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A B S T R A C T

Background: Bone shapes strongly influence force and moment predictions of kinematic and musculoskeletal
models used in motion analysis. The precise determination of joint reference frames is essential for accurate
predictions. Since clinical motion analysis typically does not include medical imaging, from which bone shapes
may be obtained, scaling methods using reference subjects to create subject-specific bone geometries are widely
used.
Research question: This study investigated if lower limb bone shape predictions from skin-based measurements,
utilising an underlying statistical shape model (SSM) that corrects for soft tissue artefacts in digitisation, can be
used to improve conventional linear scaling methods of bone geometries.
Methods: SSMs created from 35 healthy adult femurs and tibiae/fibulae were used to reconstruct bone shapes by
minimising the distance between anatomical landmarks on the models and those digitised in the motion la-
boratory or on medical images. Soft tissue artefacts were quantified from magnetic resonance images and then
used to predict distances between landmarks digitised on the skin surface and bone. Reconstruction results were
compared to linearly scaled models by measuring root mean squared distances to segmented surfaces, calcu-
lating differences of commonly used anatomical measures and the errors in the prediction of the hip joint centre.
Results: SSM reconstructed surface predictions from varying landmark sets from skin and bone landmarks were
more accurate compared to linear scaling methods (2.60–2.95mm vs. 3.66–3.87 mm median error; p < 0.05).
No significant differences were found between SSM reconstructions from bony landmarks and SSM re-
constructions from digitised landmarks obtained in the motion lab and therefore reconstructions using skin
landmarks are as accurate as reconstructions from landmarks obtained from medical images.
Significance: These results indicate that SSM reconstructions can be used to increase the accuracy in obtaining
bone shapes from surface digitised experimental data acquired in motion lab environments.

1. Introduction

Knowledge of the shapes of the underlying skeletal anatomy is im-
portant for the accurate estimation of joint kinematics, kinetics and the
prediction of muscle forces. Together with passive restraining struc-
tures, such as ligaments, and loading experienced, bone shapes de-
termine the joint’s articular kinematics, including rotation axes and
ranges of motion. Optical marker-based motion capture enables the
quantification of kinematics and, in combination with inverse dynamics
and optimisation approaches to determine muscle forces, facilitates the
estimation of joint torques and joint contact forces. These calculations
are sensitive to estimations of joint centres. Most commonly, medical
imaging is not acquired for motion analysis and, therefore, most gait

models, like the widely used Plug-in-Gait [1], rely on optical marker
positions and regression equations to calculate those joint centres.

Muscle forces, joint forces and moments are of particular interest in
the analysis of musculoskeletal conditions; muscle force predictions
using inverse dynamics with optimisation methods are based on inter-
segmental forces and moments derived from kinetic analyses. Recent
studies have shown that the accuracy of predicted muscle forces is
sensitive to the level of subject-specificity of the anatomy [2–7]. The
methods to adapt a model to a subject-specific geometry include the use
of bone shapes to specify muscle and ligament attachment sites [2–5],
definition of joint contact points [7] and utilising bone shapes to im-
prove upon measured kinematics, allowing them to achieve more rea-
listic joint motion of the knee [3] and hip [6].
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The gold standard for obtaining subject-specific bone morphology is
the segmentation of shapes from three-dimensional medical imaging.
As these methods are too expensive and segmentations are too time-
consuming to incorporate into gait analysis trials, the most commonly
used method for creating subject-specific geometries is linear scaling of
readily available bone geometries. These can be taken from commercial
databases or published datasets [8–11]. Parameters for linear scaling
methods can be estimated from marker data of either static [12,13] or
dynamic trials [14,15]. The estimation of joint centres, including the
hip joint centre (HJC), and the prediction of muscle paths therefore
typically relies on the digitisation of bony landmarks and the linear
scaling of a reference anatomy in the Euclidian space [12,15,16].
However, anatomy varies in a non-linear way [17], and so the most
commonly used scaling methods only capture anatomical variations
with a limited accuracy.

