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Abstract

Brain collateral circulation is an essential compensatory mechanism in response to acute brain ischemia. To study the

temporal evolution of brain macro and microcollateral recruitment and their reciprocal interactions in response to

different ischemic conditions, we applied a combination of complementary techniques (T2-weighted magnetic resonance

imaging [MRI], time of flight [TOF] angiography [MRA], cerebral blood flow [CBF] imaging and histology) in two different

mouse models. Hypoperfusion was either induced by permanent bilateral common carotid artery stenosis (BCCAS) or

60-min transient unilateral middle cerebral artery occlusion (MCAO). In both models, collateralization is a very dynamic

phenomenon with a global effect affecting both hemispheres. Patency of ipsilateral posterior communicating artery

(PcomA) represents the main variable survival mechanism and the main determinant of stroke lesion volume and

recovery in MCAO, whereas the promptness of external carotid artery retrograde flow recruitment together with

PcomA patency, critically influence survival, brain ischemic lesion volume and retinopathy in BCCAS mice. Finally,

different ischemic gradients shape microcollateral density and size.
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Introduction

Collateral circulation represents an essential neuropro-
tective mechanism during severe acute brain ischemia–
hypoxia. Despite the critical importance of collateral
arteries, their clinical and neuroradiological assessment
in patients remains a major challenge.1,2 First, collat-
eral arteries represent a complex trait, highly influenced
by genetic, sex and age-related variability. Second, they
are recruited exclusively under moderate-severe acute
ischemic conditions like transient ischemic attack
(TIA) and strokes. Third, additional cardiovascular
risk factors may frequently co-exist and exert an
additive effect on the ischemia outcome (hypertension,
diabetes, atherosclerosis, and aging). Finally,
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3Charité – Universitätsmedizin Berlin, NeuroCure Cluster of Excellence
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standardized and validated neuroimaging methods to
study collateral circulation are still lacking.1,2

By contrast, inbred mice, minimizing genetic, epigen-
etic and environmental factors offer a unique window
into the brain collateral circulation plasticity.3–5

Nevertheless, only few studies described collateral circu-
lation in mice, mainly focusing on posterior communi-
cating arteries (PcomAs) and leptomeningeal arteriole
variability in different mouse strains.2 Particularly, vari-
ability in the extension of the collateral circulation in
terms of collateral number and diameter has been
reported between C57BL/6 and BALB/cByJ mice that
display high and low extent of collaterals, respectively,
resulting in significantly different infarct volumes.6

On the other hand, intrastrain dynamic PcomA
patency and the hemodynamic response of the whole
brain collateral circulation to compensate PcomA vari-
ability remain largely unexplored.

This study aims to provide a comprehensive descrip-
tion of the macro and microcollateral artery plasticity
during brain acute and subacute hypoperfusion in two
experimental mouse models (MCAO and BCCAS).
Therefore, we applied a combination of complementary
techniques (T2-weighted magnetic resonance imaging
[T2-MRI], arterial spin labeling cerebral blood flow
[CBF], magneto resonance angiography [MRA] and
histology) to study two C57BL/6J background brain
hypoperfusion mouse models, where hypoperfusion is
the result of either bilateral common carotid artery
(CCA) stenosis (BCCAS) or 60-min unilateral blockage
of the left middle cerebral artery (MCA) with perman-
ent occlusion of CCA and external carotid artrery
(ECA) (MCAO).

Our study may provide potential insights that could
be translated into the clinic, both in terms of a more
informed use of these experimental models and better
understanding of the brain collateral circulation.

