
In July 2014, an outbreak of Shiga toxin–producing Esch-
erichia coli (STEC) O55:H7 in England involved 31 patients, 
13 (42%) of whom had hemolytic uremic syndrome. Iso-
lates were sequenced, and the sequences were compared 
with publicly available sequences of E. coli O55:H7 and 
O157:H7. A core-genome phylogeny of the evolutionary his-
tory of the STEC O55:H7 outbreak strain revealed that the 
most parsimonious model was a progenitor enteropatho-
genic O55:H7 sorbitol-fermenting strain, lysogenized by a 
Shiga toxin (Stx) 2a–encoding phage, followed by loss of 
the ability to ferment sorbitol because of a non-sense muta-
tion in srlA. The parallel, convergent evolutionary histories of 
STEC O157:H7 and STEC O55:H7 may indicate a common 
driver in the evolutionary process. Because emergence of 
STEC O157:H7 as a clinically significant pathogen was as-
sociated with acquisition of the Stx2a-encoding phage, the 
emergence of STEC O55:H7 harboring the stx2a gene is of 
public health concern.

The first outbreak of Shiga toxin–producing Escherichia 
coli (STEC) O55:H7 in the United Kingdom occurred 

in the county of Dorset, England, in July 2014 (1). Ulti-
mately, 31 cases were linked to the outbreak, and 13 (42%) 
of those patients had hemolytic uremic syndrome (HUS). 
Of the 13 with HUS, 8 (66%) had neurologic complications 
and 11 (90%) required prolonged treatment for kidney re-
placement. After enhanced epidemiologic surveillance and 
analysis of the patients’ food, exposure, and travel histo-
ries, the only epidemiologic link identified was living in or 
having close links to Dorset County. Extensive microbio-
logical investigations included testing of the environment, 
nondomestic animals, and household pets. Although no 
causal link was established, whole-genome sequencing and 

epidemiologic analyses were indicative of a local endemic 
zoonotic source (1).

Previous studies postulated that the common STEC 
O157:H7 clone evolved from enteropathogenic E. coli 
(EPEC) serotype O55:H7 (2,3). Evolutionary models pre-
dict the stepwise acquisition of a Shiga toxin (Stx)–encod-
ing bacteriophage in the EPEC O55:H7 progenitor strain, 
followed by the substitution of the rfb locus encoding the 
somatic O55 antigen with that encoding the O157 antigen, 
the acquisition of the pO157 plasmid, loss of the abil-
ity to ferment sorbitol, and loss of the ability to produce 
β-glucuronidase (3–6). Analyses from more recent studies 
have indicated that the Stx-encoding phage is an unstable 
evolutionary marker, with frequent acquisition and loss oc-
curring in STEC O55:H7 and all 3 lineages of STEC O157 
throughout their evolutionary history (7,8).

STEC O157:H7 has multiple genetic and phenotypic 
features that contribute to its pathogenicity or are used for 
detection and identification. The primary virulence factor 
defining the STEC group is production of Stx1, Stx2, or 
both. The genes encoding the toxins, stx1 and stx2, are har-
bored on lambdoid prophage and are the targets of com-
mercial and in-house diagnostic PCR assays (9). Both 
toxins can be divided into several subtypes, Stx1a–1d and 
Stx2a–2g (10). The locus of enterocyte effacement (LEE) 
is a 35-kb pathogenicity island encoding a type III secre-
tion system (T3SS) responsible for the attaching and ef-
facing phenotype that facilitates successful colonization of 
the human gut (11). The inability to ferment sorbitol or to 
produce β-glucuronidase differentiates STEC O157 from 
≈90% of other gastrointestinal bacteria (5,12). These char-
acteristics, along with resistance to tellurite, facilitate the 
detection and identification of STEC O157:H7 on selec-
tive media. The pO157 plasmid encodes multiple putative 
virulence factors, including enterohemolysin (ehxA) and an 
adhesin (toxB) (13).

