included.
The protocol for biofilm is a well-established model in our laboratory, the different bacterial
species were counted between 5 and 7 log10 CFU each [32]. The mixture of the different
bacteria was always checked by the presence of the different colonies typical for the species
on TSA plates supplemented with 5% sheep blood. The dentin or titanium specimens were
placed in the wells of 24-well plates and pretreated with 20 µL of protein solution (1.5%
bovine serum albumin) for 30 min. Meanwhile, the inoculum was prepared by adjusting
bacterial suspensions to the McFarland Standard 0.5. One part S. gordonii was mixed with
two parts of A. naeslundii and four parts of the other species. This mixture was added
to the nutrient broth (Wilkins-Chalgren-broth (Oxoid, Basingstoke, UK) with 10 µg/mL
β-NAD (Merck KGaA, Darmstadt, Germany) in a ratio of 1:9 before 1 mL was pipetted per
well. The biofilm was incubated under anaerobic conditions (85% N2, 10% H2, 5% CO2)
at 37 ◦C in an anaerobic chamber (Don Whitley Scientific Limited, West Yorkshire, UK).
The culture medium was replaced after 48 h and selected species (P. gingivalis, T. forsythia
and T. denticola) were added again. After 3.5 days, the nutrient broth was removed, and
the biofilms were carefully washed with 0.9% w/v NaCl to remove free floating bacteria.
Then, the specimens with the biofilms were placed in a 12-well-plate and CAP was applied
for 30, 60, and 120 s. Afterward, the specimens were transferred into tubes containing
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1 mL 0.9% w/v NaCl. The biofilm was removed by extensive ultrasonication for 5 min. The
suspension was handled as described above.

Thereafter, we determined the following variables:

(a) The total numbers of CFU on TSA plates were counted after an incubation time of 8 d.
(b) Quantification of the biofilm was made after staining with crystal violet according

to a recently published protocol [33,34]. After CAP treatment, the 100 µL of the
biofilm suspension was transferred to a 96-well plate and fixed for 1 hour at 60 ◦C. For
staining, 50 µL of 0.06% (w/v) crystal violet (Merck KGaA, Darmstadt, Germany) was
added per well. The biofilm mixture was incubated for 10 min at room temperature
and dissolved with 200 µL of 30% acetic acid. The plate was read at 600 nm by a
microplate reader (ELx808, BioTek Instruments, Winooski, VT, USA).

(c) The metabolic activity of the biofilm was assessed using resazurin as a redox indicator.
After transferring 100 µL of the biofilm suspension to another 96-well-plate, 100 µL of
nutrient broth containing 0.06 µL resazurin solution (alamarBlue® reagent, Thermo
Fisher Scientific Inc., Waltham, MA, USA) was added per well. After 1 h of incubation,
the 96-well plate was measured at 570 nm against 600 nm using (ELx808, BioTek
Instruments, Winooski, VT, USA).

In another series of experiments, dentin or titanium specimens were first exposed
to 120 s CAP, before the biofilms were cultured in the same way as before. The time of
incubation was 4 h and 24 h. Analyses were made as before after 24 h of incubation; after
4 h only CFU counts were determined.

2.6. Adhesion of Oral Fibroblasts

Human gingival fibroblasts were anonymously collected from systemically healthy
patients during regular surgical procedures following written informed consent. This
procedure is approved by the Ethics Committee of the University of Bern. The fibroblasts
were grown to confluence in T-25 cell culture flasks containing DMEM (Life Technolo-
gies/Invitrogen, Paisley, UK) with 10% fetal calf serum (Life Technologies/Invitrogen).
Fibroblasts in the third–fifth passage were used. Dentin and titanium specimens were
placed into 24-well plates and were left untreated or irradiated with CAP for 120 s. There-
after, gingival fibroblasts in culture medium at a density of 10,000 cells per well were added
and incubated at 37 ◦C with 5% CO2.

