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A B S T R A C T   

Deep neural networks (DNNs) have been adopted widely as classifiers for functional magnetic 
resonance imaging (fMRI) data, advancing beyond traditional machine learning models. Conse
quently, transfer learning of the pre-trained DNN becomes crucial to enhance DNN classification 
performance, specifically by alleviating an overfitting issue that occurs when a substantial number 
of DNN parameters are fitted to a relatively small number of fMRI samples. In this study, we first 
systematically compared the two most popularly used, unsupervised pretraining models for resting- 
state fMRI (rfMRI) volume data to pre-train the DNNs, namely autoencoder (AE) and restricted 
Boltzmann machine (RBM). The group in-brain mask used when training AE and RBM displayed a 
sizable overlap ratio with Yeo’s seven functional brain networks (FNs). The parcellated FNs ob
tained from the RBM were fine-grained compared to those from the AE. The pre-trained AE and RBM 
served as the weight parameters of the first of the two hidden DNN layers, and the DNN fulfilled the 
task classifier role for fMRI (tfMRI) data in the Human Connectome Project (HCP). We tested two 
transfer learning schemes: (1) fixing and (2) fine-tuning the DNN’s pre-trained AE or RBM weights. 
The DNN with transfer learning was compared to a baseline DNN, trained using random initial 
weights. Overall, DNN classification performance from the transfer learning proved superior when 
the pre-trained RBM weights were fixed and when the pre-trained AE weights were fine-tuned 
(average error rates: 14.8% for fixed RBM, 15.1% fine-tuned AE, and 15.5% for the baseline 
model) compared to the alternative scenarios of DNN transfer learning schemes. Moreover, the 
optimal transfer learning scheme between the fixed RBM and fine-tuned AE varied according to 
seven task conditions in the HCP. Nonetheless, the computational load reduced substantially for the 
fixed-weight-based transfer learning compared to the fine-tuning-based transfer learning (e.g., the 
number of weight parameters for the fixed-weight-based DNN model reduced to 1.9% compared 
with a baseline/fine-tuned DNN model). Our findings suggest that weight initialization at the DNN’s 
first layer using RBM-based pre-trained weights provides the most promising approach when the 
whole-brain fMRI volume supports associated task classification. We believe that our proposed 
scheme could be applied to a variety of task conditions to improve their classification performance 
and to utilize computational resources efficiently using our AE/RBM-based pre-trained weights 
compared to random initial weights for DNN training.  
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1. Introduction 

Parcellation of brain regions, one of the oldest research interests in neuroscience [1], experienced significant developments with 
the advancement of neuroimaging techniques [2–4]. Notably, functional magnetic resonance imaging (fMRI) has been used recently to 
perform functional brain network (FN) parcellations [5–7]. For example, resting-state fMRI (rfMRI) has delivered coarse- and 
fine-grained FN parcellation [6,7]. Similarly, rfMRI data has collaborated with task fMRI (tfMRI) and structural MRI data to improve 
parcellation quality [8]. These brain parcellation atlases are essential to several fields of neuroscientific research, including individual 
identification using rfMRI functional connectivity (FC) within the brain [9] or obtaining individual-level, functional parcellation using 
group-level prior maps [10]. 

Neuroimaging data analysis has shifted towards neural network–based computational models to extract meaningful brain function 
features and characteristics in a data-driven manner [11,12]. Computational models have been used for brain parcellation and seg
mentation [13–16]. For example, Hjelm and colleagues (2014) utilized a restricted Boltzmann machine (RBM) with simulated and real 
fMRI data to identify brain networks and their activation patterns more accurately than the alternative independent component 
analysis (ICA) method. 

Unsupervised factorization models such as RBM and autoencoder (AE) establish the building blocks of deep neural networks 
(DNNs), trained to learn an encoded representation of the input data for reconstruction, often with various regularization methods. For 
this reason, the learned features obtained from the unsupervised models were valuable for brain parcellation and also assisted as pre- 
training models in a transfer learning framework [17,18]. The models’ trained weights are transferred to a DNN, with the goal of 
classifying the input whole-brain fMRI volume into different categories, and the model undergoes further training and evaluation. 
Several studies demonstrated that this type of pre-training offers utility by increasing the classification accuracy of DNN models 
compared to a DNN model initially trained with random weights [17,19–21]. Initializing the weights in this manner yields lower 
classification error rates and faster convergence than with random value weights. 

However, we perceive a lack of systematic investigation of AE and RBM efficacy in the functional parcellation of rfMRI data. 
Similarly, we identify an absence in researching the utility of a functionally parcellated brain region atlas for enhancing DNN clas
sification performance in the context of a transfer learning framework. We evaluated the models for various hyperparameters based on 
the overlap and similarity of weight feature maps with known networks, such as Yeo’s seven FNs [22]. We subsequently applied the 
trained AE/RBM weights as DNN pre-trained weights to classify tfMRI data across multiple task conditions in the Human Connectome 
Project (HCP) dataset. We hypothesized that extracted rfMRI data features would provide valuable information for tfMRI data clas
sification in the context of transfer learning for whole-brain fMRI activation pattern classification. 