The STEC O55:H7 Dorset outbreak strain shared cer-
tain characteristics with the STEC O157:H7 clone. Initial 
PCRs detected the presence of stx2 and the intimin gene 

Evolutionary Context of  
Non–Sorbitol-Fermenting  
Shiga Toxin–Producing  
Escherichia coli O55:H7

Kyle Schutz, Lauren A. Cowley, Sharif Shaaban, Anne Carroll, Eleanor McNamara,  
David L. Gally, Gauri Godbole, Claire Jenkins, Timothy J. Dallman

1958	 Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 23, No. 12, December 2017

Author affiliations: Public Health England Colindale, London,  
UK (K. Schutz, L.A. Cowley, G. Godbole, C. Jenkins,  
T.J. Dallman); The University of Edinburgh, Midlothian, UK  
(S. Shaaban, D.L. Gally); Cherry Orchard Hospital, Dublin, Ireland 
(A. Carroll, E. McNamara)

DOI: https://doi.org/10.3201/eid2312.170628

RESEARCH



 Non–Sorbitol-Fermenting STEC O55:H7

eae, a marker for E. coli attaching and effacing pheno-
type; non–sorbitol-fermenting colonies of STEC O55 were 
identified after culture on sorbitol MacConkey agar (1,9). 
However, unlike the STEC O157 clone, the STEC O55 
Dorset outbreak strain exhibited β-glucuronidase activ-
ity and was sensitive to tellurite. Laboratory records held 
at the Gastrointestinal Bacterial Reference Unit of Public 
Health England showed that this highly pathogenic strain 
had not previously been isolated from humans or animals in 
the United Kingdom. Our goal with this study was to iden-
tify the genetic determinants responsible for the phenotypic 
characteristics of the STEC O55:H7 Dorset outbreak strain 
and to explore the strain’s evolutionary history.

Materials and Methods

Bacterial Strains
We studied 26 isolates of STEC O55:H7 from the out-
break, 10 isolates of STEC O55:H7 from Ireland, and 
79 isolates selected to represent of the broad phylogeny 
of STEC O157:H7 (online Technical Appendix Table, 
https://wwwnc.cdc.gov/EID/article/23/12/17-0628-
Techapp1.pdf). From public databases, we retrieved 10 
genome sequences for E. coli O55:H7 and 2 for STEC 
O157:H7 (6,7,14,15) (Table 1).

Whole-Genome Sequencing, Assembly, and Alignment
We sequenced all isolates by using an Illumina paired-
end (100-bp) protocol (https://www.illumina.com) and 
assembled them by using SPAdes Genome Assembler 
version 3.1.1 (18). The assemblies were annotated by 
using Prokka version 1.0.1 (19). We used the MinION  
(https://nanoporetech.com/products/minion) nanopore plat-
form to sequence an isolate from the outbreak, designated 
122262. A hybrid Illumina/MinION de novo assembly of 
122262 constructed by using SPAdes yielded 15 contigs 
with the largest contig spanning the first 2.4 mbp. We aligned 
published reference genomes against the outbreak reference 
strain 122262 by using Mauve (20).

Genome, Plasmid, and Bacteriophage Comparisons
We retrieved from GenBank published nucleotide sequenc-
es of key virulence genes associated with toxicity, host-cell 
adhesion, and metabolic activity and concatenated in FAS-
TA (http://www.ebi.ac.uk/Tools/sss/fasta/) file format. To 
determine the presence and absence of the gene panel, we 
performed a blastn (21) comparison against the extracted 
coding sequences of 122262. Significant hits were defined 
as those with a nucleotide identity of >90% over at least 
90% of the query sequence. Truncated sequences were de-
fined as matches with <90% coverage. We uploaded as-
sembled data from the strains in FASTA file format to the 
PHAge Search Tool (PHAST) web server for prophage 
identification (22). Prophage region detection, prophage 
annotation, and circular genomic views from PHAST re-
sults were used along blast ring image generator (BRIG) 
plots (23) to isolate the prophage regions of 122262 and 
nucleotide homologies to the prophages in the Sakai refer-
ence genome (16). BRIG was used to visually compare the 
similarities between the Sakai and outbreak strain prophag-
es. We compared prophage regions of 122262 with those 
extracted and analyzed by Shaaban et al. (17) by using the 
pipeline and strains presented in their study.