After 72 h of incubation, the gingival fibroblasts were fixed and stained with DAPI
(Roche Diagnostics, Mannheim, Germany) and counted using a fluorescence microscope
(Olympus BX51, Tokyo, Japan). Eight fields of 1 mm2 each were counted and one mean
value was calculated per specimen. The number of cells was counted using the ImageJ
software and the cell counter plug-in.

2.7. Experiments on Toxicity

For the cytotoxicity assay, gingival fibroblasts were pre-cultivated to confluence on
glass cover slips. The cover slips were transferred to 12-well plates and the cell cultures
were exposed to CAP for 10, 30, 60, and 120 s. Thereafter, 0.2% trypan blue staining was
added, and the percent of dead cells was counted by using an inverse microscope. Then,
the ratio vital cells/total cells was calculated.

Dentin and titanium specimens were irradiated with CAP for up to 120 s at a nozzle-to-
specimen distance of 2 mm and the temperature was measured by infrared thermography
(TIM 160, Micro-Epsilon, Ortenburg, Germany). For calculating the temperature, the
emissivity coefficients ε = 0.95 for dentin and ε = 0.50 for titanium [35] were used.

2.8. Statistical Analysis

The experiments using planktonic bacteria were performed as independent quadrupli-
cates. In all biofilm experiments, each six independent biological samples entered statistical
analysis. The bacterial counts were recorded as log10 CFU. In presentation, the arbitrary
units of the activity and the mass data of the biofilm were related to the means of the un-
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treated controls. The biofilm data was compared by applying one-way analysis of variance
(ANOVA) with a post-hoc comparison using Bonferroni correction.

Regarding adhesion of gingival fibroblasts, eight independent results entered the
analysis, the Students t-test was used. The statistical analysis was performed with SPSS 24
(IBM, Armonk, NY, USA).

3. Results
3.1. Bactericidal Effect on Oral Bacteria

First, the bactericidal activity on planktonic bacteria was quantified. A time-dependent
effect was visible. Plasma application of 10 s reduced the CFU counts by 0.69 log10 CFU
in mean (0.12 log10 for A. naeslundii up to 1.12 log10 CFU for S. gordonii). After 30 s of
application, the CFU counts of four of the eleven included species were below the detection
level. At 60 s and 120 s, there were no CFU counted for seven and eight species. A
reduction of ≥3 log10 CFU, was found for ten out of the eleven tested species at 30 s (except
for T. forsythia) and for all species at 60 s. There seemed to be a species-specific effect as
four bacterial strains were killed after 30 s of application whereas four were still viable (in
reduced counts) after 60 s (Table 1).

Table 1. Colony forming units (log10; means ± standard deviation) of planktonic bacteria before and
after application of cold plasma for 10, 30, 60, and 120 s.

Species Application Time

Control 10 s 30 s 60 s 120 s

A. naeslundii ATCC 12104 6.98 ± 0.25 6.72 ± 0.14 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
C. gingivalis ATCC 33624 7.51 ± 0.04 6.93±0.15 2.45 ± 2.83 0.00 ± 0.00 0.00 ± 0.00

C. rectus ATCC 33624 7.43 ± 0.04 6.65 ± 0.05 3.52 ± 2.36 0.00 ± 0.00 0.75 ± 1.50
E. corrodens ATCC 23834 7.46 ± 0.01 6.64 ± 0.04 1.14 ± 2.28 1.25 ± 2.49 1.71 ± 1.49

F. alocis ATCC 33238 7.50 ± 0.02 6.68 ± 0.03 2.33 ± 2.69 1.02 ± 2.03 0.90 ± 1.80
F. nucleatum ATCC 25586 6.92 ± 0.24 6.64 ± 0.10 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
P. gingivalis ATCC 33277 7.75 ± 0.06 6.83 ± 0.03 2.59 ± 2.40 1.39 ± 2.06 0.00 ± 0.00
P. intermedia ATCC 25611 7.56 ± 0.05 6.64 ± 0.04 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