2. Materials and methods 

2.1. Participants and data acquisition 

In HCP dataset, each subject performed seven tasks and two resting-state conditions while fMRI data was acquired. Moreover, fMRI 
data for each condition was measured twice with both left-to-right (LR) and right-to-left (RL) phase encoding directions. The rfMRI 
data employed to train the AE/RBM weights for this study was obtained from the HCP S900 release [8], which included 899 healthy 
subjects (Fig. 1a). The subjects who did not perform any of the four rfMRI runs (i.e., REST1 and REST2 with LR and RL phase encoding) 
were excluded from the analysis, leaving 839 subjects for training. In the HCP S1200 release, the test-retest data from 45 subjects who 
were also included in the S900 release were acquired. In the DNN classifier’s transfer learning phase, the tfMRI dataset in the S900 
release was used as a training set by excluding those 45 test-retest subjects (Fig. 1a). Consequently, the retest tfMRI data from the 45 

Fig. 1. (a) Flowcharts to describe (i) the AE/RBM training using rfMRI data (left) and (ii) the DNN training for task condition classification via 
transfer learning (right). (b) Autoencoder (AE) and restricted Boltzmann machine (RBM) training with weight sparsity control scheme and noised 
input patterns. (c) DNN transfer learning utilizing the weights of the pre-trained AE (i.e., Wencoder) or RBM models as fixed weights or by fine-tuning 
weights to predict one of the c classes of task conditions at the output layer using the vectorized beta-valued map from GLM. 
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subjects became test samples for the trained DNN classifier. Similar to the rfMRI data training AE/RBM, subjects who performed the 
task conditions for both the LR and RL phase encoding tfMRI runs were included. Subsequently, the total number of subjects that 
trained and tested the DNN in the transfer learning phase for each task condition was as follows: working memory = 834 for training 
and 42 for testing; motor = 831 and 42; emotion = 809 and 41; relational = 806 and 41; social = 809 and 42; language = 810 and 41; 
gambling = 833 and 42. The fMRI acquisition parameters included TR = 720 ms, TE = 33.1 ms, in-plane field of view = 208 × 180 mm, 
72 slices, flip angle = 52◦, voxel size = 2 × 2 × 2 mm3, and number of volumes per run = 1200. 

2.2. fMRI data preprocessing 

The dataset utilized was the minimally preprocessed and FIX-denoised volumetric rfMRI data provided as part of the HCP S900 
release. The data was preprocessed using spatial artifact/distortion removal, surface generation, cross-modal registration, and 
alignment to 2 mm MNI space. The FIX (FMRIB’s ICA-based X-noisifier) approach [23,24] was applied as well. We employed further 
preprocessing steps using the AFNI software including resampling the original EPI data to a 3 mm isotropic voxel size, spatial 
smoothing using an 8 mm full width at half-maximum (FWHM) Gaussian kernel, and subtraction of each EPI volume’s mean value. 
Finally, an in-brain mask (i.e., group-level in-brain mask) comprised the intersection of all individual in-brain masks provided with the 
dataset for all available subjects (resulting mask size = 52,470 voxels). This mask transformed the three-dimensional (3D) volumetric 
data to one-dimensional (1D) vectors, subsequently normalized to zero mean and unit variance to serve as input for the AE/RBM 
(Fig. 1b). To ensure that our in-brain mask covers a majority of the seven FNs, we calculated the associated overlap ratio. Specifically, 
spatial overlap between each of Yeo’s FNs and those in in-brain mask areas was calculated using Eq. (11). For the transfer learning 
phase, a general linear model implemented in AFNI (i.e., 3dDeconvolve) was applied to obtain beta-valued maps for each task con
dition using the task-related regressors defined from onset timing and duration of the task period. Consequently, the resulting 
beta-valued maps were inputs for the DNN classifier (Fig. 1c). 

2.3. Autoencoder and restricted Boltzmann machine 

Fig. 2 illustrates AE and RBM training; those models were trained using backpropagation via stochastic gradient descent [25] and 
contrastive divergence [26] algorithms, respectively. We used a denoising AE-based model [25] with an encoder and decoder con
sisting of fully connected layers. The AE models in this study possessed a single hidden layer with 5000 nodes. The weights of the 
encoder and decoder layers were tied in that the decoder’s weight matrix was the transpose of the encoder’s throughout the model’s 
training. For input noising, masking noise was added to the input data [27], such that a percentage of every input vector’s elements 
was randomly forced to zero in every epoch. Four noise levels (0%, 30%, 50%, and 70%) were used, and the loss between the AE output 
of noisy input and the original “clean” data was calculated (Fig. 1b). The goal of AE training involved minimizing a loss function based 
on the average reconstruction error [25] as depicted in the equation below: 

θ∗, θ′∗ = argmin
θ∗ ,θ′∗

1
n
∑n

i=1
L
(
x(i), z(i); θ∗, θ′∗), (1)  

where θ∗ = {W, b} and θ′∗ = {W′, c} are the parameters (i.e., weights and biases) at the encoder and decoder (reconstruction) layers, 
respectively, L is the loss function parameterized by θ∗ and θ′∗, and x(i) and z(i) are the respective input and reconstructed data. The 
learning rate for Eq. (1) settled at 10− 2 and L2 regularization supplemented the overall loss term with a parameter of 10− 3. A stochastic 

Fig. 2. Flowcharts of the training procedures for AE (left) and RBM (right). Preprocessed fMRI data represents the input. In AE, the weights and 
biases of the encoder and decoder layers are trained to minimize the mean-squared error (MSE) between the input and output (i.e., reconstructed 
input) patterns. In RBM, the weights and biases are trained to minimize the negative log-likelihood of the visible nodes based on a stochastic 
gradient descent scheme with a contrastive divergence and Gibbs sampling chain approximation. 
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gradient descent optimizer served with a momentum parameter of 0.3. The code incorporated python’s PyTorch library (www. 
pytorch.com). 

