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Low-dose CT (LDCT) images can reduce the radiation damage to the patients; however, the unavoidable information loss will
influence the clinical diagnosis under low-dose conditions, such as noise, streak artifacts, and smooth details. LDCT image
denoising is a significant topic in medical image processing to overcome the above deficits. *is work proposes an improved DD-
Net (DenseNet and deconvolution-based network) joint local filtered mechanism, the DD-Net is enhanced by introducing
improved residual dense block to strengthen the feature representation ability, and the local filtered mechanism and gradient loss
are also employed to effectively restore the subtle structures. First, the LDCT image is inputted into the network to obtain the
denoised image. *e original loss between the denoised image and normal-dose CT (NDCT) image is calculated, and the
difference image between the NDCT image and the denoised image is obtained. Second, a mask image is generated by taking a
threshold operation to the difference image, and the filtered LDCTand NDCT images are obtained by conducting an elementwise
multiplication operation with LDCT and NDCT images using the mask image. *ird, the filtered image is inputted into the
network to obtain the filtered denoised image, and the correction loss is calculated. At last, the sum of original loss and correction
loss of the improved DD-Net is used to optimize the network. Considering that it is insufficient to generate the edge information
using the combination of mean square error (MSE) andmultiscale structural similarity (MS-SSIM), we introduce the gradient loss
that can calculate the loss of the high-frequency portion. *e experimental results show that the proposed method can achieve
better performance than conventional schemes and most neural networks. Our source code is made available at https://github.
com/LHE-IT/Low-dose-CT-Image-Denoising/tree/main/Local Filtered Mechanism.

1. Introduction

Computed tomography (CT) is crucial in medical diagnosis
and illness analysis [1–5]. As excessive CT scan probably
causes a series of acute potential cancers and cases, the
medical instrument usually adopts a CT radiation dose as
low as possible to avert the damage to health. However, it is
certain that reducing the radiation dose will cause infor-
mation loss of human tissue, and a large amount of noise in
the image may influence the accuracy of the diagnosis. *us,
how to reduce the noise in low-dose CT (LDCT) images and
preserve the image information is one of the critical issues in
medical image processing.

As reducing the dose of CT radiation can produce the
projection data with a low signal-to-noise ratio, some

methods utilize the nonlinear filter [6, 7] or the statistical
characteristic of noise [8, 9] to reduce the noise in the pro-
jection data. In addition, some methods attempted to remove
the noise and streak artifacts in LDCT images directly. To
remove the streak artifacts fused in the tissue structure, ap-
proaches including nonlinear diffusion filter [10], sparse
representation, and dictionary learning [11–13] were pro-
posed. Due to the excellent performance, some natural image
denoising algorithms [14, 15] were applied to remove the
noise in LDCH images. *ese methods belong to post-
processing methods and aim to preserve the detailed infor-
mation and remove the noise and artifacts simultaneously.

Due to the remarkable expressive capacity of neural
networks, many researchers try to reduce the noise in the
LDCT images based on convolution neural network (CNN)
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and generative adversarial network (GAN). Some researchers
utilized structures, such as autoencoder, residual block, and
dense block, into CNN for LDCT image denoising [16–18].
Some researchers used CNN to learn image features and
provide prior knowledge for traditional CT reconstruction
schemes such as analytic reconstruction and iterative re-
construction [19, 20]. However, it is hard to generate realistic
and diverse details based on CNN. To remedy this, some
schemes based on GAN [21–28] were proposed. In these
GAN-based solutions, the denoised images are generated by
the generator and evaluated by the discriminator. *rough
competition and self-optimization, the generator can generate
realistic normal-dose CT (NDCT) images. Besides, some
novel structures, such as leap structure [29] and sharpness
detector [23], were developed to enhance the performance of
neural networks. Although these networks can perfectly
remove the noise and recover the image structures, there are
still some ambiguous and incorrect subtle structures in the
denoised results. Confronting the problem, the frequency-
separation-based networks [30, 31] were proposed to separate
the LDCT image into a low-frequency portion and a high-
frequency portion for generating each portion, respectively.
However, the incorrect subtle structures are usually the areas
that are contaminated severely by noise and streak artifacts
instead of the edge information in high-frequency domain, as
shown in Figure 1. On the one side, frequency separation
usually produces information loss during transformation. On
the other side, there is an essential correlation between global
structures and detailed information, which is useful for subtle
structure restoration.

To address the above problems, we use the difference
image between the predicted image and the NDCT image to
make the mask image. Compared with frequency-separa-
tion-based methods, the difference image can reflect the
areas that contain incorrect subtle structures accurately.
Using the mask image obtained by taking a threshold op-
eration to the difference image, the local filtered mechanism
filters the high-quality areas in the LDCT image and NDCT
image and preserves the low-quality areas, which will be
optimized by the network especially. To utilize the corre-
lation between global structures and detailed information,
our model learns the global structure between LDCT image
and NDCTimage in the first step.*en, the model learns the
detailed information between the filtered LDCT image and
NDCT image in the second step. By the network optimi-
zation in the second step, the ability in subtle structure
restoration is enhanced significantly. As the global structures
and detailed information are learned in the same network,
our model can provide the implicit global features for subtle
structure restoration and avoid the transformation loss
during frequency separation. However, learning two tasks in
one network requires a deeper network structure. *erefore,
we propose an improved DD-Net [32] that has mighty
ability in feature extraction and denoising. In our network,
we replace the dense block by an improved residual dense
block [33] to deepen the neural network and improve the
performance. Although this mechanism solves the subtle
structure restoration problem, the combination of MSE and
MS-SSIM as a loss function is detrimental for the edge

information restoration. *us, we introduce the gradient
loss [34] to calculate the loss in the high-frequency portion,
which improves the performance reduction caused by the
local filtered mechanism.

In this work, we evaluate the performance of our pro-
posed network by comparing with other typical schemes.
Experimental results demonstrate that the proposed scheme
can restore the ambiguous subtle structures brilliantly and
gets higher performance in objective metrics than most
comparative methods. *e contributions of the paper can be
listed as follows:

(i) We propose an improved network based on DD-
Net and a novel local filtered mechanism. *rough
this mechanism, the network can generate the subtle
structures accurately with the global context and
accomplish the balance between network general-
ization and subtle structure restoration.