Material and methods

Animals, experimental design and exclusion criteria

Experiments were approved by the Landesamt für
Gesundheit und Soziales and conducted according to
the German Animal Welfare Act and ARRIVE guide-
lines (https://www.nc3rs.org.uk/arrive-guidelines); 34
and 18 male C57BL/6J mice (purchased at 8 weeks of
age, Charles River, Germany and 10 weeks of age
Janvier France, respectively) were housed in a tempera-
ture (22� 2�C), humidity (55� 10%), and light (12/12-h
light/dark cycle) controlled environment. The animals
underwent hypoperfusion between 9 and 13 weeks
of age (n¼ 42, BCCAS¼ 27, MCAO¼ 15) or
were used as controls (naı̈ve¼ 7; MCAO sham¼ 3)
(Figure S1(A) and (B))

The only exclusion criterion was death during MRI
due to wrong placement of the animal in the scanner
and led to exclusion of two MCAO and two sham ani-
mals (MCAO group), resulting in final analyzed sample
size of MCAO¼ 13 and MCAO sham¼ 1.

BCCAS mice were imaged before surgery, 24 h and
1 week post-surgery. The BCCAS data from seven
weeks are data from a previous study7 focused on
the same BCCAS model. They are important to
show that after seven weeks, the CBF recovery is asso-
ciated to a complete circle of Willis (CoW) loop
detected on MRA, analogously to the pre-surgery
condition. MCAO mice were imaged 24 h, one week,
four weeks and seven weeks post-surgery for angiog-
raphy and estimation of CBF using arterial spin label-
ing. At two days and eight days (BCCAS) and seven
weeks (MCAO), tissue was processed for
immunohistochemistry

Histology

PFA perfused brains were cut into 50 -mm-thick sec-
tions on a cryostat. After washing with phosphate-buf-
fered saline (PBS), free-floating sections were incubated
with 10% normal goat serum (NGS, GeneTech,
GTX27481) and 0.1% Triton-X-100 (Sigma-Aldrich,
X100) in PBS for 1 h at room temperature to block
unspecific binding. Primary and secondary antibodies
were diluted in 1% NGS and 0.1% Triton-X-100 in
PBS. Sections were incubated with rat anti-GFAP pri-
mary antibody (Millipore, 345860) for astrocytes and
rabbit anti-Iba-1 primary antibody (Wako Chemicals,
catalog #019-19741; RRID: AB_839504) for microglia
and macrophages at 4�C overnight. After thorough
washing, sections were incubated at room temperature
with AlexaFluor-594-conjugated goat anti-rat
(Invitrogen, catalog #A11081) and AlexaFluor- 488-
conjugated goat anti-rabbit (Invitrogen, catalog
#A11034) secondary antibodies for 2 h at room tem-
perature. Wheat Germ Agglutinin (WGA) Alexa
Fluor 680 conjugate anti-lectin together with Evans
Blue was used to stain blood vessels (further details in
supplemental materials and methods). Nuclei were
counterstained with DAPI (Fluka, 32670). Sections
were mounted with anti-fading mounting medium
Shandon Immuno Mount (Thermo Scientific,
9990402) on Super Frost Plus glass slides
(R.Langenbrinck, 03-0060). Microphotographs were
taken with a confocal microscope (Leica TCS SPE;
RRID: SciRes_000154).

Methods to prevent bias, statistics

This is an exploratory, descriptive study. Sample sizes
were not based on a priori power calculation. Only
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descriptive but no test statistic was used. Mice were
randomized to receive hypoperfusion.

PcomA size

Following Martin et al.,8 we grade the PcomA patency in
hypoperfused mice, using the ratio between PcomA and
basilar artery (BA) diameters. Martin and colleagues
identified four PcomA classes in naı̈ve mice: (1) PcomA
<10% of BA; (2) PcomA 11–20% of BA; (3) PcomA 21–
30% of BA and (4) PcomA >30% of BA. Although we
are convinced that PcomA patency is a functional
phenotype that can only be observed after PcomA
recruitment, we kept the same classification for hypoper-
fused mice, where both PcomA and BA diameter are
increased, leaving, to different extents, the PcomA/BA
ratio likely similar to the one observed in naive mice.
Based on our experiments, class 1 and class 2 have
been detected either in naı̈ve mice or MCAO and
BCCAS mice that died few hours post-surgery, strongly
arguing for a non-patent PcomA. Therefore, we identify
class 1 and class 2 as ‘non-patent’, class 3 as ‘small’, class
4 as ‘prominent’ and introduce a fifth class, represented
by PcomA>60% of BA, described as ‘very prominent’.

