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-e study of neural connectivity has grown rapidly in the past decade. Revealing brain anatomical connection improves not
only clinical measures but also cognition understanding. In order to achieve this goal, we have to track neural fiber pathways
first. Aiming to estimate 3D fiber pathways more accurately from orientation distribution function (ODF) fields, we presented a
novel tracking method based on nonuniform rational B-splines (NURBS) curve fitting. First, we constructed ODF fields from
high angular resolution diffusion imaging (HARDI) datasets using diffusion orientation transform (DOT) method. Second,
under the angular and length constraints, the consecutive diffusion directions were extracted along each fiber pathway starting
from a seed voxel. Finally, after the coordinates of the control points and their corresponding weights were determined,
NURBS curve fitting was employed to track fiber pathways. -e performance of the proposal has been evaluated on the
tractometer phantom and real brain datasets. Based on several measure metrics, the resulting fiber pathways show promising
anatomic consistency.

1. Introduction

An outstanding characteristic of white matter (WM) is its
fibrillar construction. WM consists of tightly packed and
coherently aligned axons that are surrounded by glial cells
and that often are organized in bundles [1]. Axons are
protected by myelin sheaths, which restricts the free diffu-
sion of water molecules. As a result, the micrometric
movements of water molecules are hindered to a greater
extent in a direction perpendicular to the axonal orientation
than parallel to it. It is now generally accepted that mi-
croscopic boundaries to diffusion in WM coincide with the
local orientations of WM fiber pathways [2–4]. With this
feature, we can trace fiber pathways and then reveal ana-
tomical connection between brain functional areas.

Compared to diffusion tensor imaging (DTI), high an-
gular resolution diffusion imaging (HARDI) could resolve
multiple intravoxel fiber orientations contained in a WM
voxel. Moreover, HARDI just needs to sample the diffu-
sion signal on a spherical shell as opposed to a complete

three-dimensional Cartesian grid of DSI [5–7]. At present,
there are numerous tracking methods based on HARDI,
which could be classified into deterministic and probabilistic
algorithms [8]. -ey exploit the diffusion anisotropy to
follow fiber tracts from voxel to voxel through the brain [9].
Recently, multishell multitissue (MSMT) models have been
proposed to deal with partial volume effects and can re-
markably increase the precision of fiber orientations over
single-shell models [10].

Streamline tracking is an important deterministic ap-
proach. Streamline tracking propagates paths within the
vector field of local fiber orientations [9], providing de-
terministic connectivity information between different brain
functional areas. Later, many variants of the streamline
method have been presented. -e streamline-based tracking
technique is the one most commonly used in tractography,
and it appears to give excellent results in many instances if
the vector field is smooth and the fibers are strongly oriented
along a certain direction. However, the major drawback of
streamline-based methods is that the estimation error
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accumulates along the tracking length [11, 12]. However, the
partial volume effects such as crossing, kissing, merging,
and splitting in imaging voxels increase the complexity in
streamline tracking.

-ere are also some nonstreamline tractography algo-
rithms. In the graph-based method, each voxel is treated as a
graph node, and graph arcs connect neighboring voxels. -e
weights assigned to each arc are the representative of both
structural and diffusivity features [13]. When partial volume
exists, the algorithm treats the image as a multigraph and
distributes the connectivities in a weighted manner. Aranda
et al. presented a particle method which was proposed to
estimate fiber pathways from multiple intravoxel diffusion
orientations (MIVDO) [14]. -e process starts with the
definition of a point inWM region in which a virtual particle
is allocated. -e particle is iteratively moved along the local
diffusion orientations until a stopping criterion is met. -e
estimation of fiber pathways is determined by the particle
trajectory. Galinsky and Frank proposed a method for es-
timating local diffusion and fiber tracts based upon the
information entropy flow that computes the maximum
entropy trajectories [15]. -is novel approach to fiber
tracking incorporates global information about multiple
fiber crossings in each individual voxel. Malcolm et al. used
Watson function to analyze ODF construction, which pro-
vides a compact representation of the diffusion-anisotropic
signal [16]. -is algorithm models the diffusion as a discrete
mixture of Watson directional functions and performs
tractography within a filtering framework. Recently, global
tractography was proposed in [17], which aims to find the full
track configuration that best explains the measured diffusion
weighted imaging (DWI) data.-is data-driven approach was
reported that it could improve valid neural connection rate
over streamline methods.