(ii) We introduce the gradient loss to enhance the
ability in edge information restoration and improve
the performance reduction caused by the abatement
of generalization significantly.

(iii) Experiments on low-dose chest image and brain
image denoising prove that our network outperforms
the conventional schemes and most neural networks
in both evaluation metric and visual appearance.

2. Related Work

Since we propose an improved neural network for LDCT
image denoising, some significant work will be reviewed
optionally in this section.

As neural networks have achieved brilliant performance
in image processing, LDCT denoising methods based on the
neural network have been presented in the past decades.
*ese methods achieved outstanding results in both objective
metrics and visual appearance. Although analytic recon-
struction and iterative reconstruction are still the mainstream
in commerce scenes, it is certain that neural networks will be
applied in commercial CT equipment in the future.

2.1. CNN Methods. Due to the powerful ability of feature
extraction and mapping, some researchers attempted to
reduce the noise in the LDCT images based on CNN. *e
deep residual network and cascade network [16–18] were the
early applications to improve the performance of LDCT
denoising. Zhang et al. [32] combined the dense block and
deconvolution structure to build a lightweight network that
can reuse the features effectively. Some methods [19, 20]
combined neural network with analytic reconstruction or
iterative reconstruction and improved the quality of LDCT
images in the projection domain. Based on the residual block
and dense block, the residual dense block (RDB) [33]
achieved excellent performance in superresolution through
contiguous memory (CM) mechanism and local feature
fusion (LFF). By introducing the feature attention and en-
hancement attention modules (EAM), the real image
denoising network (RIDNet) [35] can denoise real noise
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images efficiently. Inspired by the above study, this work
introduces an improved residual dense block based on the
DD-Net for achieving further enhancement of the feature
representation and denoising.

2.2. GAN Methods. While methods based on CNN can
greatly improve the denoising performance, they can only
generate the image structures based on prior knowledge,
which causes the restriction in subtle structure restoration.
*erefore, the schemes based on GAN were presented. Yang
et al. [21] applied the Wasserstein distance and perceptual
loss to train the GAN network. Wolterink et al. [22] in-
troduced the voxelwise loss to improve the performance of
GAN. Ge et al. [24] developed a conditional GAN to gen-
erate the thin thickness slices from thick LDCH images. To
compete with commerce algorithms, Shan et al. [25] pro-
posed a modularized adaptive processing neural network
(MAP-NN). Choi et al. [26] presented the semisupervised
GAN, including denoising network and classification net-
work, to reduce the dependence on NDCT images. Taking
the consecutive low-dose projections as the input, the
comprehensive domain generator [27] with three-dimen-
sion was presented to learn the redundant information
among slices and generate the subtle structures. To capture
structural details, You et al. [29] introduced the leap con-
nection and network in network. To describe the uncertainty
of the denoised image, Huang et al. [36] used the CutMix
technique and U-Net-based discriminator to provide radi-
ologists with a confidence map. However, although the
GAN-based methods can perfectly preserve the texture
information in LDCT images, they performed poorly in
subtle structure restoration as well. In contrast, our network
preserves the areas in low quality by the mask image and
strengthens the ability in subtle structure restoration by
optimizing the areas in low quality especially.

2.3. Subtle Structure Restoration. Currently, although CNN
and GAN have remarkably improved the performance in
image denoising, it is still hard to restore the subtle struc-
tures. Yin and Babyn [23] designed a sharpness detector
based on cGAN to preserve more edge information. Wang
et al. [30] applied the shearlet transformation to generate the
high-frequency information and low-frequency information
separately. Fritsche et al. [34] utilized the low pass filter for
frequency separation and adopted the GAN loss for subtle
structure restoration. Yang et al. [31] designed two sub-
networks based on U-Net in the generator for LDCT image
denoising in the spatial domain and high-frequency domain.
Recent work restores subtle structures through frequency
separation, which lacks global information and may bring
information loss during transformation. In contrast, our
network learns the global structures and detailed informa-
tion in one network and can provide the implicit global
context for subtle structure restoration. Meanwhile, our
model can specially optimize the areas with low quality
through the mask image and avoid information loss during
transformation.

3. The Proposed Scheme

*e critical content of LDCT image denoising is to restore
the subtle structures while removing the noise. To enhance
the ability in feature representation and denoising, we
propose an improved DD-Net. Besides, we present a new
local filter mechanism and introduce a novel gradient loss to
restore subtle structures accurately.

3.1. Network Structure. *e proposed neural network em-
ploys a similar structure with DD-Net [32], which achieves
brilliant performance in medical image denoising. However,
as the global structures and detailed information are learned

LDCT GradientL NDCT GradientN Prediction Image

Difference Image Mask Image Filtered LDCT Filtered NDCT

Figure 1: *e comparison between the frequency-separation-based methods and local filtered mechanism. GradientL denotes the gradient
image of the LDCTimage. GradientN denotes the gradient image of the NDCTimage.*e gradient images were generated by the Sobel filter.
*e display window is [100, 300] Hu for better visualization.
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in one network, our model requires a deeper network
structure and more powerful feature representation ability.
*us, the improved residual dense block (IRDB) [33] is
introduced. *e improved residual dense block is composed
of the dense connected [37] block and the enhanced residual
block [35]. Considering the scale variation in the max-
pooling layers [38], we remove the batch normalization in
the dense connected block. *e detailed structure of the
improved residual dense block is shown in Figure 2.

*e detailed network structure is represented in Figure 3.
It includes 1 convolution layer, 4 max-pooling layers, 4
improved residual dense blocks, 4 upsampling layers, and 8
deconvolution layers, followed by Relu and batch
normalization.

*e input and output of the network are 512 × 512 × 1
medical images. We adopt a 7 × 7 convolution layer after the
input layer. After the 7 × 7 convolution layer, there are 4
encoder modules and 4 decoder modules. *e encoder
modules employ the max-pooling layer and the improved
residual dense block [33] to extract multiscale features. *e
decoder modules employ the upsampling layers and 2
deconvolution layers followed by the Relu and batch nor-
malization to restore the image information. *e layers with
the same feature shape in encoder modules and decoder
modules will be concatenated. *e kernel size of the last
deconvolution layer is 1 × 1 to generate the denoised image.