Phylogenetic Analyses
Short reads were quality trimmed (24) and mapped to the 
STEC O157:H7 Sakai reference genome (GenBank accession 
no. BA000007) by using Burrows-Wheeler aligner–maximal 
exact matching (25). We sorted and indexed the sequence 
alignment map output from the Burrows-Wheeler aligner to 
produce a binary alignment map by using SAMtools (25). 
GATK2 (26) was used to create a variant call format file 
from each of the B binary alignment maps, which were fur-
ther parsed to extract only single-nucleotide polymorphism 
(SNP) positions that were of high quality (mapping qual-
ity >30, coverage of reads that passed quality metrics >10, 
variant ratio >0.9). We used pseudosequences of polymor-
phic positions to create maximum-likelihood trees by using  
RAxML (27). FASTQ (https://www.ncbi.nlm.nih.gov/pmc/
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Table 1. Escherichia coli O55:H7 genome sequences retrieved from publicly available databases* 
Name Accession no. Serotype STX SOR GUD Reference 
USDA 5905 SRS702210 O55 – + + (7) 
3256–97–1 AEUA01000000 O55 – + +  (7) 
RM12579–1 CP003109 O55 – + +  (7) 
CB9615 NC_013941 O55 – + +  (10) 
ZH-1141 Pending O55:H7 – + +  (14) 
2013C-4465 GCA_001644745.1 O55 Stx1a + +  (15) 
Sakai  O157:H7 Stx1a and 2a – –  (16) 
155 CP018237 O157:H7 Stx2a – –  (17) 
TL-000142 ERR180875 O55 – + + This study 
SRR3578942 SRR3578942 O55:H7 Stx2d + + This study 
TL-000132 ERR197199 O55 – + + This study 
3041–1_85 ERR197201 O55 – + + This study 
100446 ERR178176 O55:H7 – + + This study 
*GUD, β-glucuronidase; SOR, sorbitol; Stx, Shiga toxin; –, negative; +, positive. 

 



RESEARCH

articles/PMC2847217/) sequences were deposited in the Na-
tional Center for Biotechnology Information Short Read Ar-
chive under the BioProject PRJNA248042.

Results

General Genomic Features
STEC O55:H7 strain 122262 had a 5,364,131-bp chromo-
some and a 67,247-bp single plasmid of replicon type FIB-
15. Use of blastn to compare the extracted plasmid sequence 
from 122262 with publicly available plasmid sequences be-
longing to CB9615, 2013C-4465, and Sakai indicated that 
the plasmid of 122262 was 99% identical to pO55 CB9615 
over its complete length. Unlike pO157 in STEC O157:H7, 
the O55:H7 plasmids did not encode toxin B (toxB) or the 
enterohemolysin operon (ehxABCD). The E. coli O55:H7 
strains 122262, CB9615, and 2013C-4465 did, however, 
encode a remote toxB homologue efa1/lifA on the chromo-
some that has 29% nt identity (97% coverage) with pO157 
toxB. The LEE was inserted into the chromosome of strain 
122262 at tRNA-selC, the most common insertion site in 
a range of pathogenic E. coli chromosomal backgrounds 
(28). Antimicrobial drug resistance determinants included 
aadA-1b encoding resistance to streptomycin and dfrA-1 
encoding resistance to trimethoprim.

Prophage Composition of 122262
PHAST identified 15 prophage interruptions in 122262, of 
which 5 were homologous in nucleotide identity to Sp2, Sp3, 
Sp6, Sp8, and Sp14 found in Sakai (16) (Table 2; Figure 1). 
Unique genetic content and position was found for 9 putative 
prophages (Figure 1). In addition, a Stx2a-encoding phage 
was identified at the Stx-associated bacteriophage insertion 
site yecE in strain 122262. In Sakai, the Stx1a (Sp15) and 
Stx2a (Sp5) encoding phages are inserted at wrbA and yehV, 
respectively. However, yecE is a known Stx-associated  

bacteriophage insertion site in strains of STEC O157:H7 en-
coding stx2a belonging to lineage Ic (29).