-e other classes are probabilistic approaches. -is class of
methods utilizes a stochastic process to estimate the connection
probability between brain areas. A Bayesian approach was
presented in [18], and it handled noise in a theoretically justified
way.-e persistent angular structure (PAS) of fiber bundles was
used to drive probabilistic tracts, and PDF is incorporated into
the method to estimate the whole-brain probability maps of
anatomical connection [19]. Using automatic relevance de-
termination in a Bayesian estimation scheme, the tracking in a
multivector field was performed with significant advantages in
sensitivity [20]. -e residual bootstrap method made use of
spherical harmonic (SH) representation for HARDI data in
order to estimate the uncertainty in multimodal q-ball re-
constructions [21]. However, these methods cannot directly
delineate the fiber paths in 3D brain space. Furthermore, they
are very time consuming in resolving the complexity of the
diffusion pattern within each HARDI voxel.

In [22, 23], the authors argued that NURBS provides a
framework to characterize WM pathways. However, the
determination of the parameters including control points
and weights has not been discussed. -is paper has com-
prehensively explored the tracking method based onNURBS
curve fitting and has detailed how to determine the related
parameters.-e tracking method consists of three steps: first
is the computation of ODF field from HARDI datasets;

second is the selection of consecutive diffusion directions
along a fiber pathway; and the last is NURBS pathway fitting.
-is method was evaluated on tractometer phantom and real
brain datasets.

2. Materials and Methods

2.1. HARDI Datasets. Two different types of HARDI
datasets are used to evaluate our approach: from the physical
diffusion phantom of tractometer and from an in vivo
human brain. For each dataset, we firstly constructed ODF
fields using DOTmethod [24] and then applied the proposed
algorithms to estimate fiber paths.

Phantom study was performed using data acquired from
a physical diffusion phantom of tractometer. Imaging pa-
rameters for the 3 × 3 × 3mm acquisition were as follows:
field of view FOV � 19.2 cm, matrix 64 × 64, slice thickness
TH � 3mm, read bandwidth RBW � 1775Hz/pixel, partial
Fourier factor 6/8, parallel reduction factor GRAPPA � 2,
repetition time TR � 5 s, and echo times TE � 102ms. A SNR
of 15.8 was measured for the baseline (b � 0 s/mm2) image.
SNR of HARDI at b-values � 2000 s/mm2 were evaluated.
-e diffusion sensitization was applied along a set of 64
orientations uniformly distributed over the sphere [25]. For
comparative study, the ground truth fibers are available on
the website http://www.lnao.fr/spip.php?rubrique79 [25].

A healthy volunteer was scanned on a Siemens Trio 3T
scanner with 12 channel coils. -e acquisition parameters
were as follows: two images with b � 0 s/mm2, 64 DW images
with unique, and isotropically distributed orientations (b �

2000 s/mm2). TR � 6700ms, TE � 85ms, and voxel di-
mensions equal to 2 × 2 × 2mm.-e SNR is, approximately,
equal to 36.