RBM is an unsupervised model to obtain a building block of DNN for supervised downstream tasks such as classification, in which 
the visible nodes are projected to hidden units (i.e., latent vector) with a reduced dimensionality [28–30]. The RBM based models 
effectively handle brain images because of their capacity to simplify high dimensional, functional imaging data while maintaining 
functional information of the brain [14,31,32]. The RBM used in this study consisted of 52,470 visible and 5000 hidden nodes/units, 
matching the AE’s architecture (i.e., a single fully connected layer with the same numbers of input and hidden nodes). RBM training 
comprises two steps. First, we define visible node likelihood using the joint probability of the visible and hidden nodes, as an expo
nential energy function: 

p(v)=
∑

h
p(v, h)=

∑

h

1
Z

e− E(v,h), (2)  

where the partition function Z =
∑

v,he− E(v,h,W), W is the weight matrix of the network, and E is the energy function. For real-valued data 
with Gaussian noise such as fMRI data, the energy function in Eq. (2) is as follows: 

E(v, h)=
∑

i

(vi − bi)
2

2σ2
i

−
∑

j
cjhj −

∑

i,j

hjwjivi

σi
, (3)  

where vi and hj denote the i th visible and j th hidden units; σi is the standard deviation of the Gaussian noise for the visible node vi; b and 
c are biases of visible and hidden units; and wij are the weight parameters. Using Eqs. (2) and (3), the weight parameters can be updated 
by minimizing the negative log-likelihood using gradient descent scheme with contrastive divergence and Gibbs sampling [26,33], as 
in the equation below: 

Δwji ∝
1
N

∑N

n=1

∂log p(vn)

∂wji
= 〈vihj〉data − 〈vihj〉model, (4)  

where N is the number of training samples and 〈⋅〉 is an expectation operator under the distribution specified by the subscript. 
Additionally, update rules for biases of visible and hidden units are as follows: 

Δbi ∝
1
σ2

i
v0

i −
1
σ2

i
v1

i , (5)  

Δcj ∝ h0
j − h1

j . (6) 

The standard deviation of the Gaussian noise for the visible unit, σi was fixed at 1. The single-layer RBM was trained for 15 epochs 
using Eqs. (4)–(6), with batch size 512; more detailed training procedure appear in our previous work [17]. The input noise level 
candidates for RBM mirrored those of AE (i.e., 0%, 30%, 50%, and 70%). The RBM code was implemented in MATLAB. The adopted AE 
and RBM codes are available in our GitHub repository (https://github.com/bsplku/dnnwsp). 

2.4. Weight sparsity control 

We utilized an explicit sparsity term that sets a target sparsity level for weights, adaptively changing the regularization parameter 
to reach and maintain the target level [17,19,34]. By combining the fidelity loss, Loss(x̂,x), between the reconstructed input x̂ and 
original input x with the adaptive L1 regularization term, the overall loss term emerges as follows: 

L=Loss(x̂, x) + βj

∑m

j=1

⃦
⃦Wj

⃦
⃦

1 (7)  

where m is the number of hidden layer nodes, ‖ • ‖1 is the L1 norm, Wj is the j th node’s weight, and βj is that node’s regularization 
parameter. βj values in Eq. (7) are initially set to zero and then updated at each mini-batch, based on the difference between the current 
and target levels of weight sparsity as described below: 

Δβj = μβ ∗ sign
(
ρw − ρ̂j

)
, (8)  

where μβ is βj’s learning rate (set to 10− 5 in this study), sign(•) is the sign function, and ρw and ρ̂j are the target and current weight 
sparsity levels, respectively. Using Eq. (8), the regularization parameter decreases as the current sparsity level approaches the target 
and falls to zero when it reaches or exceeds the target. Hoyer’s sparsity measure adequately reflects the sparsity of weights [35]: 

ρ̂j =

̅̅̅̅
N

√
−
⃦
⃦Wj

⃦
⃦

1

/⃦
⃦Wj

⃦
⃦

2̅̅̅̅
N

√
− 1

, (9)  

where N is the number of weight parameters and ‖ • ‖2 is the L2 norm of the weight features respectively. Hoyer’s sparsity measure 
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defined in Eq. (9) ranges from 0 to 1, higher values corresponding to greater sparsity. In this study, we establish the target sparsity 
levels at 0.8 and 0.9 for reproducibility (Kim et al., 2020), with an additional level of 0.5 for comparison. 

2.5. Weight feature extraction and visualization 

The model weight matrices were compared for the sparsity and noise level parameters. Each encoder’s trained weight matrix was 
first z-scored across all elements and threshold-set at |Z| > 1.96. Significant in-brain voxels were then assigned a node number if the 
corresponding weight value was the highest among the nodes, as depicted in the equation below: 

w(node)
v = argmax

h=1…H
(W̃v×h), (10)  

where W̃ is the thresholded weight matrix, v = 1,…,V is the voxel index (the total number of in-brain voxels, i.e., 52,470), and h =

1, ....,H is the hidden-node index (the number of nodes, i.e., 5000). Thereafter, the resulting 52,470 × 1 vector w(node) was obtained 
from Eq. (10), in which entries were zero if the corresponding voxel had neither significant value weights nor a node index (1 to H), 
was obtained as a node assignment map and projected back to 3D space using the group in-brain mask for visualization. 

Additionally, spatial overlap (O) between the threshold weight features and each of the seven FNs parcellations [22] was calculated 
[36]: 

O
(
W̃j, F̂ i

)
=

n
(
W̃j ∩ F̂ i

)

n(F̂ i)
, (11)  

where W̃j is the threshold-set weight map of the jth hidden node, Fi is the ith FN, and n(•) is the function that counts the number of 
voxels. This comparison was performed for each of the seven FNs and all networks combined (denoted as F̂all). 

Meanwhile, the significant voxels might not overlap fully with each FN. Thus, we calculated another measure, redundancy (R), to 
quantify voxel-FN independence. Redundancy was calculated as a voxel ratio, the sum of those in a threshold-set node assignment map 
of weight features not overlapping with the FNs to the total number of voxels in the weight features map: 

R
(
W̃j, F̂ i

)
=

n
(
W̃j −

⃒
⃒W̃j ∩ F̂ i

⃒
⃒
)

n
(
W̃j

) . (12)  

2.6. rfMRI-based transfer learning scheme for task condition classification 

We employed feedforward neural networks (FNN) with two hidden layers as the NN architecture for transfer learning since FNNs 
with two hidden layers performed as universal function approximators [37] and have been more advantageous than the shallow NN 
with one hidden layer for function approximation [38]. We denoted the FNN with more than one hidden layer as DNN following the 
definition in previous studies [39–42]. There were 5000 and 1000 nodes at the first and second hidden layers, respectively, in our DNN 
(Fig. 1b). The AE/RBM encoder weights were then transferred to the first layer of a DNN classifier. Using the trained weights from both 
the AE and RBM models with ρw = 0.8 and 0% input noise level, we trained the DNN classifier in two fashions: (1) fixing the first-layer 
weights during training (fixed condition) and (2) updating during training (fine-tuned condition). The retest subject tfMRI data was 
used as the test set to evaluate DNN classification performance. The performance was then compared to a DNN model (with the same 
architecture) trained with random initial weights and matching the target sparsity level (i.e., 0.8 at the first layer). The target sparsity 
level for the second layer was set at three different values (0.3, 0.5, and 0.8) to compare model classification performance depending 
on the second layer’s target sparsity level. 