3.2. Local Filtered Mechanism. As the subtle structure res-
toration is a significant content in LDCT image denoising,
most schemes attempt to restore subtle structure by frequency
separation. However, high-frequency information cannot
reflect the subtle structures accurately, and approaches that
process high-frequency information and low-frequency in-
formation separately may cause information loss during the
transformation. To solve the problem, we propose a local filter
mechanism to enhance the ability in subtle structure resto-
ration. *e mechanism restores the unclear subtle structures
by two steps. In the first step, the LDCTimage is inputted into
the network to get the denoised image I1. In the second step,
the difference image D1 between the NDCT image and I1 is
obtained. *en, the mask image is generated by taking the
threshold operation to D1. Using the mask image to conduct
elementwise multiplication operation with LDCTand NDCT
images, the areas with high quality are filtered, and the areas
with poor quality are preserved. At last, the filtered LDCT
image is inputted into the network to get the filtered denoised
image I2.*e original loss between the denoised image I1 and
NDCT image N1 is calculated to enhance the ability in global
structure restoration. *e correction loss between the filtered
denoised images I2 and filtered NDCT image N2 is calculated
to enhance the ability in unclear subtle structure restoration.
*e detailed process is shown in Figure 4 and Algorithm 1.

Compared with the frequency-separation-based
methods, the proposed network can achieve feature sharing
between global structure and detailed information and can
provide more context information for detail restoration.
*us, it can generate more realistic and precise subtle
structures, as shown in Figures 5–8. In fact, the above

mechanism can be considered as a confrontation between
network generalization and subtle structure restoration. *e
neural network tends to discard some detailed information
of a specific image and make the subtle structures over-
smoothed, which is beneficial for the enhancement of
generalization and the reduction of overall error. To alleviate
this phenomenon, this mechanism is designed to filter the
areas with high quality and drive the network to specially
optimize the areas with low quality that contain detailed
information and are harder to optimize. Finally, the network
can achieve the balance between the image denoising and
subtle structure restoration through the sum of original loss
and correction loss of the improved DD-Net.

Table 1 and Figure 9 demonstrate the results of different
threshold values and training strategies. Although the
model which was trained without a local filter mechanism
can achieve higher PSNR and SSIM results, it drops some
subtle structures to improve the generalization ability and
cannot achieve further enhancement of subtle structure
quality. *e models which were trained with a local filter
mechanism for 160 epochs can restore more appealing
subtle structures but achieve poor performance in low-
frequency portion denoising. *erefore, all networks
without a pretrained model obtain lower PSNR and SSIM
results than a pretrained model. *e reason is that the
global structures and detailed information are learned
separately when adopting a local filtered mechanism at the
beginning of the training phase. Without the prior
knowledge of global structures, the network cannot utilize
the global structure information learned in the first step to
restore the subtle structures in the second step efficiently.
Models with threshold values 0.01 and 0.04, which were
trained with a pretrained model and local filter mechanism
for 160 epochs, obtain higher PSNR and SSIM results than a
pretrained model, but the improvement is slower than the
model which was trained without a local filter mechanism
for 160 epochs. *e reason is that the subtle structures are
more difficult to optimize. As is shown in Figure 9, it can be
seen that all models trained with pretrained model and
local filter mechanism pay more attention to subtle
structure restoration.

Furthermore, how to set the threshold value is a crucial
problem. When we use the low threshold value, the filtered
images contain a large amount of low-frequency information
which hinders the network from especially optimizing subtle
structures. When we use the high threshold value, most subtle
structures are filtered, and large black areas in the filtered
images will influence the global structure restoration as there
is a large difference between the filtered LDCT image and real
LDCT image. Here, we trained the model without the local
filtered mechanism for 80 epochs at first and visualized the
filtered results using different threshold values. *e visuali-
zation results are shown in Figure 10. As the threshold value
of 0.04 can filter most low-frequency areas and save enough
subtle structures, we choose 0.04 as our training threshold
value in the chest dataset. Adopting the above parameter
selection strategy, we choose 0.004 as our training threshold
value in the brain dataset. Table 1 shows that both larger
threshold value and lower threshold value will reduce the
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Figure 4: *e framework of local filtered mechanism.
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Require: L1 (*e low-dose CT image)
Require: N1 (*e normal-dose CT image)
Ensure: Ltotal (*e total loss to take the back propagation and optimize the network)
NOTE: D1 is the difference image which can reflect the difference between I1 and N1. M is the mask image to filter the areas with
high quality and save the areas with low quality. Pxy is the gray value of D1 at pixel (x, y). Mxy is the gray value of the mask image
M at pixel (x, y). Improve dD DNet is an improved convolution neural network based on DD-Net [32]. thresh is the threshold
value. ⊙ is the elementwise multiplication operation. N2 and L2 are the filtered normal-dose image and low-dose image. Loss is
the loss function of our network. Loriginal is the loss between I1 and N1. Lcorrect is the loss between I2 and N2.

(1) I1⟵ImprovedDDNet(L1)

(2) D1⟵|N1 − I1|

(3) for Pxy in D1do
(4) if Pxy < thresh then
(5) 0⟵Mxy

(6) else
(7) 1⟵Mxy

(8) end if
(9) end for
(10) N2⟵M⊙N1
(11) L2⟵M⊙L1
(12) I2⟵ImprovedDDNet(L2)

(13) Lorginal⟵Loss(I1, N1)

(14) Lcorrect⟵Loss(I2, N2)

(15) Ltotal⟵Loriginal + Lcorrect

ALGORITHM 1: *e local filtered mechanism.