2.2. ODF Fields. Compared with diffusion tensor, ODFs
reflect the diffusion probability along any given angular
direction, and higher values indicate higher consistency
between the fiber orientation and diffusion direction. ODFs
can be seen as a continuous function over the sphere that
encodes diffusion anisotropy of water molecules within each
voxel. -ere are two definitions of ODF. One is Tuch’s
nonmarginal ODF that is defined as the radial integration of
PDF and does not represent a true probability density
[26, 27]. -e other is marginal ODF that is introduced by
Wedeen, and it is a true probability density since its integral
over the sphere is one [28]. ODF peaks are assumed to
correspond to the underlying fiber orientations. At present,
there are several algorithms to compute ODFs from HARDI
datasets. Tuch presented a simple linear matrix formulation
that was provided to construct ODFs using radial basic
function (RBF) [26]. Diffusion orientation transform (DOT)
converts water diffusivity profiles into probability profiles
under the monoexponential signal decay assumption
through computing PDF at a fixed distance from the origin
[24, 29, 30]. Spherical deconvolution (SD) estimates fiber
orientations by assuming that a single response function can
adequately describe HARDI signals measured from any fiber
bundle [31]. Compared to other methods, DOTcan improve
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the angular resolution, make the ODF sharper, and keep its
accuracy and robustness to noise [27, 30]. In our work, we
used DOT to construct ODFs from HARDI datasets.

After ODF fields were constructed, we detected ODF
local maxima by thresholding over the sampling shell. Only
those above ODF mean value would be retained. -is op-
eration can avoid the noise interference effectively [28].
Finally, ODF fields are transformed into vector fields, and we
can describe a voxel using a matrix containing diffusion
vectors and its corresponding diffusion probability.

Vvoxel �

v1,x v1,y v1,z d1

......

vi,x vi,y vi,z di

......

vn,x vn,y vn,z dn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (1)

-e term vi,x vi,y vi,z􏽨 􏽩 denotes a diffusion direction,
and di is the diffusion probability along this orientation. In
the next section, we would use this matrix to compute the
control points and weights for NURBS pathway fitting.

2.3. Diffusion Directions along a Fiber Pathway. Before we
conduct NURBS tracking, the consecutive directions along
the same pathway have to be extracted. -e orientations of
fiber populations within a voxel coincide with the local
maxima of ODFs [28]. ODF value along a direction is the
reflection of diffusion probability of all the water molecules in
a voxel, so it is reasonable to assume that the diffusion di-
rections always pass through the voxel center. -e aim of this
step is to find the consecutive directions among the neighbors
of a seed voxel. Here, we presented a new algorithm to achieve

the goal. For the sake of simplicity, we used a two-dimensional
diagram as an example to illustrate the process, shown as
Figure 1(a). Compared to FACT algorithm [32], it can im-
prove the extraction accuracy of discrete consecutive di-
rections along a pathway. As we can see from Figure 1(b), in
FACT, an unreasonable path was found (marked by red
dashed lines). But if the distance between V1 (blue line in the
seed voxel) and the center points of its neighbor voxel is
considered here, we could get a more reasonable pathway
(marked by blue dashed lines in Figure 1(b)).-e algorithm is
summarized as Algorithm 1. -e input parameters, including
fiber length threshold Lth, angle threshold θth, and fractional
anisotropy (FA) threshold FAth should be determined
according to actual situation.

2.4. NURBS Fitting. NURBS is a powerful tool to describe
complex curves using a small number of parameters. It is a
wonderful modeling method of curves and can control the
object more conveniently and efficiently than traditional
modeling method [33]. -e order of a NURBS curve defines
the number of nearby control points that could influence any
given point on the curve. In practice, cubic curves are the
ones most commonly used. Higher order curves are seldom
used because they may lead to internal numerical problems
and require disproportionately large computation time
[34–36]. -e number of control points must be greater than
or equal to the order of the curve. In this work, we traced
nerve fiber pathways based on NURBS curve fitting. In the
fitting, the parameters including control points and weights
are needed. -e consecutive directions were used to com-
pute control points. -e weights were computed according
to di. In NURBS tracking, we could use both control points
and weights to hold local shape control of fiber pathways.