Statistical shape models (SSMs) enable compact representations of
non-linear variations in the Euclidian space corresponding to their
probabilities within a training set. These models have been widely used
for segmentation [18], characterisation [19] and shape reconstruction
[20]. SSMs have been used to reconstruct shapes from sparse point data
[21,22], but there are no published studies incorporating estimations of
soft tissue thickness to improve the accuracy. This was addressed in the
present study.

The aim of this study was to test the hypothesis that lower limb bone
shape predictions from skin-based measurements, utilising an under-
lying SSM that corrects for soft tissue artefacts in digitisation, are more
accurate than conventional linear scaling of bone geometries. The study
design was to: 1) calculate relationships between soft tissue digitisation
artefacts at commonly used bony landmarks estimated from landmark
digitisations in magnetic resonance (MR) scans and anthropometric
parameters; 2) develop a method to reconstruct the femur and tibia/
fibula shapes from digitisation of landmarks obtained in the motion lab
and the use of a combined SSM of the bones of the thigh and shank; and
3) reconstruct shapes using linear scaling in the Euclidian domain,
comparing the accuracy of the reconstructions of linear scaling and
shape models using difference measures between the surfaces, errors in
predicted HJCs and anatomical measures of the tibia and femur.

2. Material and methods

2.1. Participants

The study was approved by the NHS Research Ethics Committee and
written informed consent was provided according to the Committee’s
guidelines. The lower limbs of 35 healthy participants (13 female, 22
male; height 155 cm–193 cm; mass 45 kg–108 kg; body mass
index17.0 kg/m2 to 34.8 kg/m2; aged 23–70 years [23]) were scanned
in a supine position using a 3.0 T MR scanner (MAGNETROM Verio,
Siemens, Germany) using a T1 weighted axial spin echo scan (repetition
time: 11.6 ms; echo time: =4.28ms; resolution: 1.4 mm×1.4mm x
1.0 mm). Femur and tibia/fibula bone geometries were segmented from
the MR images using a semiautomatic procedure in Mimics (v17.0,
Materialise, Belgium).

For seventeen of the scanned participants, landmarks on the pelvis,
thigh and shank of the left and right leg were digitised using a ten
camera optical motion capture system (Vicon Ltd., UK). Digitisations
were performed twice, on two separate occasions with at least a week
between them. One experienced operator digitised four points on the
pelvis – the left and right anterior and posterior iliac spines (LASIS,
RASIS, LPSIS, RPSIS); four points on the femur – the greater trochanter
(GT), the medial and lateral epicondyles (ME, LE) and the femoral
notch located above the patella (FN); and seven points on the shank –
the tibial tuberosity (TT), lateral and medial malleoli (LM, MM), tibial
notch (TN) anterior to the middle of the ankle joint on the distal tibia,
and proximal, middle and distal points along the tibial crest (ATP, ATM,
ATD; Fig. 1). For registration of the measured points, clusters of three-

marker were attached to the pelvis [24], right thigh and shank [25].
During the measurements, landmark positions were calculated in the
cluster coordinate frames. Femoral head centre (FHC) was re-
constructed using the landmark positions and the most commonly used
regression equation in the literature [26]:
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where pelvic depth (PD) was the distance between the connecting lines
of ASIS and PSIS and pelvic width (PW) was the inter-ASIS distance.
The radius of the femoral head (FH) was approximated by linearly
scaling the radius of the mean shape of all segmented femurs
( =r mm21.1 ) with the ratio of the participant’s femur length to the
mean femur length. Using the radius and the FHC, points superior
(FHS), medial (FHM), anterior (FHA), and posterior (FHP) to the FHC
relative to the local coordinate system were calculated, in addition to
the digitised landmarks. Local coordinate systems were constructed
using the directions from the midpoint of the LE and ME to the FHC and
the midpoint of the LM and MM to the TT as y-axes for the femur and
tibia, respectively. The x-axes were constructed using the component
which was orthogonal to the y-axes of the connection from ME to LE
and MM to LM, respectively. The z-axes were defined orthogonal to x
and y-axes. To evaluate the accuracy of the scaling methods, points
corresponding to the digitised points measured in the motion lab were
selected on the segmented bone surfaces of all participants (Fig. 1).