LDCT NLTV BM3D RED-CNN DD-Net Proposed

WGAN_VGG MAP-NN CPCE-2d HFSGAN DU-GAN NDCT

LDCT NLTV BM3D RED-CNN DD-Net Proposed

WGAN_VGG MAP-NN CPCE-2d HFSGAN DU-GAN NDCT

Figure 5:*e denoised result for low-dose CT image in group 1.*e loss function of DD-Net is the combination ofMSE andMS-SSIM.*e
display window is [150, 250] Hu for better visualization.
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quality of the denoised results. *e model whose threshold
value is 0.04 obtains the highest PSNR and SSIM results in the
chest dataset regardless of whether we use pretrained model
or not. Furthermore, Figure 9 illustrates that an appropriate
threshold can obtain a better visual appearance of subtle
structures. Experiment verification indicates that the above
parameter selection strategy can obtain a relatively proper
threshold value.

3.3. Loss Functions. In our experiments, we use the weighted
sum of mean square error, multiscale structural similarity
[39], and gradient loss as the final loss function. To im-
plement the local filter mechanism, it is required to calculate
the original loss between the denoised image I1 and NDCT
image N1 when the LDCT image L1 is used as the input, as
well as the correction loss between the denoised image I2 and
filtered NDCT image N2 when the filtered LDCT image L2 is
used as the input. *us, the total loss function is the sum of
original loss and correction loss of the improved DD-Net, as
equations (1) and (2).

L � λ1LMSE + λ2LMS−SSIM + λ3Lgrad (1)

Ltotal � Loriginal + Lcorrect, (2)

where λ1, λ2, and λ3 are the hyperparameters.

3.3.1. Mean Square Error (MSE). *e mean square error
(MSE) is used to generate the objective information of
images and calculate the pixel difference between denoised
images and NDCT images. *e MSE is described in equa-
tions (3) and (4).

I(i, j) � ImprovedDDNet(L(i, j)) . (3)

LMSE �
1

N
2 􏽘

N

i�1
􏽘

N

j�1
(N(i, j) − I(i, j))

2
, (4)

where I(i, j) denotes the gray value of denoised images at
pixel (x, y) and N(i, j) denotes the gray value of NDCT
images at pixel (x, y).

LDCT NLTV BM3D RED-CNN DD-Net Proposed

WGAN_VGG MAP-NN CPCE-2d HFSGAN DU-GAN NDCT

LDCT NLTV BM3D RED-CNN DD-Net Proposed

WGAN_VGG MAP-NN CPCE-2d HFSGAN DU-GAN NDCT

Figure 6: *e denoised result for low-dose CT image in group 2. *e display window is [100, 300] Hu for better visualization.
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3.3.2. Multiscale Structural Similarity (MS-SSIM). *e
structural similarity (SSIM) is a common metric for evalu-
ating the perceptual loss in a single scale. As optimization of
SSIM, the multiscale structural similarity (MS-SSIM) [39] is
conducted over different resolutions and has a better per-
formance. *e MS-SSIM is described in equations (5)–(9).

l(x, y) �
2μxμy + C1

μ2x + μ2y + C1
,

c(x, y) �
2σxσy + C2

σ2x + σ2y + C2
,

s(x, y) �
σxy + C3

σxσy

.

(5)

MS − SSIM(x, y) � lM(x, y)􏼂 􏼃
αM

· 􏽙
M

j�1
cj(x, y)􏽨 􏽩

βj
· sj(x, y)􏽨 􏽩

cj
.

(6)

LMS−SSIM � 1 − MS − SSIM, (7)

αj � βj � cj (8)

􏽘

M

j�1
cj � 1, (9)

where I(x, y) is used to evaluate luminance, c(x, y) is used
to evaluate the contrast, and s(x, y) is used to evaluate the
structural similarity. α, β, c are constants. In general,
α1 � β1 � 0.0448, α2 � β2 � 0.2856, α3 � β3 � 0.3001, α4 � β4 �

0.2363, and α5 � β5 � 0.1333. C1, C2, C3 are constants.
C1 � (0.01 · (2B − 1))2, C2 � (0.03 · (2B − 1))2, C3 � (C2/2),
and B denotes the bit depth of the image.

3.3.3. Gradient Loss. *e gradient loss [34] is used to
generate the edge information of images. In the first step, we
take the convolution operation with denoised image and
NDCT image, respectively, using a high-pass filter kernel K

instead of the Sobel operator. In the second step, the
gradient loss can be obtained by calculating the mean
square error between the denoised image Gpredict and NDCT
image Gnormal. *e gradient loss is described in equations
(10)–(13).

LDCT NLTV BM3D RED-CNN DD-Net Proposed

WGAN_VGG MAP-NN CPCE-2d HFSGAN DU-GAN NDCT

LDCT NLTV BM3D RED-CNN DD-Net Proposed

WGAN_VGG MAP-NN CPCE-2d HFSGAN DU-GAN NDCT

Figure 7: *e denoised result for low-dose CT image in group 3. *e display window is [100, 300] Hu for better visualization.
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K �

−1 −1 −1

0 0 0

1 1 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (10)

Gpredict � I⊗K, (11)

Gnormal � H⊗K, (12)

Lgrad � MSE Gpredict , Gnormal􏼐 􏼑, (13)

where K denotes the high-pass filter kernel and ⊗ denotes
the convolution operation.

LDCT NLTV BM3D RED-CNN DD-Net Proposed

WGAN_VGG MAP-NN CPCE-2d HFSGAN DU-GAN NDCT

Figure 10-1

LDCT NLTV BM3D RED-CNN DD-Net Proposed

WGAN_VGG MAP-NN CPCE-2d HFSGAN DU-GAN NDCT

Figure 8: *e denoised result for low-dose CT image in group 4. *e display window is [100, 300] Hu for better visualization.

Table 1:*e PSNR and SSIM results of chest datasets using different threshold values and training strategies.*e w/o mask denotes that the
model was trained without local filter mechanism.*e w/o pretrained 80 denotes that the model was trained with local filter mechanism for
160 epochs. Pretrained 80 denotes that the model was trained without local filtered mechanism for 80 epochs at first and was trained with
local filter mechanism for 160 epochs.