P. micra ATCC 33270 7.61 ± 0.04 6.79 ± 0.02 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
S. gordonii ATCC 10558 7.54 ± 0.08 6.40 ± 0.54 3.13 ± 2.02 0.00 ± 0.00 0.00 ± 0.00
T. forsythia ATCC 43037 6.93 ± 0.05 6.71 ± 0.03 6.73 ± 0.01 3.38 ± 3.90 0.00 ± 0.00

3.2. Preformed Multi-Species Biofilm on Dentin and Titanium Specimens

The multi-species biofilm was cultivated on two different specimens, dentin and tita-
nium, for 3.5 days. The mean CFU counts of untreated biofilms were 8.16 ± 0.10 log10 for
those on dentin. On titanium specimens, the respective CFU counts were less
(7.76 ± 0.34 log10). Colonies typical for oral streptococci (S. gordonii) but also for bacteria
being associated with periodontal or peri-implant disease (e.g., P. gingivalis, P. intermedia,
F. nucleatum, and T. forsythia) were always present. The purpose of these experiments was
to see if there is activity on an existing biofilm.

3.2.1. Reduced Biofilm Viability on Dentin Specimens after CAP Application

Three different analyses were made to quantify the effect of CAP on the biofilm grown
on dentin specimens, the total log10 CFU, the biofilm mass, and the metabolic activity. The
log10 CFU/specimen significantly decreased dependent on the time of CAP application. In
the mean, the reductions were 0.19 log10 CFU/specimen at 30 s, 1.73 log10 CFU/specimen
at 60 s (p < 0.001), and 2.43 log10 CFU/specimen at 120 s (p < 0.001; Figure 2A). In contrast to
the CFU counts, the CAP application did not significantly reduce the biomass which covers
the bacteria (viable and non-viable) and the biofilm matrix (Figure 2B). In accordance with
the CFU counts, the metabolic activity decreased by about 70% after 60 s of CAP and by
95% after 120 s of CAP (both p < 0.001 vs. control; Figure 2C).
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Figure 2. Colony forming units (CFU) counts (A), mass (B), and metabolic activity (C) of multi-
species biofilms on dentin specimens and subsequent exposing of 30 s, 60 s, and 120 s to cold plasma.
** p < 0.01 vs. control (post-hoc Bonferroni).

3.2.2. Reduced Biofilm Viability on Titanium Specimens after CAP Application

For the biofilm grown on titanium, the log10 CFU/specimen decreased by 0.9 log10 af-
ter a 60 s application of CAP (not statistically significant) and by about 4 log10 CFU/specimen
after 120 s of CAP (p < 0.001 vs. control; Figure 3A). As on dentin specimens, the CAP
application did not have any effect on the biomass (Figure 3B). The metabolic activity of
the biofilm decreased in dependence of the CAP application time. There was already a
reduction by about 40% after 30 s of CAP (p = 0.003), by 70% after 60 s of CAP, and by 98%
after 120 s of CAP (both p < 0.001 vs. control; Figure 3C).
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3.3. No Effect of CAP on De Novo Biofilm Formation

In the second series of experiments, we answered the question if treatment with CAP
may retard a subsequent biofilm formation. Here, only a time of 120 s was used. On the
dentin specimens, an application of 120 s of cold plasma did not affect a subsequent biofilm
formation. There was never a statistically significant difference visible, neither related
to CFU counts, the biofilm mass, nor the metabolic activity in the newly formed biofilm
(Figure 4A–C).
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The same results were found on titanium discs. The biofilm formation was not affected
by a 120 s pretreatment of the titanium surfaces and this related to the CFU counts, biofilm
mass, and metabolic activity (Figure 5A–C).
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3.4. Increased Adhesion of Gingival Fibroblasts to Titanium Surfaces after CAP Pretreatment