Long-read sequencing of 122262 facilitated compari-
son of the sequence of the Stx2a-encoding phage with oth-
er publicly available sequences of Stx2a-encoding phage. 
Shaaban et al. (17) compared prophage sequences for 14 
strains of STEC O157:H7, including 8 Stx2a-encoding 
phages. Of the 8 Stx2a phages described in that study, 7 
were closely related despite being found in globally dis-
tributed strains from different lineages. The sequence of the 
Stx2a-encoding phage from the outbreak strain, 122262, 
showed most similarity (>98% nt identity and >94% se-
quence coverage over the complete phage) with an outlier 
Stx2a-encoding phage designated 155, found in a subset of 
isolates of STEC O157 phage type 32 in lineage 1c, geo-
graphically associated with the island of Ireland (17,29) 
(Figure 2). The main difference between the 2 prophages 
was an insertion sequence element, a common source of 
prophage variation (Figure 2).

Sorbitol-Negative Phenotype of 122262
Like the common STEC O157:H7 clone, the STEC O55:H7 
outbreak strain described in this study was characterized 
by its inability to ferment sorbitol. srlA and srlE encode 
components of a glucitol/sorbitol-specific phosphotransfer-
ase system. In STEC O157:H7, the sorbitol-negative phe-
notype was thought to have resulted from frameshifts in 
srlA and srlE, as observed in Sakai and EDL933 (5). SNP 
analysis of STEC O55:H7 122262 in our study revealed a 
non-sense mutation in srlA causing truncation of the last 
29 aa, which was likely to reduce expression or produce 
a nonfunctional product. The sorbitol-negative phenotype, 
although a characteristic of STEC O157:H7, is rare in E. 
coli O55:H7 and has been described for only 1 other strain 
(RM12506, also referred to as BB2 and C523-03; genome 
not publicly available) (7,30).
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Table 2. Location of prophages in Shiga toxin–producing Escherichia coli O55:H7 isolate 122262 from outbreak in Dorset County, 
England, July 2014, and related Sakai reference prophage* 
Prophage in 122262 Location Related Sakai phage Identity, % 
P1 298714–355267 Sp8 96 
P2 2728769–2738381 NP NA 
P3 2958215–2992979 Sp3 98 
P4 3119806–3151485 NP NA 
P5 3702030–3736837 Sp5 99 
P6 4031314–4075190 NP NA 
P7 4166735–4223146 NP NA 
P8 4361295–4432383 Sp6 97 
P9 4549353–4575262 NP NA 
P10 4662955–4712352 NP NA 
P11 4744636–4768829 NP NA 
P12 4868835–4901248 NP NA 
P13 5136256–5154117 NP NA 
P14 5221278–5261127 Sp14 98 
P15 5287889–5361495 NP NA 
Stx-encoding phage 3607500–3655000 NP NA 
*NA, not applicable; NP, not present; Stx, Shiga toxin. 
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β-Glucuronidase and Tellurite Phenotypes of 122262
β-glucuronidase is an inducible enzyme encoded by uidA 
and produced by ≈90% of pathogenic and nonpathogenic E. 
coli. The common STEC O157:H7 clone is a rare exception. 
The uidA loss of function mechanism in STEC O157:H7 
was elucidated by Monday et al. (31) and included 2 frame-
shift mutations. The STEC O55:H7 outbreak strain 122262 
had a β-glucuronidase–positive phenotype, and analysis of 
the genome by using MAUVE (20) did not identify any 
disruptive mutations in uidA. No β-glucuronidase–negative 
strains of E. coli O55:H7 have been described. Further-
more, the STEC O55 Dorset outbreak strain 122262 did 
not contain the ter cluster and was phenotypically sensitive 
to tellurite. As a consequence, it did not propagate when 
inoculated onto cefixime and tellurite sorbitol MacConkey 
agar and was not detected by routine culture methods used 
at the local hospital diagnostic microbiology laboratories 
in the United Kingdom (https://www.gov.uk/government/
publications/smi-b-30-investigation-of-faecal-specimens-
for-enteric-pathogens).