2.2. Estimation of soft tissue artefact in digitisation

To characterise the soft tissue digitisation artefact, landmarks on the
skin and on the bone surfaces were manually digitised from the MRIs
using the segmented bone surfaces and their positions were corrected
using the axial image slices. Soft tissue artefacts were calculated as the
Euclidean distance between skin- and bone-based landmarks. Linear
regression models of the artefacts were calculated for each landmark
location using height, mass, age, gender and BMI. Models with an ad-
justed coefficient of determination larger than 0.5 were reduced by
subsequently removing not relevant factors, determined by evaluating
the Akaike information criterion (AIC) using R (R3.2.1, www.r-project.
org). Statistical significance of the factors was tested by performing an
analysis of variance with a significance level of α=0.05 and coeffi-
cients that were not significant were removed. The resulting regression
equations are listed in Table 1.

2.3. Shape models

Combined SSMs of the femur and tibia/fibula were generated from
right and mirrored left limbs of the 35 participants. The dataset was
used to create SSMs in previous studies and was shown to represent
missing shapes in a leave-one-out model with accuracies of approxi-
mately 2mm [23]. The bones were aligned to minimise the root mean
square error (RMSE) between surfaces using rigid body transforma-
tions. To create point correspondences, all surfaces were registered to a
reference surface using non-linear free-form deformations (IRTK
[27,28],) in two steps: a deformation between selected landmarks and
pseudo-landmarks and a transformation between all surface vertices
using the landmark deformation as a pre-transformation. For the shape
models, point correspondences for the tibia/fibula were created for
each part of the model individually, without changing their relative
positions. Modes of variations were calculated using a principal com-
ponent analysis on the coordinate vectors of all surface vertices using a
leave-one-out strategy, leaving out the shapes of the bones that were
reconstructed.
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2.4. Bone reconstruction

Shapes of the femur and tibia/fibula were reconstructed from
landmarks digitised on the bone and skin surface of the MRIs and di-
gitised in the motion lab.

2.4.1. Shape model reconstruction
Bone shapes were reconstructed by morphing the SSMs to the

landmarks by simultaneously optimising rigid-body transformation and
shape model parameters. The optimisation used different objective
functions for landmarks measured on skin or bone: for the reconstruc-
tion from skin-surface landmarks, the negative log-likelihood function

of a Gaussian distribution = ∑ + −D σ0.5logi i
d d

σ
2 ( )

2
i i est

i

, 2

2 was minimised;
and for the reconstruction from bone surface landmarks, the distance
between the surface point and landmark = ∑D di i

2 was minimised. In
both cases, the distances = −d x s‖ ‖i i i with the landmark position si and
the shape model surface point = +x A p λ r( )i i were dependent on the
location r and rotation A as well as the shape model parameters

= …λ λ λ( , , )m1 describing the surface point of the shape model, p λ( )i .
The calculation of the log-likelihood function used the estimated soft
tissue artefact at the landmark locations, di est, , calculated from the re-
gression equations or using the estimated mean offsets, and the esti-
mated standard deviation σi. The surface points xi corresponding to the
landmarks were either fixed points defined on the surface of the SSM or,

Fig. 1. Schematic representation of the study design: Bony landmarks digitised in magnetic resonance (MR) scans on skin and bone surfaces were used to estimate
soft tissue offsets. Statistical shape models were created using bone shapes segmented from MR scans. Shapes were reconstructed from shape model reconstructions
and by linear scaling methods using landmark positions digitised in the motion lab. The reconstructed shapes were compared to segmented bone shapes.