Ideally, periodontal or peri-implantitis therapy should retard biofilm formation and
enhance attachment of host cells, such as oral fibroblasts. The pretreatment of CAP for
120 s did not affect the adhesion of fibroblasts to the dentin surface (Figure 6A). On the
titanium surface, the CAP treatment increased the adhesion of gingival fibroblasts to the
titanium surface by about 50% (p < 0.001 vs. control; Figure 6B).
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3.5. No Adverse Effect of Cap on Host Tissue Cells

The major focus of the study was on antibacterial and anti-biofilm activity. However,
potential adverse effects should be taken into consideration. Therefore, a few screening
assays were performed. Gingival fibroblasts cultured on glass slides were exposed to 10 s,
30 s, 60 s, or 120 s of CAP. The percent of viable cells was in each analyzed sample (four per
group) was ≥90%. The mean number of viable cells was between 92.5% ± 2.2% (10 s of
CAP) and 93.3% ± 2.1% (60 s of CAP).

In addition, the temperature on the treated surface was measured. The temperature of
the specimens increased in a time-dependent manner. For the dentin specimen, the plasma
application resulted in a temperature of 47 ◦C at 70 s, 50 ◦C at 92 s, and a maximum of
52.5◦C at 120 s. The temperature of the titanium specimen reached 47 ◦C at 64 s, 50 ◦C at
114 s, and 50.2 ◦C at 120 s of CAP application, respectively.

4. Discussion

The aim of this study was to investigate the antibacterial and anti-biofilm properties
of a piezoelectric CAP device. The device generates plasma from the ambient air and
operates in a DBD (dielectric barrier discharge) mode with the treated surfaces acting as the
grounded electrode [27]. In terms of the global burden of increasing antibiotic resistance de-
velopment [36], restricted use of antibiotics is suggested in periodontal and peri-implantitis
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therapy [37]. CAP may be a promising alternative combining an antimicrobial effect and
enhanced tissue healing.

As a first attempt where the effect of CAP on planktonic single species was analyzed,
the activity of CAP was clearly time dependent. An application time of 10 s was not suffi-
cient to reduce the bacterial counts below the detection level in any sample, whereas 70% of
the bacteria samples tested negatively after applying 60 s of CAP. The data are in the range
observed by others for plasma devices using ambient air. A similar DBD device reduced bac-
terial counts of methicillin-resistant S. aureus (MRSA) by 4 log10 within 2 min [38]. In a study
using oral planktonic bacteria, the reduction of S. mutans and A. actinomycetemcomitans was
up to 3 log10 for both species after 120 s of plasma treatment [39]. A reduction greater
than or equal to 3 log10 CFU was considered as bactericidal [40]. p. gingivalis is the only
bacterial species of our experiments that was also investigated by others. In the study by
Yang et al. the number of CFU declined by 4.0 log10 CFU for 120 s and below the detection
level at 6 min of air plasma application [41]. In our trial, p. gingivalis was reduced below
the detection level after 120 s of CAP application. This finding, and the fact that, except
for T. forsythia, the counts of all other gram-positive and gram-negative bacteria in the
planktonic stage were decreased by at least 3 log10 after 30 s of CAP, underline the potential
of the used device.

The results showed some species-specificity. Recently, gram-positive bacteria such as
S. aureus were found to be less susceptible than gram-negative bacteria such as Escherichia
coli and Pseudomonas aeruginosa [42,43]. In the present study, the antibacterial CAP activity
did not differ between gram-positive and gram-negative bacteria. Furthermore, there was
no clear dependency on the general tolerance to oxygen for growth. T. forsythia, for example,
was less susceptible. T. forsythia is an anaerobic, gram-negative bacterium with a typical
peptidoglycan wall but requires exogenous N-acetylmuramic acid for its synthesis [44].
Similar to other oral bacteria, it tolerates a certain degree of oxidative stress, e.g., in biofilm
conditions stress proteins are upregulated and resist 20 to 30 times the oxidative stress [45].
E. corrodens counts were reduced after 30 s of CAP applications; the viable numbers seemed
to remain stable after a longer application. The membrane of E. corrodens show a high
oxidase activity when being exposed to low concentrations of oxygen [46]. It remains
to be clarified if the oxidase activity of the membranes contributes to survival when the
bacterium is exposed to CAP. Comparable data are not available. The data of a prototype
of the device showed that using the DBD discharge at 2 mm produces mainly NO2 and to a
lesser extent NO and O3. Only traces (<1 ppm) of the other species, including peroxide,
were observed [29].