Epoch *reshold Method PSNR SSIM
80 — W/o mask 31.7071 0.7601
160 — W/o mask 31.9231 0.7636
160 0.01 W/o pretrained 80 30.9619 0.7423
160 0.04 W/o pretrained 80 31.3512 0.7511
160 0.07 W/o pretrained 80 31.1152 0.7464
160 0.10 W/o pretrained 80 30.5216 0.7367
160 0.01 Pretrained 80 31.8175 0.7614
160 0.04 Pretrained 80 31.8401 0.7613
160 0.07 Pretrained 80 31.6834 0.7589
160 0.10 Pretrained 80 31.5151 0.7583
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4. Experiments

*e experimental details and result analysis are introduced
in this section to validate the effectiveness of our proposed
scheme.

4.1. Dataset and Implement Details

4.1.1. Dataset. In our experiments, the dataset comes from
the “2016 NIH-AAPM Mayo Clinic Low Dose CT Grand
Challenge.” It comprises 100 chest scans with 10% of the
routine dose, 99 head scans with 25% of the routine dose,
and 100 abdomen scans with 25% of the routine dose. In
our study, 10% chest scan and 25% head scan are used as
the chest dataset and brain dataset. For chest dataset, we
randomly select 25 cases for training and 10 cases for
testing. For brain dataset, we randomly select 40 cases for
training and 10 cases for testing. *ere is no overlap

between training and testing. *e medical image dataset
can be obtained from the Cancer Imaging Archive (TCIA)
website at https://wiki.cancerimagingarchive.net/pages/
viewpage.action?pageId�52758026.

4.1.2. Details. We trained and tested the proposed model in
the chest dataset and brain dataset, respectively.*e network
was trained for 80 epochs without local filtered mechanism
to obtain the pretrained model. Based on the pretrained
model, the model was trained for 160 epochs with a local
filtered mechanism to obtain the final model. *e batch size
was 8. *e optimizer was Adam with β1 as 0.9 and β2 as
0.999. *e initial learning rate was set to 1 × 10− 4 which
reduced to 5 × 10− 5 at the 130-th epoch. *e convolution
and deconvolution layers were initialized with the Gaussian
function whose mean square was 0, and variance was 0.01.
We, respectively, set λ1, λ2, and λ3 to 1, 0.15, and 0.8 as the
hyperparameters of loss function. All models were trained

LDCT Pre-trained 80 Pre-trained 160 Maskw 0.01 Maskw 0.04 Maskw 0.07

Maskw 0.10 Maskp 0.01 Maskp 0.04 Maskp 0.07 Maskp 0.10 NDCT

LDCT Pre-trained 80 Pre-trained 160 Maskw 0.04Maskw 0.01 Maskw 0.07

Maskw 0.10 Maskp 0.04Maskp 0.01 Maskp 0.07 Maskp 0.10 NDCT

Figure 9:*e denoised result for low-dose CT image with different threshold values and training strategies.*e display window is [100, 300]
Hu for better visualization. Pretrained 80 denotes the image generated by the model trained without local filtered mechanism for 80 epochs.
Pretrained 160 denotes the image generated by the model trained without local filtered mechanism for 160 epochs. Both Maskw and Maskp

denote the image generated by the model trained with local filtered mechanism. Maskw denotes the image generated by the model trained
without the pretrained model. Maskp denotes the image generated by the model trained with the pretrained model.
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and tested on the NVIDIA RTX 2080 Ti GPU. Besides, the
training curves in Figures 11 and 12 demonstrate that our
method is easier to achieve higher performance than DD-
Net using MS-SSIM. Although the model which was trained
without local filtered mechanism can get higher PSNR and
SSIM results, it will drop some subtle structures to improve
the generalization ability, which is shown in Figure 9. *e
PSNR and SSIM results on the chest testing dataset, re-
spectively, stabilize at 31.80 and 0.76 when the epoch is 120.
*e PSNR and SSIM results on the brain dataset, respec-
tively, stabilize at 53.70 and 0.99 when the epoch is 140.

To verify the effectiveness of our scheme in subtle
structure restoration, we selected some competitive methods
for evaluation. Nonlocal total variation (NLTV) [40] is
known as a statistical iterative method based on the com-
pressed sensing (CS) technique. It adopts the global search
and nonuniform weight penalization to improve the
denoised image quality. Block-matching and 3d filtering
(BM3D) [15] is the postprocessing method. It has the ad-
vantages of nonlocal methods and transform methods and
removes the noise by searching and matching the similar
blocks. Residual encoder-decoder convolution neural net-
work (RED-CNN) [16] is a CNN-based method. It utilizes
the residual structure and encoder-decoder structure and
takes MSE as a loss function. Different from RED-CNN,
DD-Net [32] applies the dense block in the encoder-decoder
structure and uses the combination of MSE and SSIM as a
loss function. Generative adversarial network with Was-
serstein distance and perceptual loss (WGAN-VGG) [21] is a
GAN-based method. It takes the combination of perceptual

similarity calculated by the VGG-19 network and Wasser-
stein distance as a loss function. Adopting the GAN
structure as well, MAP-NN [25] applies the multiple con-
veying path-based convolution encoder-decoder (CPCE)
modules in the generator. It takes the combination of MSE,
Wasserstein distance, and edge incoherence calculated by
the Sobel operator as a loss function. 2D conveying path-
based convolution encoder-decoder network (CPCE-2d)
[28] uses single CPCEmodule for LDCTdenoising and takes
the combination of adversarial loss and perceptual loss as the
loss function. High-frequency sensitive generative adver-
sarial network (HFSGAN) [31] is a frequency-separation-
based method. It obtains high-frequency portion and low-
frequency portion by guided filter and applies two U-Net to
process the high-frequency portion and whole image sep-
arately. Generative adversarial networks with dual-domain
U-Net-based discriminators (DU-GAN) [36] apply two
U-Net-based discriminators to evaluate the difference in
image domain and gradient domain and adopt the CutMix
technique to describe the uncertainty of the denoised image.