We divided training data into five-fold, in which four folds were used for training the DNN model and one remaining fold for 
validation of the trained DNN. In the training phase, we employed early stopping, confirming no increase in validation error for 200 
consecutive epochs calculated using the validation fold to circumvent an overfitting issue. After training, DNN weight features were 
extracted to visualize and interpret classification performance. We also applied logistic regression in each task as an alternative 
machine learning model to the proposed transfer learning DNN. We tested all seven HCP task conditions: the working memory task, 
which has eight classes: face, places, tools, and body with 0-back/2-back conditions (i.e., participants need to respond whether the 
current stimulus is the same as the pre-defined target stimulus [0-back] or the same as the two stimuli earlier [2-back]) respectively 
[2]; the motor task conditions, which has five classes: left foot, right foot, left hand, right hand, and tongue movements (i.e., par
ticipants were asked to tap their fingers, squeeze their toes, or move their tongue) [43]; and other five binary classes (emotion task: 
face vs. shape; relational task: relational vs. match; social task: social vs. random; language task: story vs. math; gambling task; reward 
vs. punishment) [44–48]. The reproducibility of task classification performance for the DNN with each transfer learning scheme was 
evaluated using the test data from S900 and retest data from S1200 datasets of the 45 test-retest subjects. We employed a paired t-test 
for statistical comparison of the performance between the models, since each model’s prediction performance was obtained from the 
same group of subjects and we assumed adherence to a normal distribution. 
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3. Results 

3.1. Overlap ratio of group-level in-brain mask and Yeo’s seven FNs 

The group-level in-brain mask (M) and the group of seven FNs (Fall) had an overlap ratio of 0.7, with non-overlapping areas mainly 
in the white matter (WM) and cerebrospinal fluid (CSF) regions (Fig. 3a). The seven FNs belonging to in-brain voxels were defined (F̂all; 
Fig. 3b) and the overlapping voxels between parcellated brain regions and each FN as well as their ratios were calculated for each of the 
seven FNs in ̂Fall (Fig. 3c). The number of voxels varied substantially across the FNs; the maximum number was observed in the default- 
mode (DM) network, followed by the visual (VIS) network, whereas the overlap ratios remained relatively stable across the FNs. 

3.2. Parcellation of brain regions using an explicit weight sparsity-controlled AE/RBM 

Tables 1 and 2 summarize the number of nodes assigned within each of the seven FNs across all target weight sparsity scenarios and 
input noise levels in AE and RBM, respectively. 

Fig. 4 illustrates the node assignment map for AE with ρW = 0.8 and 50% input noise level. The overlap with F̂all was 0.9 or higher 
except for the VA and LIM FNs (0.78 and 0.14 respectively). Within each FN, only a small fraction of nodes out of the possible 5000 

Fig. 3. Group level in-brain masks M for functional networks (FNs) defined based on Yeo’s seven FNs (i.e., FALL =

FVIS ∪ FSM ∪ FDA ∪ FVA ∪ FLIM ∪ FFP ∪ FDM; [22]) and the seven FN masks in our defined in-brain area (i.e., F̂ALL = M ∩ FALL): (a) Exemplary slice of 
these masks, (b) entire slices of reference Yeo’s seven FNs (i.e., F̂ALL), and (c) the number of overlapping voxels with Yeo’s seven FNs (left) and the 
corresponding ratios of the number of voxels to all voxels in each of the seven FNs (right). 
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were assigned, particularly for VIS and somatomotor (SM). Fig. 5 demonstrates RBM’s node assignment map with ρW = 0.8 and 50% 
input noise level. Notably, a significant additional number of hidden nodes in RBM as compared to AE were assigned to each of the 
seven FNs. Fig. 6 reveals the 5000 parcellated ROIs using the AE and RBM models with ρW = 0.8 and 0% input noise, clearly illustrating 
the greater extent of parcellated ROIs for each hidden node in AE and fine-grained parcellation for each hidden node in RBM. 

Table 3 summarizes the overlap ratios obtained from Eq. (11), between node-assigned weight feature maps of AE and F̂all across all 
weight sparsity (0.5, 0.8, and 0.9) and input noise levels (0%, 30%, 50%, and 70%). Overall, a sparsity target of 0.5 displayed the 
highest overlap with the FN map, decreasing as sparsity target increased. The input noise level also influenced the overlap ratios, with 
an inverse ratio to a given sparsity level; this was more pronounced in higher sparsity levels. Overlap ratios of 100% with the seven FNs 
appeared in the RBM-based weight feature maps, regardless of target sparsity and noise level, possibly because of the fine-grained 
weight features covering the whole-brain. Table 4 presents the AE redundancy obtained from Eq. (12), with elevated sparsity/noise 
levels resulting in less redundancy. Using ρw = 0.5 and no input noise, redundancy was 0.48, implying that nearly half of the voxels in 
the node-assigned weight maps were not included in the seven functional FNs, belonging instead to non-gray matter (i.e., WM and 
CSF). The redundancy of RBM equaled 0.48 regardless of target sparsity or input noise level, corresponding to the ratio of WM and CSF 
areas in the group-level in-brain mask. 