Table 1
Mean and standard deviations of the distances between the landmarks on the thigh and shank virtually digitised on the skin and bone surface from MR scans.
Regression equations using a subset of the factors: age, height, body mass, BMI and gender (0=male, 1=female). Regression equations with an R2 value below 0.5
are neglected and are not shown in the table.

Segment Landmark Distance (mm) R2 of full model Regression

Mean SD
Thigh GT 41.99 16.72 0.61 16.2mm - 32.01mm * gender + 0.65mm/kg *body mass
Thigh FN 27.73 3.95 0.33
Thigh LE 15.76 4.49 0.54 2.7mm -5.83mm * gender + 0.71mm*m2/kg * BMI
Thigh ME 18.60 6.96 0.71 2.89mm - 14.11mm * gender + 0.35mm/kg * body mass
Shank TT 7.74 2.99 0.13
Shank TC1 6.54 2.14 0.39
Shank TC2 5.95 1.74 0.40
Shank TC3 7.02 2.49 0.33
Shank TN 14.35 2.40 0.23
Shank LM 4.81 0.98 0.26
Shank MM 5.49 0.90 0.17
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if these did not correspond to a bony landmark (in case of ATP, ATM,
ATS), were determined with a closest point search. The surface and
landmarks were matched by minimising the objective functions for
orientation and shape model parameters simultaneously. In both cases
the objective functions included a Mahalanobis distance term for the
shape model parameters to penalise shapes far from the mean. The
optimisation was performed using a BFGS algorithm for bound opti-
misation in Python (L-BFGS-B, SciPy 0.19.1, www.scipy.org) to in-
corporate constraints for the shape model parameters to± 3 standard
deviations. The soft tissue correction method was tested by comparing
reconstructions from anatomical landmarks on the bone surfaces
without soft tissue corrections to reconstruction from anatomical
landmarks digitised on the skin’s surface in the MR scans using soft
tissue corrections.

2.4.2. Linear scaling models
Shapes were also reconstructed by linearly scaling the SSM mean

shapes in the Euclidian space. The scaling factors for uniform scaling
were determined as the ratio of the distances between landmarks,
which were the distance between the femoral head centre and the
midpoint between lateral and medial epicondyles for the femur, and the
distance between the tibial tuberosity and the midpoint between lateral
and medial malleoli for the tibia. In the case of the landmarks obtained
from bone surfaces, the femoral head centre was calculated by fitting a
sphere through four points on the femoral head. In addition to uniform
scaling, a scaling method using the pelvis width to scale the bone
shapes in the sagittal and coronal planes was used [2,13].

2.5. Anatomical measures

Anatomical measures for the femoral version, angle between ana-
tomical and mechanical axes, physio-epicondylar angle, bow angle,
anatomical posterior tibial angle, mechanical medial proximal tibial
angle and tibial twist were calculated using custom made scripts fitting
axes to the bone surfaces [29]. The HJC locations of the reconstructed
surfaces were compared to the location of the HJCs of the segmented
surfaces in local coordinate frames.

2.6. Statistical analysis

The SSMs were analysed for generality, compactness and specificity
[30]; details can be found in the supplementary data.

SSM reconstructions from anatomical landmarks segmented on the
bone surface were compared to reconstructions from anatomical land-
marks measured on the skin using SSM reconstruction with and without
soft tissue corrections, as well as from linear scaling methods. Surfaces
were compared by aligning the reconstructed and segmented surfaces
using an iterative closest point algorithm and calculating the root-

mean-squared deviation between them. Differences in surface distance
and anatomical measures were evaluated using Kruskal-Wallace tests. If
differences were found, Wilcoxon signed-rank tests with Holm correc-
tions were used to find differences between the reconstructions. All
statistical tests used a significance level of =α 0.05 and were performed
using R.

3. Results

Characterisations of soft tissue artefacts with linear regressions
using gender, weight and BMI were statistically significant for the
landmarks GT, LE and ME. For all other landmarks linear regression
representations were not significant (Table 1).