In the NLTV method, we set the number of iterations,
time step (dt), gradient regularization (ϵ), and fidelity term
(λ) to 5, 0.2, 1× 10−6, and 1.2, respectively. In the BM3D
method, the parameter σ was 25, and the hard threshold
value was 2.7 × σ. β in Kaiser filter was 2. In the basic es-
timation, we set the match threshold value, maximum
number of group matched blocks, block size, block stride,
search step, and search window size to 2500, 16, 8, 3, 3, and
39, respectively. In the final estimation, we set the match
threshold value, maximum number of group matched

Difference Image thresh = 0.01 thresh = 0.03

thresh = 0.05 thresh = 0.07 thresh = 0.09

1
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0.8

0.7

0.6

0.5
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0.3

0.2

0.1

0

Figure 10:*e difference image and filtered normal-dose CT images using different threshold values.*e difference image was processed by
pseudocolorization technology for better visualization. *e display window is [0, 400] Hu for filtered normal-dose CT images.
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blocks, block size, block stride, search step, and search
window size to 400, 32, 8, 3, 3, and 39, respectively. In the
RED-CNN method, the LDCT images were cropped into
64 × 64 patches as the input, and the batch size was 160. *e
network was trained for 100 epochs using Adamwith default
parameters; namely, β1 was 0.9 and β2 was 0.999. *e initial
learning rate was set to 1 × 10− 5 and decreased by 0.5 every
30 epochs. In the DD-Net method, it took the 512 × 512
images as the input, and the batch size was 8. *e network

was trained for 160 epochs using Adam with default pa-
rameters. *e initial learning rate was set to 1 × 10− 4 and
slowly decreased to 1 × 10− 5. In the WGAN-VGG method,
the LDCT images were cropped into 64 × 64 patches as the
input, and the batch size was 128. *e network was trained
for 200 k iterations using Adam with β1 as 0.5 and β2 as 0.9,
respectively. *e learning rate was set to 1 × 10− 5, and λ1 in
the loss function was set to 0.1. λp for the gradient penalty
was 10. In the MAP-NN method, the LDCT images were
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Figure 11: *e curves of PSNR and SSIM on the chest testing dataset during the network training.
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Figure 12: *e curves of PSNR and SSIM on the brain testing dataset during the network training.
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cropped into 64 × 64 patches as the inputs, and the batch size
was 128. *e network was trained for 80 epochs using Adam
with default parameters. *e initial learning rate was set to
1 × 10− 4 and decreased by 1/

�
t

√
after the t-th epoch. λm and

λe in the loss function were set to 50 and 50, respectively. λp

for the gradient penalty was 10. *e number of conveying-
link-oriented network encoder-decoders (CLONE) was 5. In
the CPCE-2d method, the LDCT images were cropped into
64 × 64 patches as the inputs, and the batch size was 128.*e
network was trained for 40 epochs using Adam with default
parameters. *e initial learning rate was set to 1 × 10− 4 and
decreased by 1/t after the t-th epoch. λp for perceptual loss
was set to 0.1. In the HFSGANmethod, it took the 512 × 512
images as the input, and the batch size was 12. *e network
was trained for 200 epochs using Adam with β1 as 0.5 and β2
as 0.999, respectively. *e initial learning rate was set to
2 × 10− 4. λ1 and λ2 in the loss function were set to 100 and
50, respectively. In the DU-GAN method, the LDCT images
were cropped into 64 × 64 patches as the inputs, and the
batch size was 64. *e network was trained for 100000 it-
erations using Adam with default parameters. *e initial
learning rate was 1 × 10− 4. λadv, λimg, and λgrd in the loss
function were set to 0.1, 1, and 20, respectively. *e code of
NLTV was downloaded at http://math.sjtu.edu.cn/faculty/
xqzhang/NLIP_v1.zip. *e code of BM3D was implemented
using Python. Other deep learning-based methods were
implemented using PyTorch according to the official codes.

4.2. Evaluation Metrics. Appropriate evaluation metrics are
crucial for the evaluation of LDCT image denoising because
medical images contain more subtle structures and fewer
channels than natural images. We select the peak signal-to-
noise ratio (PSNR) and structural similarity (SSIM) as the
evaluation metrics. *ese evaluation metrics are widely used
in image processing tasks, such as image superresolution and
image inpainting.

4.2.1. Peak Signal-to-Noise Ratio (PSNR). PSNR is an ob-
jective metric to measure the error of image pixels, and it is
usually used in the images which are sensitive to error, as
equations (14)-(15). In general, the higher the PSNR is, the
lower distortion the image has.

MSE �
1

N
2 􏽘

N

i�1
􏽘

N

j�1
(x(i, j) − y(i, j))

2
, (14)

PSNR � 10 · log10
MAX

2

MSE
􏼠 􏼡, (15)

where x, y, N denote the denoised image, normal-dose
image, and the width or height of the image, respectively,
and MAX denotes the maximum of gray value.

4.2.2. Structural Similarity (SSIM). As the PSNR cannot
completely reflect the subjective visual difference, the SSIM
is used as a supplement to measure the visual appearance of
images, as equation (16). In general, the higher the SSIM is,

the more abundant and appealing visual appearance the
image has.

MS − SSIM �
2μxμy + c1􏼐 􏼑 2σxy + c2􏼐 􏼑

μ2x + μ2y + c1􏼐 􏼑 σx + σy + c2􏼐 􏼑
, (16)

where μ denotes the mean value, σ denotes the variance, σxy

denotes the covariance of the denoised image and normal-
dose image, and c1 and c2 are constants. c1 � (0.01 · MAX)2,
and c2 � (0.03 · MAX)2.

4.3. Experimental Results and Analysis

4.3.1. Qualitative Evaluations. *e LDCT denoised images
are shown in Figures 5–8. *e regions of interest (ROIs) are
marked by green rectangles, and the red pointing arrows
denote the difference between our method and comparative
methods.

From the enlarged view under the denoised results, it can
be seen that the BM3D and NLTV reduce the noise to some
extent but fail to remove the artifacts, which is shown in
Figure 6. *e denoised images generated by RED-CNN and
MAP-NN are slightly oversmoothed due to adoptingMSE as
a loss function. As the perceptual loss and adversarial loss
cannot reflect the pixel level difference accurately, the
WGAN-VGG and CPCE-2d preserve the texture informa-
tion in LDCT images but cannot remove the streak artifacts
completely. Using the MS-SSIM as a loss function, the DD-
Net can remove the noise and streak artifacts effectively but
cannot restore some subtle structures accurately, which can
be shown in Figure 7. As the frequency-separation-based
method, the HFSGAN enhanced the structural similarity
between the denoised image and NDCT image in high-
frequency portion and can restore the subtle structures
clearly. However, it blurred the image information in the
low-frequency portion. As is shown in Figure 6, the DU-
GAN can generate the image with realistic texture infor-
mation but cannot restore the subtle structure when the
LDCT image is contaminated severely by noise and streak
artifacts. Overall, as is shown in Figures 6 and 7, our method
can restore subtle structures effectively and keep the color
and structure consistent with the NDCT image.