V1

V2
(i, j)

Seed voxel
Diffusion direction

Voxel center point

(a)

Seed voxel
Diffusion direction

Voxel center point

V1

V2
(i, j)

(b)

Figure 1: Extraction of consecutive diffusion directions along a fiber pathway. V1 (blue line in the seed voxel) and V2 (orange line in the
seed voxel) denote the two diffusion directions in the seed voxel (the green square). -e dark solid line denotes the distance between V1 and
the center of the neighbor voxels. (a) Finding the consecutive directions under the constraints of distance, angle and length. -e red lines
denote the distances less than the threshold. -e red arcs denote the angles between the consecutive directions. (b) Unreasonable pathway
found with FACT.
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We present two tracking methods based on NURBS
according the fitting rule, including general NURBS fitting
(NURBS-G) and tangent NURBS fitting (NURBS-T). -e
whole procedure of NURBS tracking is shown in Figure 2.

2.5. NURBS-T. A fiber pathway can be considered as a 3D
curve, and its local tangent vector is consistent with the
diffusion orientation [37]. According to this premise, we
presented NURBS-T algorithm to trace fiber paths. To make
it easier to explain, the 2D tracking process is illustrated in
Figure 3. -e algorithm is outlined in Algorithm 2.

2.6. NURBS-G. In NURBS-G tracking, we do not consider
the tangent relationship between fiber pathway and diffusion
direction. -e control points consist of only intersection
points between the diffusion directions and the facets of the

voxel. -e 2D tracking process is demonstrated in Figure 4.
-e algorithm is outlined in Algorithm 3.

3. Results

Figure 5 shows the ODF and vector fields estimated from
HARDI images of tractometer. Panel (a) is the mask of fiber
pathways. We extracted the diffusion directions corre-
sponding to ODF local maxima that are above the mean
value of ODFs. -rough this filtration, spurious peaks could
be effectively reduced [28].

After the vector fields were obtained, the control points
and weights were computed. Next, the fiber pathways were
traced with multidirectional streamline, NURBS-T, and
NURBS-G. In this phantom experiment, θth is set to 60° and
Lth is 70mm. FAth was not set for this test, as WMmask was
provided in tractometer dataset. Figure 6(a) shows 16 seed

DOT
ODF local
maxima

estimation

Consecutive
direction

estimation
NURBS
pathway

fitting

ODF
field

Vector
field

Control
points

DWI
data

Knot
vector

Weights
Convert
function

Fitting rules

Figure 2:Whole process of fiber tracking based onNURBS.-e knot vector was normalized, and its nodes are distributed evenly.-e fitting
rules are determined according to the relation between the fiber pathway and the diffusion orientation. Consecutive direction estimation is
accomplished according to Algorithm 1. Convert function is as the equation given in the Algorithm 2.

Input: ROI, Lth, θth, FAth.
Output: Consecutive directions along a pathway.
(1) Select one seed voxel in ROI.
(2) Choose one direction v � vi,x vi,y vi,z􏽨 􏽩 in the seed voxel, and its linear equation could be written as follows.

x/vi,x � y/vi,y � z/vi,z

(3) Calculate the distance Dist between v and the center o � [ox, oy, oz] of 26-connected neighbor voxels according to the equation
given below.

Dist � |o × (o− v)|/|v|

(4) If Dist< Lth, the neighbor voxel is considered as a candidate voxel.
(5) -e angles between v and the direction v′ in the candidate voxel is calculated.

cos θ � v · v′/(|v||v′|)

(6) If |cos(θ)|≥ |cos(θth)|, v′ is preserved as a consecutive direction. If no consecutive direction is obtained, save current pathway and
stop tracking, then turn to (1). Otherwise, go to (7).
(7) v � v′, (2)∼(6) are repeated until FA<FAth.