The comparison of SSM reconstructions from the MR scans with and
without soft tissue corrections for anatomical landmarks segmented on
the skin and bone surfaces, respectively, did not show statistical sig-
nificant differences for the femur or tibia/fibula. The median RMSEs of
the reconstructed surfaces from landmarks digitised on the bone and
skin surfaces were 2.66mm compared to 2.60mm for the femur and
2.88mm compared to 2.90mm for the tibia; the errors of the HJC lo-
cations were 13.82mm compared to 16.10mm.

RMSEs of the surface for 1 through 5 cumulative modes of variation
of reconstructions with and without soft tissue corrections are shown in
Fig. 2. For the reconstruction from skin landmarks (measured or seg-
mented), reconstruction errors using 1 and 2 modes of variation were
significantly smaller than reconstructions using 3, 4 or 5 modes of
variation (p < 0.01). Differences between the first two modes of var-
iation were not statistically different. Therefore the following measures
were only reported for reconstructions with 1 mode of variation, which
produced the smallest RMSE.

Median RMSEs of the surfaces and distances between HJCs of the
tested reconstruction methods are listed in Table 2; significance levels
are shown in Fig. 3. Linear scaling using the pelvis width did not show
significant differences when compared to uniform scaling, but was
significantly worse than SSM reconstructions from bony landmarks
(femur) and SSM reconstructions from skin landmarks (tibia/fibula). No
statistically significant differences were found between the SSM re-
constructions from bony landmarks using a distance minimisation and
reconstructions from measured skin landmarks using the correction
method.

Errors in HJCs did not show statistically significant differences be-
tween shape model reconstructions from segmented bone and skin
surface landmarks. Average errors in the linearly scaled models were
larger than errors from shape model reconstructions, but the differences
were only statistically significant for reconstructions from segmented
bony landmarks (Fig. 4). There were no statistically significant differ-
ences found in any other anatomical measure; detailed results are in the
supplementary data.

Fig. 2. Comparison of root mean squared errors (RMSEs) of the surfaces for statistical shape model reconstructions of (a) the femur and (b) the tibia/fibula using 1
through 5 modes of variation for reconstructions from landmarks segmented on the bone surface (SSM bone) and landmarks measured on the skin surface using
corrections for soft tissue artefacts (SSM skin).
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4. Discussion

This study compared linear scaling and SSM-based reconstruction
methods for lower limb bones using sparse landmarks obtained by di-
gitisation on the skin surface. Soft tissue digitisation artefacts were
characterised using measurements from MR images and a method for
the reconstruction of SSMs, correcting the measured landmark posi-
tions, was tested.

The description of soft tissue artefacts in this study showed a
moderate correlation between BMI, body mass and gender for land-
marks at the epicondyles and the greater trochanter. For these land-
marks, gender had a particularly large influence on the measured skin
artefact. For all other measured landmarks, the standard deviations
were small and regression equations did not show a significant im-
provement in the prediction of the skin artefact. Previous publications
have reported soft tissue artefacts for the shoulder, spine and pelvis
[31–33]; however, previous publications have not used soft tissue offset
characterisations in the lower limb for bone shape reconstructions.
Limitations of the presented methodology are differences in the position
for characterising and applying soft tissue offsets, i.e. a supine position
in the MR scan versus an upright position in the motion laboratory,
which could be overcome if an upright MR scanner would be available;
unavoidable soft tissue compressions by the rater during digitisation,
which might have influenced the measurements; and a limited number
of available subjects used to create the statistical shape model, which
could be increased in future studies. Further, variations in the joint
centre estimation due to cartilage thickness was not addressed in this
study. Accuracy improvements to this type of study could potentially be
made by the use of other medical imaging modalities, such as CT
scanning which is not advocated due to the effects of ionising radiation.

Shape model reconstructions had, on average, more accurate sur-
face predictions than when using linear scaling methods and were
comparable to those reported by Zhang et al. [22]. There were no dif-
ferences between SSM reconstructions from segmented bony landmarks
alone and SSM reconstructions from segmented and measured skin

landmarks. Reconstructions from skin landmarks were most accurate
for one and two modes of variation. This was most likely caused by the
small number of landmarks used for reconstruction and the soft tissue
artefacts and corrections, which might cause an overfitting of the model
to the landmarks given the uncertainty from the soft tissue artefacts.