3.3. Task fMRI classification using pre-trained AE and RBM weights 

Logistic regression performances were consistently inferior compared to the proposed DNN methods. Specifically, logistic 
regression reached 65.2 ± 0.1 in the working memory task (vs. 75.0 ± 0.2 for DNN with fixed RBM weights), 93.6 ± 0.2 in the emotion 
task (95.5 ± 0.1 for DNN with fine-tuned AE weights), 92.2 ± 0.3 in the motor task (94.1 ± 0.2 for DNN with fine-tuned AE weights), 
75.7 ± 0.1 in the relational task (78.1 ± 0.4 for DNN with fixed RBM weights), 87.3 ± 0.1 in the social task (91.3 ± 0.1 for DNN with 
fixed RBM weights), 94.2 ± 0.1 in the language task (96.1 ± 0.1 for DNN with fixed RBM weights), and 62.7 ± 0.2 in a gambling task 
(67.4 ± 0.3 for DNN with fixed RBM weights). 

Fig. 7 depicts the overall classification accuracies of the DNN models with target sparsity of 0.8 and 0.5 at the first and second layer, 
respectively. The accuracies obtained from the transfer learning schemes were subtracted from the DNN-trained accuracies with 
random initial weights as baseline (i.e., a positive or negative value indicates enhanced or degraded performance respectively). 
Overall, the DNN transfer learning with fixed RBM weights generally yielded higher accuracies than DNNs without the transfer 
learning scheme, particularly for the working memory, social, and gambling tasks. The paired t-test using test subject accuracies on 
these three tasks resulted in t-scores of 11.4 for working memory, 11.5 for social, and 7.3 for gambling (corrected p < 10− 3). Alter
natively, the fixed AE condition demonstrated the worst overall performance. This was most obvious in the motor task: with 87.9% 
accuracy in the test dataset, 6.1% less than the DNN trained with random initial conditions. The fine-tuned DNN with initial RBM 
weights presented slightly lower classification accuracy in all tasks, while the fine-tuned AE condition demonstrated comparable or 
higher classification accuracy compared to the baseline DNN. Table 5 summarizes the t-test results using the accuracies from DNN 
transfer learning compared to the DNN with random initial weights. Overall, transferred DNN classification performance was relatively 
consistent across the second-layer sparsity levels. 

Furthermore, the computational load was reduced substantially for DNN transfer learning by fixing the pre-trained AE/RBM 
weights in the first layer. More specifically, the number of trainable parameters (i.e., weights and biases) of the baseline/fine-tuned 
DNN model was 267,358,002 ([52,470 + 1] × 5000 + [5000 + 1] × 1000 + [1000 + 1] × 2 for DNN with two output nodes), 
whereas that of the DNN with fixed weights in the first layer was 5,003,002 ([5000 + 1] × 1000 + [1000 + 1] × 2), approximately 
1.9% of the number of parameters in the baseline/fine-tuned DNN. 

Fig. 8 visualized the test-retest reproducibility of the task classification performance as bar plots. Overall, it appears that the 
classification performance between test data and retest data is highly reproducible. Specifically, the FixRBM and FixAE models showed 
superior and inferior performance, respectively than the baseline model and alternative transfer learning schemes consistently for both 
the test data and retest data. 

Table 1 
The number of assigned nodes with each of the seven FNs across all scenarios of target sparsity and input noise levels in AE.    

Functional network   

% Visual Somato-motor Dorsal attention Ventral attention Limbic Fronto-parietal Default mode 

Hoyer’s sparsity target (ρw) 0.5 0 124 124 127 162 45 169 174   
30 69 44 113 113 52 118 111   
50 51 37 70 92 50 80 97   
70 38 28 57 56 35 65 96  

0.8 0 83 68 99 100 57 123 125   
30 46 41 64 79 45 87 104   
50 37 40 56 63 23 69 100   
70 20 20 40 39 11 41 60  

0.9 0 49 60 73 65 6 103 114   
30 35 32 55 44 0 61 82   
50 21 27 38 22 0 40 42   
70 5 3 6 9 0 7 7 

FN: functional brain network; AE: autoencoder; %: input noise level. 
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3.4. Weight feature visualization of the DNNs 

Fig. 9 captures the weight feature map of the fine-tuned DNN with initial AE weights (Finetune AE), the DNN with fixed first-layer 
weights using the RBM weights (Fixed RBM), and the DNN trained with random initial weights (Random) for a target sparsity levels of 
0.8 and 0.5 at the first and second layers respectively, across all seven tasks. Overall, all three models represented similar brain regions 
that were crucial to each task’s classification. Nonetheless, Fixed RBM revealed more clustered brain regions in their weight features 
than the other two scenarios. Finetune AE showed slightly more clustered brain regions than Random. Notably, Fixed RBM exhibited 
the highest spatial overlap with the previously reported group activation map using the same HCP dataset [49]. This suggests that 
Fixed RBM for DNN transfer learning captured the characteristics of each task better than both the Finetune AE scenario and baseline 
DNN model. 

4. Discussion 

4.1. Summary 

In this study, we described that the AE and RBM models extracted parcellated brain regions from resting-state fMRI data which 
highly overlapped with Yeo’s seven FNs [22]. Additionally, with the node assignment map, we reported that the RBM model learned 
more fine-grained FNs compared to the AE. When the DNN was fine-tuned to classify the HCP dataset’s tfMRI data by initializing its 
first-layer weights with those from the AE and RBM models, the fine-tuned AE weight DNN performed slightly better than the DNNs 
fine-tuned with RBM weights or random initial weights. Conversely, when the DNN was trained with fixed first-layer weights from the 

Table 2 
The number of assigned nodes with each of the seven FNs across all scenarios of target weight sparsity and input noise levels in RBM.    