4.3.2. Quantitative Evaluations. To validate the perfor-
mance of our neural network quantitatively, we adopted
peak signal-to-noise ratio (PSNR) and structural similarity
(SSIM) as objective metrics. Table 2 shows the PSNR and
SSIM results of the chest dataset and brain dataset using
different methods. *e NLTV and BM3D are traditional
denoising methods, the RED-CNN, DD-Net, and our model
are CNN-based denoising methods, and the WGAN-VGG,
MAP-NN, CPCE-2D, HFSGAN, and DU-GAN are GAN-
based denoising methods.

First, as the NLTV and BM3D remove the noise and
artifacts through the information of single LDCT image
solely, they perform poorly in image information restoration
and get the lower PSNR and SSIM results than deep
learning-based methods. Second, as the perceptual loss and
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adversarial loss reflect the style difference, the WGAN-VGG
and CPCE-2d cannot remove the streak artifacts completely.
*erefore, they obtain lower PSNR and SSIM results than
methods using MSE as one of the loss functions, including
RED-CNN, DD-Net, MAP-NN, HFSGAN, DU-GAN, and
our method in the chest dataset. Meanwhile, as the RED-
CNN was trained with MSE loss solely, it produces over-
smoothed denoised results in Figure 6. Due to the MS-SSIM
loss, the denoised results generated by DD-Net keep the high
structural similarity with NDCT images. *erefore, the DD-
Net obtains the second-best PSNR and SSIM results in the
chest dataset and the third-best PSNR and SSIM results in
the brain dataset. As the HFSGAN processes the high-fre-
quency portion especially, it can accurately restore the subtle
structures. However, it blurs the image information in the
low-frequency portion and obtains lower objective metrics
results than DD-Net and our model in the chest dataset. In
addition, due to the information loss during frequency
separation, the HFSGAN performs poorly when the dif-
ference between LDCT images and NDCT images is rela-
tively small. *erefore, the HFSGAN obtains the lowest
PSNR and SSIM results among deep learning-based
methods in the brain dataset. Although the DU-GAN can
preserve the texture information in LDCT images, it per-
forms poorly in subtle structure restoration, which can be
shown in Figure 6, and cannot keep color consistency with
NDCTimages. Besides, as there is a relatively large difference
in texture information between LDCT images and NDCT
images, the DU-GAN obtains lower PSNR and SSIM results
than most deep learning-based methods in the chest dataset.
However, when the difference between LDCT images and
NDCT images is small, the DU-GAN can accurately sense
the difference through a confidence map and get the best
PSNR result in the brain dataset. Our model achieves high
performance in subtle structure restoration and obtains the
best objective metrics results in the chest dataset. However,
our model obtains the second-best PSNR result and the best
SSIM result in the brain dataset because the confidence map
and taking the 64 × 64 patches as the input in the DU-GAN
can sense the difference with low confidence score more

accurately than our method. In contrast, our model can
achieve higher performance when the LDCT images contain
a large amount of noise and streak artifacts.

Because the perceptual loss using VGG-19 [41] is an-
other effective loss function to enhance the visual appear-
ance, it is compared with MS-SSIM. As is shown in
Figures 11 and 12, the model using MS-SSIM as a loss
function obtains higher PSNR and SSIM results than per-
ceptual loss using VGG-19. *e reason is that VGG-19 is
trained on natural images and cannot reflect the visual
features of medical images perfectly. Moreover, as shown in
Figure 13, whether it is DD-Net or our network, the image
generated by the model training with VGG-19 contains
more noise than the model using MS-SSIM.

4.3.3. Uncertainty Visualization. *e uncertainty visuali-
zation of different methods is shown in Figure 14. As both
BM3D and NLTV reduce the noise in the LDCT image to
some extent, they can obtain higher global scores of D

img
dec

than the LDCT image. However, they cannot remove the
streak artifacts and restore the image information efficiently,
which causes low per-pixel confidence. *e RED-CNN can
efficiently remove the noise and streak artifacts but over-
smoothens the LDCT image simultaneously. *erefore, its
global score and per-pixel confidence are lower than other
deep learning-based methods. In addition, although the
WGAN-VGG and CPCE-2d can avoid the oversmooth
problem, they cannot remove streak artifacts completely.
*erefore, their global scores are higher than RED-CNN but
lower than most deep learning-based methods. *e MAP-
NNwill pay more attention to subtle structure restoration by
adopting the gradient loss as the loss function but blurs the
low-frequency portion according to per-pixel confidence.
*erefore, it obtains a higher global score and per-pixel
confidence than WGAN-VGG. *e HFSGAN can generate
realistic subtle structures but oversmoothens the low-fre-
quency portion in the LDCT image as well according to the
confidence map. *e DD-Net can remove the noise and
streak artifacts efficiently and keep high structural similarity

Table 2:*e PSNR and SSIM results of chest dataset and brain dataset using different methods.*e chest-10% denotes that the dose of low-
dose chest images is 10% of the routine dose. *e brain-25% denotes that the dose of low-dose brain images is 25% of the routine dose.