Knowledge of the position of the HJC is required in musculoskeletal
modelling to specify the moment arms of muscles around the joint. The
errors in the HJC locations of the reconstructions from bony landmarks
(13.8 mm) and skin landmarks using soft tissue corrections (16.1 mm)
were within the range reported by previous studies [26,34,35].

A limitation of the comparison of HJC errors is the use of measured
landmarks, especially the greater trochanter, for the creation of a local
coordinate system. Since this landmark position has the largest soft
tissue digitisation artefact of all measured landmarks, the local co-
ordinate frame mixes measurement errors with inaccuracies of the

Table 2
Median and interquartile ranges of surface root mean squared errors and distances between segmented and reconstructed hip joint centre locations for re-
constructions of the femur and tibia/fibula from a statistical shape model (SSM) using one mode of variation, uniform scaling and scaling using segment length and
pelvis width. For a significance level of α=0.05, significant differences between values are indicated with identical superscripts.

Reconstruction method Landmark set Tibia/Fibula (mm) Femur (mm) Hip joint centre distance (mm)

SSM reconstruction Segmented bone 2.88 (0.62) 2.60a (1.05) 13.82*,† (9.62)
Measured skin 2.95A (1.03) 2.68 (1.26) 17.02 (14.07)

SSM reconstruction with soft tissue correction Measured skin 2.90B (0.82) 2.66b (1.74) 16.10 (10.61)
Uniform scaling with segment length Measured skin 3.87 (0.96) 3.66 (1.50) 22.07* (8.71)
Scaling with segment length and pelvis width Measured skin 3.84A, B (0.82) 3.76a,b (1.51) 22.40† (9.54)

A, a, b, *, †: p < 0.05; B: p < 0.01.

Fig. 3. Comparison of root mean squared errors (RMSEs) of the surfaces for reconstruction of (a) the femur and (b) the tibia/fibula for statistical shape model (SSM)
reconstruction from landmarks segmented on the bone (SSM bone), SSM reconstructions with (SSM skin) and without (SSM w/o corr skin) soft tissue corrections for
landmarks measured on the skin, and reconstructions from landmarks measured on the skin using uniform linear scaling (Uniform scale skin) and scaling using
segment length and pelvis width (Linear scale with pw skin). Differences are marked using *(p < 0.05), ** (p < 0.01) and *** (p < 0.001).

Fig. 4. Comparison of root mean squared errors (RMSEs) in the location of the
hip joint centre (HJC) locations in reconstructions from statistical shape models
using digitised bone (SSM bone) and skin landmarks with (SSM skin) and
without (SSM w/o corr skin) correction for soft tissue artefacts, and re-
constructions from landmarks measured on the skin using uniform linear
scaling (Uniform scale skin) and scaling using segment length and pelvis width
(Linear scale with pw skin). Differences are marked using *(p < 0.05).
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landmark measurements.
Gait analysis is often performed for paediatric patients and the

method shown here has potential for this population. However, speci-
fically created SSMs that represent the studied population are required
and since the bone shapes in children can have large variations it might
require specific SSMs to represent specific developmental stages.

Although this study sought to provide reconstructions for rigid-body
musculoskeletal simulations, other potential applications could be
considered, such as computational biomechanics using finite element
analysis to simulate arthrokinematics and tissue stresses and strains.
The accuracy found here would potentially enable this. To evaluate the
impact on musculoskeletal simulations, further analysis with specific
simulations is required.

In conclusion, it has been shown in this study that bone shape re-
constructions using landmarks measured in a motion lab can be im-
proved using SSMs when compared to linear scaling algorithms in an
adult population. Therefore, this technology could now be used to
create subject-specific musculoskeletal models without the need for
additional medical imaging.
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