Functional network   

% Visual Somato-motor Dorsal attention Ventral attention Limbic Fronto-parietal Default mode 

Hoyer’s sparsity target (ρw) 0.5 0 926 942 776 872 506 1005 1396   
30 896 936 788 866 520 1026 1417   
50 910 920 741 850 493 1026 1361   
70 745 766 617 633 373 874 1106  

0.8 0 498 542 476 534 285 647 871   
30 505 573 490 566 287 651 891   
50 517 551 506 568 305 673 926   
70 475 530 491 528 270 625 861  

0.9 0 508 528 475 512 251 628 845   
30 516 536 494 534 274 659 868   
50 504 543 505 567 259 686 904   
70 485 567 466 517 252 619 862 

FN, functional brain network; RBM, restricted Boltzmann machine; %, input noise level. 

Fig. 4. (a) Node assignment results of AE encoding weights for weight sparsity target ρw = 0.8 with 50% input noise level. (b) Each bar graph shows 
the number of voxels assigned to each of the seven FNs in each hidden node of trained AE. 
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AE and RBM models, the DNN fixed with the RBM weights yielded better general performance than the DNNs fixed with AE weights or 
random initial weights, particularly for the working memory, social, and gambling tasks. Significantly, considering the number of 
weight parameters to be adjusted during DNN training, the DNN with fixed first-layer RBM weights appears the most suitable approach 

Fig. 5. (a) Node assignment results of RBM encoding weights for target weight sparsity ρw = 0.8 with 50% input noise level. (b) Each bar graph 
shows the number of voxels assigned to each of the seven FNs in each hidden node of trained RBM. 

Fig. 6. (a) Comparison of parcellated brain regions corresponding to the hidden nodes from the AE and RBM weights when ρw = 0.8 with 0% input 
noise level. (b) Distributions of cluster sizes (i.e., the number of voxels in each brain region parcellated from a hidden node). from AE (left) and RBM 
(right). The three vertical lines denote 80th (yellow), 90th (green), and 95th (red) percentile thresholds for the cluster sizes. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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for DNN transfer learning and whole-brain fMRI volume classification, compared to fine-tuned DNN transfer learning and DNN 
training initialized with random weights. 

4.2. Capacity of the parcellated brain regions using rfMRI data from the AE/RBM models 

The RBM pre-trained weights using rfMRI data and consequent DNN transfer learning performed superbly in classifying task 
conditions from tfMRI data when the transferred encoder weights of the RBM remained fixed during training. However, accuracy 
degraded when the encoder weights of the AE remained fixed during training (Fig. 7). We did not update the Gaussian noise for the 
visible units although the corresponding update of the Gaussian noise may further enhance the performance of the RBM despite the 
difficulty in setting the corresponding learning rate [50]. Thus, the numbers of trainable parameters for the AE and RBM were the same 
(i.e., parameters in the weight matrix between input and hidden layers, bias vector of the input layer, and bias vector of the hidden 
layer). In this context, this striking difference in performance likely resulted from the distinct characteristics of the pre-trained AE and 

Table 3 

Overlap between node-assigned weight maps of AE (i.e., w) and the seven FNs (i.e., F̂ all), which was defined as: O(w, F̂all) =
|w ∩ F̂ all|

|F̂ all|
.   

Input noise level  

0% 30% 50% 70% 

Hoyer’s sparsity target (ρw) 0.5 1.0 0.99 0.97 0.96 
0.8 0.98 0.92 0.85 0.69 
0.9 0.70 0.49 0.30 0.08 

AE: autoencoder; FNs: functional brain networks. 

Table 4 

Redundancy of node-assigned weight maps of AE (i.e., w) and the seven FNs (i.e., F̂ all): R(w, F̂all) =
w − |w ∩ F̂all|

|F̂ all|
.   

Input noise level  

0% 30% 50% 70% 

Hoyer’s sparsity target (ρw) 0.5 0.48 0.48 0.45 0.39 
0.8 0.44 0.32 0.26 0.16 
0.9 0.16 0.10 0.06 0.03 

AE: autoencoder; FNs: functional brain networks. 

Fig. 7. Classification performance for the DNN models trained via transfer learning either by fixing the first-layer AE/RBM weights (i.e., FixAE or 
FixRBM), or by fine-tuning the weights after initializing the first-layer AE/RBM weights (i.e., FinetuneAE or FinetuneRBM). The differences denote 
the classification accuracy for the DNN with transfer learning minus the accuracy for the DNN initialized with random weights (numbers in the 
figure). The target weight sparsity levels were 0.8 and 0.5 at the first and second layer respectively without input noising. The p-values from the 
paired t-test were denoted as asterisks (*: p < 0.05; **: p < 0.01; ***: p < 0.001). The t-statistics and corresponding p-values of the paired t-test 
results appear in Table 5. 
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Table 5 
Paired t-test results of test dataset in all seven tasks. The t-statistics of the accuracies from the DNN with transfer learning compared to the DNN with random initial weights were shown (*: p < 0.05, **: p <
0.01, ***: p < 0.001).  

Transfer learning scheme of the DNN   

Finetune AE   Fixed AE   Finetune RBM   Fixed RBM   

Second layer sparsity  0.3 0.5 0.8 0.3 0.5 0.8 0.3 0.5 0.8 0.3 0.5 0.8 

Task WM − 1.1 − 2.5* − 2.8** − 9.6*** − 11.8*** − 7.9*** − 6.0*** − 1.8 − 25.0*** 12.0*** 11.4*** 13.6***  
Emotion 7.1*** 5.7*** 1.9 − 8.6*** − 7.2*** − 8.7*** − 0.9 − 1.30 − 4.87*** − 0.6 0.5 − 2.5*  
Motor 3.5*** 2.5* 0.1 − 25.8*** − 25.1*** − 23.6*** − 13.5*** − 12.9*** − 11.94*** − 9.2*** − 8.5*** − 9.1***  
Relational 3.0* − 0.5 − 0.8 − 11.2*** − 9.9*** − 11.7*** − 6.2*** − 5.5*** − 6.47*** − 1.6 0.2 − 1.8  
Social 5.9*** 6.9*** 3.2* − 3.2* − 2.4 − 3.2*** − 2.7 − 0.1 − 2.47 12.1*** 11.6*** 11.3***  
Language 4.9*** 6.6*** 4.3*** − 0.7 1.3 1.4 − 4.1*** − 1.9 1.38* 4.2*** 5.5*** 4.8***  
Gambling 3.8*** 7.1*** − 4.6*** − 7.6*** − 8.0*** − 9.4*** − 1.9 1.0 − 0.92 6.8*** 7.3*** 6.3*** 