ALGORITHM 1: Summary of the method for extracting the consecutive directions along a pathway.
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Input: consecutive diffusion directions
Output: fiber pathways C(u)

(1) Determine the control points. Because that the diffusion direction (denoted by red thin line in Figure 3) is tangent to the fiber path,
there should be three control points that situate on the same direction [33], including the center point (blue dot in Figure 3) of the
voxel and the two intersection points (yellow dot in Figure 3) between the diffusion direction and the facets of the voxel. -e
intersection points could be obtained according to the equation given below:

(x, y, z) ∈ (x, y, z)||x| � a/2, y � vi,y/vi,xx, z � vi,z/vi,xx, |y|≤ b/2, |z|≤ c/2􏽮 􏽯∪ (x, y, z)||y| � b/2, x � vi,x/vi,yy, z � vi,z/vi,yy, |x|≤􏽮

a/2, |z|≤ c/2}∪ (x, y, z)􏼈 ||z| � c/2, x � vi,x/vi,zz, y � vi,y/vi,zz, |x|≤ a/2, |y|≤ b/2}

where a, b, and c are the length, width, and height of the voxel, respectively. (x, y, z) is the coordinate of the intersection point.
Finally, we would get a series of points.

P � [p1, p2, p3 . . . , pi, pi+1, pi+2 . . . , pn−2, pn−1, pn]

where pi and pi+2 are the intersection points between the diffusion direction and the facets of the path-through voxel. pi+1 is the
center point of the voxel.
(2) Calculate the weights. -e weight indicates the attraction of the control points to a path, and we can locally modify the path by
adjusting it. In this work, the weight was set according to ODF peaks.-e greater the ODF peak along fiber path, the greater the weight.

w � di/
������
􏽐

m
j�1d

2
j

􏽱

where w is the weight, m is the number of the consecutive directions, dj is the diffusion probability along the jth consecutive
directions, and di is the diffusion probability along the ith consecutive direction.
(3) -e knot vector was normalized, and the nodes are distributed evenly. According to the number of control points of the path, the
number of nodes of knot vector changes dynamically. -e knot vector could be written as

u � [0, 0, 0, 1/n, ......, (n− 1)/n, 1, 1, 1]

where n is the number of control points.
(4) NURBS fitting. In this procedure, we trace pathways which do not necessarily satisfy the control points precisely, but only
approximately.

C(u) � 􏽐
n
i�0Ni,3(u)wiPi/􏽐

n
i�0Ni,3(u)wi

where Ni,3(u)􏽮 􏽯 are the third-degree B-spline basis functions defined on the knot vector u. -ey could be computed using the Cox-
deBoor algorithm [38]. To obtain C(u), we have to compute the basis function Ni,3(u) first. -ere are at most four nonzero three-
degree B-spline functions at each knot vector interval. So, we could directly get C(u) according to Ni−3,3(u), Ni−2,3(u), Ni−1,3(u), and
Ni,3(u).

ALGORITHM 2: Summary of NURBS-T fiber tracking.

Seed voxel
Diffusion directions

Voxel center point
Intersection point

Figure 3: NURBS-T fiber tracking.-e solid blue thick line denotes a fiber pathway.-e control points consist of intersection points (yellow
solid dots) and center points (blue solid dots).
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points selected according to [25], and 6(b) shows the ground
truth fiber pathways. Figures 6(c), 6(d), and 6(e) show the
tracking results.

In order to evaluate the proposed algorithms, two kinds
of measure methods were taken. One is the point-to-point
performance measures; the other is the connection mea-
sures. -e former includes spatial metric (SM), tangent
metric (TM), and curve metric (CM) [25]. -ese metrics
focus on the point-to-point performance from a local per-
spective. -e latter contains valid connections (VC), invalid
connections (IC), no connections (NC), valid bundles (VB),
and invalid bundles (IB) [39]. From a global point of view,
the connections generated by the estimated trajectories are
relevant. -e set of global metrics takes into account the
resulting connectivity. In this experiment, we evaluated the
results with both local and global metrics. Figures 7–9 show
the summation of the points per metric for each method.
Table 1 shows the evaluation by using the global metrics: VC,
IC, NC, VB, and IB.