A sufficient biofilm eradication is essential for successful periodontal and peri-implant
therapy [9,47]. To test an antibiofilm effect, a 12-species biofilm cultivated on dentin or
titanium was treated with CAP for different time intervals. Whereas a CAP application of
30 s resulted in a reduction of ≥3 log10 CFU for 10 out of the 11 planktonic species tested,
there was no difference to the control for the 12-species biofilm at 30 s, but a reduction by
2.4 log10 CFU on dentin, and by 3.9 log10 CFU on titanium at the maximum application
time of 120 s. The maximum time was chosen for being practicable in a clinical situation.
Regarding periodontal or peri-implant biofilms, there are only a few reports available. A
single-species A. actinomycetemcomitans biofilm was exposed to plasma generated from air;
the reduction was about 1 log10 after 60 s and about 2 log10 after 120 s of treatment [39].
Placement of titanium discs with an A. actinomycetemcomitans biofilm in an argon plasma
chamber for a 12 min cycle killed all bacteria [48]. A 5-day P. gingivalis biofilm cultured on
titanium discs was treated with an argon plasma jet device; the reduction factor compared
to the untreated control was 1.3 log10 CFU for 60 s and 180 s application [49]. A six-day
biofilm was irradiated with a plasma generated from helium; after 3 min, the reduction was
1.2 log10 CFU and after 5 min, no bacteria could be cultured [50]. Within a poly-microbial
biofilm, the microorganisms enhance their survival and their resistance to external insults
(e.g., antibiotics) by synergistic metabolic interactions, antagonistic interactions, cell-cell
signaling, and gene transfer [51–53]. Rarely, ex-vivo biofilms were used to study the effect
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of CAP. An ex-vivo saliva biofilm grown for 48 h on titanium disks in aerobic conditions
was treated with different plasma generated from argon in part mixed with O2. After 120 s
of plasma application, the reduction was up to about 2 log10 CFU [54]. The same group
of researchers studied the effect of an argon plasma jet against an ex-vivo subgingival
biofilm cultured on titanium disks; bacteria were quantified by fluorescent staining, and
the intensity of staining was only lowered by 17.4% to 25.2% [55]. In our experiments,
the reduction factor of a defined multi-species biofilm cultivated on titanium disks was
3.92 log10 CFU after 120 s of CAP application which underlines the good activity. In
addition to the CFU counts, the metabolic activity of the biofilm was determined using
a resazurin assay [56]. CAP treatment reduced time-dependent metabolic activity of the
biofilms cultured on dentin by 96% and titanium by 98%. Other authors found similar
results, demonstrating a reduction of 99% in an MTT assay after treating a two-species
biofilm (Streptococcus sanguinis/S. mutans) with argon + O2 plasma [57].

Complete biofilm removal by using CAP alone does not appear to be possible. No
statistically significant reduction in the total biomass was achieved after CAP application
neither on dentin nor on titanium, which may underline that the biofilm matrix is not
affected by CAP. Our result contrasts with other published data using the same method
for determining biofilm mass. An argon plasma jet was as effective in reducing a naturally
grown biofilm on extracted teeth as was a sonicated toothbrush [58]. Additionally, the
quantity of saliva-biofilms grown on titanium disks and in-vitro at dental implants was
reduced by applying CAP [59,60].