DNN: deep neural network; AE: autoencoder; RBM: restricted Boltzmann machine. 
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RBM weights, which were fixed during the DNN training in the transfer learning (Fig. 1c; weights in red). 
More specifically, based on Fig. 1c, the DNN classifier requires a mapping function between the input and output layers (defined as 

Wall). When we fixed the first layer weights (Wencoder, i.e., WAE or WRBM), the subsequent layer’s weights necessitated training to identify 
the weight representation W: i.e., WRBM ∗ W ≅ Wall for RBM, and thus W ≅ pinv(WRBM) ∗ Wall, where pinv(•) is a pseudo-inverse 
function. Therefore, the stability of pinv(WRBM) or pinv(WAE) seems crucial to finding a classification solution using the transferred 
DNN. We performed singular value decomposition on the weight matrices to evaluate the pseudo-inverse function’s stability as obtained 
from the AE and RBM. It emerged that the singular values of the AE weights were several orders of magnitude smaller than those of the 
RBM weights (Fig. 10). This occurred possibly due to the large, substantially overlapping clusters (i.e., parcellated brain regions) from 
the AE weights, especially when compared to the fine-grained, minimally overlapping smaller clusters from the RBM weights (Figs. 4–6). 

In addition to of the aforementioned magnitude difference, the condition number of the weight matrices (i.e., the ratio between the 
largest and smallest singular values) [51] may also affect the pinv(WRBM) or pinv(WAE) stability. Thus, we calculated the condition 
numbers, in which the AE weights presented a markedly higher value (41,041.42) than that of RBM (74.60). This suggests that the AE 
weight matrix may be ill-conditioned and thus, its inverse is potentially prone to significant numerical errors. Alternatively, the RBM 
weight matrix is well-conditioned and thus, its inverse can be computed with superior accuracy. The substantially different magnitude of 
the condition number between the AE and RBM weight matrices would directly impact transfer learning classification performance in a 
fixed-weight scenario. In the fine-tuning scenario, tracking the changes of singular values and weight matrix condition numbers in the 
first hidden layer could facilitate the interpretation of the model while training and subsequent effects on classification performance. In 
addition, training the model parameters with additional constraints to restrict ranges of singular values and condition numbers in the 
first layer would guide the weight matrices to be well-conditioned throughout the fine-tuning process for the DNN classifier. For example, 
singular value bounding methods [52] can be applied to maintain their singular values at a certain range and to prevent them from 
substantial magnitude reductions. This would guarantee that the weight matrix condition numbers remain in a proper range. 

4.3. Weight feature maps of the DNN models obtained from transfer learning 

We compared the classification performance for tfMRI data using a DNN trained via transfer learning with AE vs. RBM weights, at 
which point the sparsity of the first layer DNN weights was 0.8 without input noising. Overall, weight feature maps of the transfer 
learning DNNs displayed highly task-relevant brain regions that were similarly reported from the group activation patterns using the 
same dataset [49]. Among the DNN models, the network trained using the RBM fixed first-layer weights exhibited the most similar 
patterns with the group inference maps, moderately overlapping with task-relevant regions, particularly for the motor and social tasks. 

Yet the DNN models fined-tuned from the AE weights or trained with random initial weights presented a reduced spatial extent, 
possibly indicating that the models were vulnerable to variable task-related activation patterns across subjects and runs. This might be 
caused by overfitting the baseline and fine-tuned AE-based DNN models, which potentially can be alleviated by applying a regula
rization scheme such as input noising and/or dropout schemes. Thus, future research is warranted to evaluate the transferred DNN 
performance, as well as to investigate how the resulting weight feature maps systematically depend on the weight sparsity levels and 
input/hidden layer noising parameters. 

Fig. 8. Classification performance comparison between all task conditions using test samples from S900 (denoted as “Test”) and retest samples from 
S1200 (“Retest”) of the 45 test-retest subjects. The accuracy differences denote the classification accuracy for the DNN with transfer learning minus 
the accuracy for the DNN initialized with random weights (numbers in the figure). The target weight sparsity levels were 0.8 and 0.5 at the first and 
second layers, respectively without input noising. The p-values from the paired t-test were denoted as asterisks (*: p < 0.05; **: p < 0.01; ***: p 
< 0.001). 
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4.4. Potential limitations and further work 

This study evaluated the classification performance of tfMRI data in the HCP dataset using a DNN trained via transfer learning with 
AE/RBM weights obtained from rfMRI data in the same dataset. Although our study attempted to utilize as much data as possible, the 
number of subjects (n = 900) may not be sufficient to train a sufficient number of weight parameters in AE/RBM for functional 
parcellation and DNN for classification. However, please note that there were four rfMRI runs and each rfMRI run consisted of 