Phylogenetic Analyses
To investigate the evolutionary history of the STEC O55 
Dorset outbreak strain, we constructed a core genome  

phylogeny (Figure 3). The analysis divided the sequences 
of the isolates in this study according to serotype; all iso-
lates of E. coli O55:H7 clustered together on a separate 
branch of the tree, and all isolates of STEC O157:H7 clus-
tered together on the branch below, regardless of sorbitol/
β-glucuronidase phenotype or the presence of stx (Figure 
3). The phylogenetic analysis of E. coli O55:H7 indicated 
that incorporation of the Stx-encoding prophage has oc-
curred on multiple occasions within the EPEC O55:H7 
background, with independent acquisition of stx1 (15), 
stx2d, and stx2a into EPEC O55:H7. Likewise, multiple 
acquisition and loss events involving stx1, stx2c, stx2a, and  
less commonly stx2d have been described for STEC 
O157:H7 (12,32).

As noted by McFarland et al. (1), the outbreak strain 
was closely related to STEC O55:H7 stx2a isolates identi-
fied in Ireland during 2013–2014 (Figure 3). These 6 isolates 
from Ireland were <5 SNPs from the Dorset outbreak strain, 
indicating that the isolates from Ireland and Dorset County 
shared a common source (8). The outbreak strain had lost 
the ability to ferment sorbitol, which appears to be a recent 
adaption with all ancestral O55:H7, including those isolated 
in Ireland in 2012 retaining the ability to ferment sorbitol. A 
similar relationship exists between the sorbitol-positive and 
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Figure 1. BLAST ring image 
generator (BRIG) plot generated 
from BLAST+ (21) comparisons of 
Shiga toxin–producing Escherichia 
coli (STEC) O55:H7 122262 
prophages and homologous STEC 
O157:H7 Sakai prophages. STEC 
O55:H7 122262 chromosome 
is set as the reference genome, 
and the 122262 prophages (P1–
P15) comprise the first ring. The 
homologous STEC O157:H7 Sakai 
prophages (Sp2, Sp3, Sp6, Sp8, 
and Sp14) identified in the BLAST 
analysis were added to the image 
according to their known locations 
(Table 2). Putative prophage 
sequence data were retrieved 
content from PHAge Search Tool 
(22) and plotted in BRIG.
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sorbitol-negative STEC O157:H7 phenotypes; the sorbitol-
negative phenotype is a more recent adaption from the sorbi-
tol-positive progenitor strain (Figure 3) (3,5).

The most parsimonious model of evolution of the 
STEC O55:H7 Dorset outbreak strain was a progenitor 
EPEC O55:H7 sorbitol-fermenting strain lysogenized by 
an Stx2a-encoding phage and subsequent loss of the abil-
ity to ferment sorbitol. This stepwise model of evolution 
seems to mirror that seen in the common STEC O157:H7 
clone; the acquisition of the STEC pathotype preceded phe-
notypic modulation.

Discussion
In the United Kingdom, STEC is regarded as a substantial 
threat to public health, and enhanced surveillance systems 
are in place (32). In England, HUS developed in ≈5% of 
symptomatic STEC O157:H7 patients (33), notably less 
than the 42% of patients in whom HUS developed during 
the STEC O55:H7 outbreak described in this study. The 
Dorset outbreak strain was closely related to the common 
STEC O157:H7 clone and shared several characteristics, 
most notably the presence of phage-encoded stx2a. Stx2a 
is associated with more severe symptoms, including the 
development of HUS, and it is probably the key virulence 
factor causing the high proportion of HUS cases in this out-
break (10). Of additional concern was the inability to detect 
the outbreak strain at the local hospital level by using the 
standard microbiology investigation method, cefixime and 
tellurite sorbitol MacConkey agar, because of this strain’s 
sensitivity to tellurite.

A previously published stepwise evolutionary model 
showed the acquisition of stx2 by a strain of EPEC O55:H7, 
resulting in emergence of a strain of STEC O55:H7, which 
was β-glucuronidase positive and sorbitol positive, close-
ly related but ancestral to STEC O157:H7, which was 
β-glucuronidase positive and sorbitol positive (34). The 
loss of the sorbitol-positive phenotype in STEC O157:H7 
was followed by the loss of β-glucuronidase expression, 
resulting in the common STEC O157 sorbitol-negative 
β-glucuronidase–negative clone. The evolutionary his-
tory of the Dorset outbreak strain begins with the EPEC 

O55:H7 progenitor strain described previously (6) (Figure 
3). Subsequent acquisition of an Stx2a-encoding phage was 
confirmed by detection of STEC O55:H7 β-glucuronidase–
positive sorbitol-positive isolates in Ireland in 2012 (Figure 
3). The loss of the sorbitol-positive phenotype mirrored the 
genetic events proposed to have occurred in the evolution 
of STEC O157, albeit by an alternative mechanism.