In addition to the biofilm removal, a retarding effect on the de novo biofilm formation
may be desirable. In the present study, the treatment of the tooth or titanium surfaces did
not change the biofilm formation. On one hand, this observation suggests that there was no
post-treatment anti-biofilm effect. On the other hand, no enhanced biofilm formation was
found, which in turn indicates the absence of any long-lasting negative effects following this
approach. The finding on sandblasted titanium disks is similar to that by Kamionka et al.
who also did not see a difference in reformation of a subgingival biofilm after 5 days [55].

However, adhesion of oral fibroblasts on the treated surfaces is advantageous for the
healing process. A pretreatment with CAP increased the adhesion of gingival fibroblasts to
titanium surfaces but not to dentin surfaces. The result on titanium is consistent with data
for other plasma devices [61,62]. Additionally, a prototype of the same technology (desig-
nated for use outside of the oral cavity) showed an enhanced adhesion and proliferation of
fibroblasts on titanium due to an increased wettability of the surface [31].

Undesired side effects by using CAP in the oral cavity should be avoided. CAP did
not show any cytotoxic effect on gingival fibroblasts after direct application. To avoid
thermal damage of the surrounding tissue during clinical application, the heat generation
should be kept below 50 ◦C [63]. Therefore, the temperature was measured during a
120 s treatment of dentin, and titanium specimens. The highest temperature measured
by infrared thermography were 52.5 ◦C for dentin, and 50.2 ◦C for titanium, respectively.
In our experiments, the temperature of the dentin specimens was above 50 ◦C for 28 s.
For titanium the temperature exceeded 50 ◦C for 6 s, respectively. However, it should
also be noted that this is below the maximum temperature of 63.6 ◦C assessed in the
oral cavity when drinking black coffee [64]. One critical aspect is the emission of ozone
during plasma generation independent of the CAP device. The emitted concentration is
73 mg/h at maximum as published by the manufacturer [27]. Comparable concentrations
are generated by in-duct air cleaners and air purifiers [65]. Adequate removal of the excess
ozone needs to be ensured, e.g., via sufficient suction similar to ozone delivery devices [66].

Advantages of the methodology of the present studies are the inclusion of bacteria in
the planktonic stage and grown as a mixed biofilm on two surfaces (dentin and titanium),
and an application time of CAP which might be practicable in the dental practice. As
a limitation of the study, it should be noted that flat disks were used, in-vivo, there is a
situation of a narrow gap (sulcus) surrounding a tooth or dental implant. Hui et al. created
a model simulating a peri-implant lesion and used a spark plasma pen device [60]. In
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an upcoming investigation, our device will be adapted to the special situation in the oral
cavity and respective models established in our laboratory will be used [67]. These models
will allow tests on the combination of CAP with a previous mechanical debridement of
the biofilm. A few in-vitro studies combined instrumentation with CAP and showed an
increased biofilm removal on titanium surfaces [55,59,60,68].

The advantages of the used device are the generation of the plasma from air and the
proven bactericidal effect on planktonic bacteria and biofilms. The reduction in the bacterial
counts in biofilm by using the direct, air-driven device is also comparable to the results
obtained with other devices which are already in clinical use in other medical fields, e.g.,
in dermatology [29,69] or ophthalmology [42]. Further, an adaption of the device with
respect to the anatomy of various periodontal areas along with an optimization of the used
parameters (i.e., to avoid overheating) are scheduled.

5. Conclusions

An air-driven handheld device using the PDD technology and generating a direct
plasma from air acts as a bactericidal on planktonic oral bacteria. Further, it shows anti-
biofilm activity on multi-species biofilms cultured on dentin and titanium within 120 s of
application. These results are promising and underline the potential for implementation in
periodontal and peri-implantitis therapy. Further studies are needed to evaluate potential
side-effects in more detail and adapt the shape and parameters of the device according to
the needs in the dental practice before the efficacy is tested in clinical trials.
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