We can come to that for the spatial metric NURBS-T
obtains the best score except Fiber 3 and 10. For the tangent
metric, NURBS-T also gets the best position except Fiber 10.
For the curve metric, NURBS-T obtains the best place except

for Fiber 9 and 15. Summarizing the overall performance over
the three metrics, we can conclude that NURBS-T is best on
the fiber pathway estimation of the phantom. For the com-
putation time, NRBS-T recovered the previous results in
about 23 minutes, and NURBS-G took about 20 minutes. -e
method of multidirectional streamline required 27 minutes or
so to complete the task at the step of 0.02mm.-ese methods
were all implemented in Matlab R2014b running on the
computer possessing 8G RAM and Intel Core i5-7200U.

From the above analysis, NURBS-Tpresents competitive
results for both kinds of measure metrics. Furthermore, we
used the mask (Figure 5(a)) to evaluate the resulting con-
nectivity. -e values in Table 1 show that the method with
the best performance is NURBS-T.

Figures 10–12 show the estimated fibers of the in vivo
human brain data. In this in vivo experiment, θth is 60° and
Lth is 70mm. FAth is 0.15. We selected three ROIs to trace
fiber pathways. -e ROI in Figure 10(a) is located in the
region of corpus callosum.-e ROI in Figure 11(a) lies in the
region of parietal lobe. -e ROI in Figure 12(a) is in the
region of bilateral mesial temporal lobes. As there is no
golden standard of fiber distribution map with high reso-
lution, we can only qualitatively analyze the results.

Input: consecutive diffusion directions
Output: fiber pathways C(u)

(1) Determine the control points. -e set of control points is only composed of intersection points between diffusion direction and
voxel border. -e intersection points are acquired according to the equation given in the Algorithm 2.
(2) Compute the weights according to the equation given in the Algorithm 2.
(3) -e knot vector is the same as the equation given in the Algorithm 2.
(4) NURBS fitting according to the equation given in the Algorithm 2.

ALGORITHM 3: Summary of NURBS-G fiber tracking.

Seed voxel
Diffusion direction

Voxel center point
Control point

Figure 4: NURBS-G pathway fitting. -e solid blue thick line denotes a fiber pathway.-e set of control points consists of only intersection
points (yellow dots).
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(d) (e)

Figure 6: Fiber pathways tracked with FACT, NURBS-T, and NRBS-G. (a) Spatial seed points are determined according to Figure 4(a) of
[25]. (b) Ground truth fiber trajectories starting from the sixteen seed points. -is image is directly cited from Figure 4(c) of [25]. (c)
Multidirectional streamline tracking. (d) NURBS-T tracking. (e) NURBS-G tracking.

(a) (b)

(c)

(d) (f)

(e)

Figure 5: ODF and orientation fields of tractometer phantom. (a) Mask of fiber paths of the phantom, (b) T2-weighted images, (c) ODF
field, (d) vector field of (c), (e) ODF field, and (f) vector field of (e).
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Figure 8: Symmetric root mean square error using the tangent metric.
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Figure 9: Symmetric root mean square error using the curve metric.
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Figure 7: Symmetric root mean square error using the spatial metric (L2 norm).
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From Figure 10(b), we can easily pick out two fake fiber
bundles that are marked by brown arrows. -e thin bundle
pointed by the left arrow is obviously nonexistent in the
region of corpus callosum.-e pathway pointed by the right
arrow is unreasonable since it should not spread along the
vertical direction. In Figure 10(d), from the morphological
perspective, the fiber bundles are excessively messy and fluffy
in the regions pointed by the two arrows because there are
fewer constraints on the NURBS-G fitting. In Figures 11(b)
and 11(d), there are too many crossing bundles, which
disorderly emerge into the edge ofWM in the regionmarked
by arrows. In Figure 12(b), some unreasonable bundles
could be found as their pathways spread out WM region.
From Figure 12(d), we could see there are some minor
bundles winds around the main bundles in the region
pointed by the up-down arrow. In addition, the existence of

the bundles in the regions pointed by the other three arrows
is unreasonable.