The parallel, convergent evolutionary history of STEC 
O157:H7 and STEC O55:H7 may indicate a common driv-
er in the evolutionary process. Adaptation to a new niche 
may be accompanied by modification of gene expression 
because genes no longer required for, or incompatible with, 
the variation in lifestyle are selectively inactivated by point 
mutation, insertion, or deletion (35). Loss of the sorbitol-
positive phenotype may coincide with the successful colo-
nization of a new animal host or the ability to transmit more 
effectively between animal hosts without the need to sur-
vive in the environment for long periods (28,36).

The detection of the STEC O55:H7 sorbitol-negative 
strain in patients in Ireland before the outbreak in Dorset led 
to speculation that ruminants (most likely cattle or sheep) 
on the island of Ireland were the source of the outbreak 
strain (1). Transmission between Ireland and Dorset may 
have occurred via movement of persons, livestock, or a 
secondary vector such as migratory birds (37). The finding 
that the Stx2a-encoding phage has a high level of similarity 
to Stx2a-encoding phage found in a previously described 
sublineage of STEC O157 PT32 geographically linked to 
Ireland may provide further evidence of the origin of this 
strain (17,29). Phages from STEC O157 may be exchanged 
with other phages from serotypes of E. coli in the gut of the 
ruminant host or in the environment. Analysis and com-
parison of phage sequences to provide clues regarding the 
origin of a strain of STEC is a novel approach to outbreak 
investigation; additional studies are required to evaluate the 
utility of the approach. Further work will be hampered by 
the lack of available sequences of the Stx-encoding phage 
and the difficulties with assembling the sequences because 
of the inability of short-read sequencing to resolve the large 
number of repetitive and paralogous features characteristic 
of the prophage.
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Figure 2. The sequence of the Stx2a-encoding phage from the July 2014 Dorset County, England, outbreak strain of Shiga toxin–
producing Escherichia coli O55:H7, designated 122262, showed >98% nt identity with an outlier Stx2a-encoding phage designated 155, 
found in a subset of isolates of Shiga toxin–producing Escherichia coli O157 geographically associated with the island of Ireland. The 
main difference between the 2 prophages was an insertion sequence element.
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Figure 3. Core genome phylogeny illustrating 
the evolutionary history of the Shiga toxin–
producing Escherichia coli (STEC) O55 strain 
from the July 2014 Dorset County, England, 
outbreak in the context of STEC O157:H7 
lineages I, II, and I/II.Scale bar indicates 
nucleotide substitutions per site.
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The STEC O55:H7 Dorset outbreak strain described 
in this study shared characteristics with the common STEC 
O157:H7 clone, specifically the acquisition of an Stx2a-en-
coding phage and the sorbitol-negative phenotype. Key dif-
ferences between the 2 strains include the rfb gene cluster, 
plasmid content, β-glucuronidase phenotype, and the ab-
sence of the ter gene cluster in the STEC O55:H7 outbreak 
strain. Despite these differences, this study provides evi-
dence of parallel, convergent evolution of STEC O157:H7 
and STEC O55:H7, involving multiple acquisitions of 
Stx-encoding phages and loss of the ability to ferment 
sorbitol. Previous studies have shown a clear association 
with STEC harboring stx2a and progression to HUS (10). 
Acquisition of the Stx2a-encoding phage seems to explain 
the emergence of STEC O157:H7 as a clinically significant 
pathogen; in contrast to the acquisition of stx2c, evidence 
suggests that after Stx2a-encoding phage is integrated in a 
population, it tends to be maintained and may be associated 
with higher excretions levels in cattle (29,36). As such, the 
emergence of STEC O55:H7 harboring stx2a is of public 
health concern.
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