Method
Chest-10% Brain-25%

PSNR SSIM PSNR SSIM
LDCT 23.1989 0.4487 51.4490 0.9938
NLTV [40] 25.6894 0.6236 35.1604 0.8905
BM3D [15] 26.9452 0.6748 40.9885 0.7938
RED-CNN [16] 30.9656 0.7518 53.1678 0.9961
DD-Net +MS-SSIM [32] 31.6241 0.7595 53.6189 0.9967
DD-Net +VGG 30.8235 0.7240 53.4942 0.9966
Proposed 31.8401 0.7613 53.8237 0.9970
WGAN-VGG [21] 29.2275 0.6932 48.0044 0.9897
MAP-NN [25] 30.6552 0.7567 52.0912 0.9952
CPCE-2d [28] 27.5885 0.6889 50.7368 0.9935
HFSGAN [31] 31.0291 0.7468 38.5513 0.9162
DU-GAN [36] 29.9207 0.7012 54.0428 0.9968
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with the NDCT image according to the confidence map.
However, compared with our method, it cannot restore
some subtle structures accurately and obtains a lower global
score than our method. As the DU-GAN is trained with the
discriminator and can adjust the image quality pertinently, it
can generate the photo-realistic denoised results according
to the confidence map and obtains the best global score. *e
proposed method obtains higher per-pixel confidence than
DU-GAN in the subtle structures and obtains the second-
best global score, indicating that our method achieves better
performance in subtle structure restoration.

4.4. Ablation Study. Since we introduce some novel struc-
tures and local filtered mechanism based on DD-Net, it is
significant to take a comparative analysis. *e detailed re-
sults are presented in Table 3, which shows the objective
metrics of our modifications.

4.4.1. Use Improved Residual Dense Block. As the global
structure and detailed information are learned in one

network, we introduce the improved residual dense block to
improve the representation ability of the neural network. As
is shown in Table 3, our model obtains higher PSNR and
SSIM results than DD-Net when the network uses the
improved residual dense block and does not introduce other
improvements. Furthermore, when the DD-Net was trained
with local filtered mechanism, using the improved residual
dense block can solve the performance reduction remark-
ably, indicating that the representation ability of DD-Net is
insufficient for the local filteredmechanism, and introducing
the above module can enhance the performance in subtle
structure restoration.

4.4.2. Use Local Filtered Mechanism. As the high-frequency
portion cannot reflect the incorrect subtle structures accu-
rately and frequency-separation-based methods cannot
utilize the correlation between global structures and detailed
information, we introduce the local filtered mechanism.
Filtering the areas with high quality, this mechanism drives
the network to specially optimize the subtle structures in low
quality and enhances the ability in subtle structure

(a) (b) (c)

(d) (e) (f )

Figure 13: *e denoised results generated by different loss functions and neural networks. (a) DD-Net +VGG. (b) DD-Net +MS-SSIM. (c)
Proposed +VGG. (d) Proposed +MS-SSIM. (e) Proposed +MS-SSIM+ local filtered mechanism+ gradient loss. (f ) NDCT. *e display
window is [100, 300] for better visualization.

Computational Intelligence and Neuroscience 15



restoration. However, it causes performance reduction but
can make the network generate more precise and realistic
subtle structures. *e reason is that the areas preserved by
this mechanism are more difficult to optimize, and this
mechanism hinders the network from dropping some subtle
structures for better generalization ability.

4.4.3. Use Gradient Loss. As the combination of MSE and
SSIM cannot keep the edge information consistency

between the denoised result and NDCT image, the net-
work will oversmoothen some subtle structures, which is
shown in Figure 7. To remedy this, we introduce the
gradient loss to sense the edge information in the LDCT
image. As is shown in Table 3, introducing the gradient
loss can solve the performance reduction caused by the
local filtered mechanism efficiently as well. In addition, as
is shown in Figure 13, the color and edge information of
subtle structures are enhanced through the local filtered
mechanism and gradient loss, indicating that introducing

0.4995 0.5661 0.5691 0.5835 0.5917 0.5928

LDCT NLTV BM3D RED-CNN DD-Net Proposed

0.5874 0.5895 0.5837 0.5890 0.5942 0.5945

WGAN_VGG MAP-NN CPCE-2d HFSGAN DU-GAN NDCT

Input

Input

Dimg
dec

dec

Dimg

Dimg

enc

encDimg

Figure 14: Uncertainty visualization of applying the trained discriminator to the outputs of different methods.*e display window is [100, 300]
Hu for better visualization. Note that the blue color of D

img
dec indicates a lower confidence score while the red color indicates a high confidence

score.

Table 3: *e ablation study in the chest dataset of our experiments.

Improved residual dense block [33] Local filtered mechanism Gradient loss [34] PSNR SSIM
× × × 31.6241 0.7595
✓ × × 31.7742 0.7618
× ✓ × 31.6130 0.7569
× × ✓ 31.8317 0.7593
× ✓ ✓ 31.7400 0.7571
✓ ✓ × 31.7363 0.7622
✓ × ✓ 31.9231 0.7636
✓ ✓ ✓ 31.8401 0.7613
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the gradient loss is beneficial for subtle structure
restoration.

5. Conclusion

In this work, we propose a novel scheme for LDCTdenoising
based on improved DD-Net and local filtered mechanism.
As the incorrect subtle structures are usually the areas that
are contaminated severely by noise and streak artifacts in-
stead of the edge information in high-frequency domain,
previous studies cannot restore the subtle structures effi-
ciently.*erefore, we present the local filtered mechanism to
filter the areas with high quality and make the network
optimize the subtle structures especially. Based on the
original loss and correction loss of the improved DD-Net,
the proposed method can accomplish the balance between
network generalization and subtle structure restoration.
However, as learning global structures and detailed infor-
mation in one network requires more powerful feature
representation ability and the edge information is significant
for subtle structure restoration, we introduce the improved
residual dense block and gradient loss to deepen the network
structures and keep the edge information consistency be-
tween the denoised result and NDCT image, respectively.
*e ablation study validates the effectiveness of the above
components.

*e quantitative results show that our scheme can obtain
higher scores in objective metrics than conventional
schemes and most neural networks. Meanwhile, the visual
comparison and uncertainty visualization also show that our
scheme can provide a brilliant approach for subtle structure
restoration in LDCT image denoising. In addition, the
proposed network achieves competitive performance in both
chest dataset and brain dataset, even if their radiation doses
are quite different, which demonstrates the generalization
ability of our network in different scenarios. However,
training the network needs to, respectively, calculate the
original loss and correction loss of the improved DD-Net for
each batch, which introduces more computational cost.
Moreover, the effectiveness of our scheme requests further
validation in other image processing tasks, such as image
superresolution and restoration, which is a significant re-
search direction in the future.
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