From these in vivo tracking results, we can qualitatively
validate our method. At last, to quantitatively analyze the
proposed methods, we compared the results in the aspects of
number of bundles, computation time, and storage (Table 2).
-e fiber bundles were stored as .mat file in Matlab 2014b.
-ese methods were evaluated on the computer possessing
8G RAM and Intel Core i5-7200U CPU.

4. Discussion

In the presented study, we developed a novel tracking
method based on NURBS curve fitting. -e method consists
of two steps. -e first is to obtain the consecutive diffusion
directions along a fiber pathway. -e second is to carry out

(a) (b)

(c) (d)

Figure 10: Fiber bundles tracked from ROI of corpus callosum. (a) ROI region, (b) multidirectional streamline, (c) NURBS-T, and
(d) NURBS-G.

Table 1: -e global connectivity evaluation of the fiber tracking algorithms.

VC (%) IC (%) NC (%) VB IB
Streamline 73.7 3.1 23.2 15 10
NURBS-T 87.4 2.5 20.1 13 12
NURBS-G 79.7 5.9 21.4 16 13

Journal of Healthcare Engineering 9



NURBS curve fitting. For the first step, we proposed a more
effective way to find the consecutive vectors for a seed voxel
among its 26-connected voxels. -e comparison to FACT is
shown in Figure 1. In the second step, the control points
were obtained according to the equation given in the Al-
gorithm 2. -e corresponding weights are computed
according to the equation given in the Algorithm 2. From the
experimental results, we can conclude that the proposed
method is well suited for exploring WM pathways.

-e proposed method aims to reveal the connectivity
among brain function areas. It is important to realize that
our method does depend heavily on the parameters of
control points and weights. Although we presented here
both the theoretical foundation and a number of practical
examples that characterize performance and accuracy of our
approach, the main limitation of our work is the lack of a
system wide analysis of the two parameters that can influ-
ence the fitting results. In NURBS fitting, we would continue
to study the mathematical relationship between the weights
and ODF peaks.

In general, there are two main factors influencing the
tracking results: the noise in HARDI images and partial
volume effects [40]. -e noise could cause the in-
consistency, and the incomplete information about partial
volume effect could confuse the tacking process. In con-
sequence, some fiber paths are incorrectly estimated [6].

Before the construction of ODF fields, we used NLPCA to
denoise HARDI dataset. In the regions of fiber crossing,
branching, and merging, the multiple compartments
within a voxel make it hard to find out the fiber orientation
from ODF fields for such entangled structures. In fact, the
sensitivity to detect multiple fiber populations depends not
only on the datasets but also on specifics of the construction
technique of ODF. If the resolution capability of the
construction method is low, the deviation between ODF
maxima and the ground truth directions would become
large. -is error can limit the fiber tracking technique to
fully delineate a fiber tract.

Another important factor that can influence the tracking
results is stop criteria. FA could not be considered as one of
the tracking stop criteria because FA is generally less than 0.2
in a voxel with crossing fibers [40]. Except for that, we
considered the fiber length and the angle as stop criteria.
However, validation of fiber tractography remains an open
question [25].

5. Conclusion

Anatomical connectivity network is important to the in-
vestigation of human brain functions. -e quality of ana-
tomical connectivity relies on proper tract estimation [6]. In
this work, we presented a novel algorithm based on NURBS

(a) (b)

(c) (d)

Figure 11: Fiber bundles generated from ROI of parietal lobe. (a) ROI region, (b) multidirectional streamline, (c) NURBS-T, and
(d) NURBS-G.
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curve fitting. -e proposed methods exhibit promising
potential in exploring the structural connectivity of human
brain. -ey are easily implemented and proved efficient
through phantom and real experiments. However, it is still
difficult to identify the fiber bundles that are diverging,
converging, and kissing. In future, our study will be mainly
focused on how to solve this problem with NURBS fitting.
More anatomical constraints should be used to guide
tracking processes.
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