Fig. 9. Weight feature map of the DNN across all seven task conditions for the HCP dataset’s tfMRI data. Weight feature maps of (a) fine-tuned AE, 
(b) fixed RBM, and (c) a baseline DNN trained with random initial weights are shown. Slices used to illustrate each task are matched to the group 
inference maps obtained using the same tfMRI dataset in the HCP [49], to facilitate comparison across the maps. Weight features were z-scored and 
threshold-set at the level of 95% to visualize important weights only. The clustering threshold was set to a minimum of ten voxels to remove 
potential false positives. 
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approximately 1200 fMRI volumes. Therefore, there are approximately 4800 vol per subject that served as input samples to train the 
AE/RBM models (i.e., 4,320,000 samples across all 900 subjects). For the task condition classification, the beta-valued map was the 
DNN’s input, potentially suffering from the small number of samples per task condition to train all DNN weight parameters. This 
motivated us to evaluate the performance of the transfer learning by fixing the pre-trained AE/RBM weights, to reduce the number of 
adjustable parameters. Nonetheless, the DNN training may still suffer from the insufficient number of samples. Thus, it is crucial to 
evaluate whether our proposed transfer learning scheme approaches for the DNN using the pre-trained AE/RBM weights are also 
beneficial for alternative downstream tasks involving another publicly available dataset with a substantially increased number of 
subjects: ABCD (https://abcdstudy.org; n = 11,875) and UK Biobank (https://www.ukbiobank.ac.uk; n = 38,645 for tfMRI and 44,096 
for rfMRI). Additionally, since the FN atlas used in this study was relatively coarse (containing only seven FNs), it would be worthwhile 
to compare the extracted weight features and node assignment maps with alternative, more fine-grained brain parcellations [5,6]. 

Additional layers may impact DNN performance [53,54], which poses concerns for explanation by studying their building blocks (i. 
e., hidden layers) in isolation. It would be equally true that the DNN performance is heavily affected by the weight parameter 
initialization methods [55,56]. Our study used the DNN as a predictive model for neuronal activations across the whole brain, and that 
DNN consists of a greater number of parameters in the first layer than in other layers due to the large number of whole brain voxels 
[17]. This would lead to potential overfitting due to the small number of samples to train the model in general, which may deteriorate 
prediction performance [34]. Thus, our objective for this study was to investigate systematically the DNN prediction performance for 
whole-brain neuronal activations depending on the initialization schemes of first layer weights. Consequently, we employed the two 
most popular unsupervised, pretraining models (i.e., AE and RBM) to initialize the DNN’s first layer for whole-brain neuronal acti
vations, systematically evaluating the DNN prediction performance. Altering DNN architectures such as adding the hidden layers or 
changing the number of nodes per hidden layer may further enhance the transfer learning performance at the expense of computa
tional resources. It is worth noting that the DNNs used in this study are FNNs with two hidden layers, which are relatively shallow 
compared to the NNs in conventional deep-learning models. For the DNN with increased numbers of hidden layers, stacking multiple 
layers to AE and RBM in the parcellation step would further reduce the number of weight parameters to be trained and subsequently 
the training time in the DNN with transfer learning. Thus, a deep belief network with several stacked RBMs is worth investigating in the 
context of DNN transfer learning for the task fMRI classification from a large cohort dataset. 

While both fine-tuned AE and fixed RBM-based transfer learning illustrated superior classification performance in most of the 
prediction tasks, neither model presented any performance improvement for the relational task. The possible cause appears to be the 
inability of the models to recognize important brain regions for the classification and discriminate the two potentially subtle conditions 
(i.e., relational vs. match) in the task. A previous study presented that both relational and match conditions elicited significant 
activation in the anterior prefrontal cortex [49], with a potentially subtle difference in their spatial layout. From our findings, the 
transfer learning of the DNN by using fixed RBM-based weights identified a relatively vast blob of the important brain regions (Fig. 9) 
which would be potentially disadvantageous when optimal classification of target task requires the identification of smaller brain 
regions. Therefore, several approaches may be applicable to optimize the classification performance by adjusting crucial brain region 
blob size identified from the DNN via transfer learning based on fixed RBM-based weights. For example, weight sparsity levels (e.g., 0.5 
and 0.9) deviating from the adopted sparsity (0.8) when training the RBM weights could increase or reduce the size of the functional 
parcellations, which will tangibly impact the final blob size of the critical brain regions from the trained DNN. In addition, hyper
parameters to alter the model architectures, such as the number of hidden nodes at the first layer (i.e., the same as the number of 
parcels from the AE/RBM weights) and the subsequent layers would provide varying sizes of parcellated brain regions and possibly 
alter the final blob size of the critical brain regions for classification. 

5. Conclusion 

We evaluated classification performance for tfMRI data using a DNN transferred using pre-trained weights obtained from the AE 
and RBM. To this end, we trained the AE and RBM using the HCP dataset’s whole-brain rfMRI data. The resulting weight features were 
systematically evaluated according to the weight sparsity and input noise levels of the AE/RBM. Similarly, the parcellated brain re
gions from the obtained weight features were interpreted carefully compared to Yeo’s seven FNs [22]. The AE segmented the whole 

Fig. 10. (a) Distribution of singular values of the AE and RBM encoder weights, trained with the target weight sparsity ρw = 0.8 and no input noise. 
(b) Distribution of singular values of the first layer’s weights in AE-based DNN (left) and RBM-based DNN (right) in all fine-tuning scenarios. 
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brain into broad parcels with considerable overlapping between the parcels via their weights, whereas the RBM segregated 
fine-grained regions with minimal overlapping between the parcels. These distinct characteristics of the AE and RBM weight features 
may have affected the classification performance. Specifically, the DNN classifier trained by fixing the RBM weights in the first layer 
depicted superior classification over the DNNs trained by fixing the AE weights and fine-tuning them in the first layer. These findings 
propose that the DNN classifier trained by fixing the first layer RBM weights is the most promising approach, since the model is 
advantageous in computational load and memory usage while maintaining or improving classification performance. We believe that 
our proposed DNN classifier based on pre-trained RBM weights will prove useful for the classification of whole-brain fMRI data from 
both large and small cohorts, as the number of free parameters reduces substantially by applying our proposed transfer learning 
scheme (fixing the pre-trained RBM weights). More specifically, the computational load and memory size will be substantially reduced 
from our transfer learning scheme, especially compared to the DNN training with random initial weights. 
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