The diameters of the PcomAs were measured at the
smallest point and the diameter of the BA was mea-
sured proximal to the superior cerebellar arteries both
for the Evans Blue and fluorescent WGA stainings with
ImageJ. The diameter of the PcomAs as a percentage of
the diameter of the BA was calculated and used in the
analysis as previously described8 (Figure S2(A) and
(B)).

Angiotool

Vascular density, vessel length, end points, total vascu-
lar junctions and junction density were calculated for
both striatal, cortical and leptomeningeal microvessels,
selecting always the same regions of interest (both in
terms of brain area in both hemispheres and region of
interest dimension) by using the software AngioTool
v0.6a as previously described (Figure S2(C) and (D)).9

Additional information is included in the supple-
mentary materials.

Results

Macrocollaterals (PcomAs, AcomA and ECA
branches) in BCCAS and MCAO mice

In this study, we used two inbred hypoperfusion mouse
models (BCCAS and MCAO) (Figure S1(A) and (B))
with C57BL/6J background to describe and analyse
collateral artery plasticity in response to acute and
chronic brain hypoperfusion.

We show that in naı̈ve mice PcomAs are very small
and not identifiable on MRA, basilar artery and pos-
terior cerebral arteries, affluents and effluents of
PcomAs, respectively, are subtle (Figure 1(A), Figure
S3(A)). By contrast, in presence of an acute focal ische-
mia, PcomAs become prominent vessels up to &60%
of the basilar artery diameter. Their recruitment in the
first hours post-surgery is essential for the mouse sur-
vival and CBF sustainment and is characterized by an
increasingly intense MRA signal (Figures 1(C) and (D)
and 2(A) to (C); Figure S3(B) to (D)). These MRA
findings have been confirmed with anatomical ones
(Evans Blue and WGA CoW stainings in naı̈ve,
BCCAS and MCAO mice) (Figures 1(A) to (D) and
3(G) and (M); Figures S2(A) and (B) and Figure S3)

Among the nodes of the collateral artery circuit
(anterior communicating artery [AcomA], PcomAs,
ECA, ophthalmic artery and leptomeningeal vessels
and other deep microcollaterals), PcomAs display a
different degree of patency, critically influencing the
ischemic lesion volume, resolution and overall CBF
recovery. The atresia of the PcomA ipsilateral to the
MCAO and the hypoplasia of one PcomA together
with the late recruitment of ipsilateral external carotid
artery retrograde flow in BCCAS are likely responsible
for lethal strokes affecting up to 34% of one hemi-
sphere (12/27 [44.4%] and 3/13 [23%] BCCAS and
MCAO mice, respectively) (Figure 1(E) to (J)).

On the other hand, the presence of small to very
prominent PcomAs (15/27 [55.5%] and 10/13 [77%]
BCCAS and MCAO mice, respectively) guaranteed
the survival during the most severe hypoperfusion
(one day post-surgery, &70–80% CBF drop)
(Figure 1(E) and (F); Figure S3(B) to (D)).

Moreover, in a minority of mice, the collateral
recruitment was particularly rapid and effective, leading
to no lesions (defined as white or gray matter hyperin-
tensities) detectable on T2 MRI during the first week
post-surgery (BCCAS 2/27 [7.4%], at least one prom-
inent PcomA together with bilateral recruitment
of ECA retrograde flow one day post-surgery)
(Figure 2(F); Table S1) or small lesions (1–5% of the
left hemisphere) confined to striatum and dorsal part of
the prefrontal cortex (MCAO, 7/13 [53.8%], promin-
ent/very prominent left PcomA) (Figure 3(A) and (O)).

BCCAS (30% stenosis of both CCAs: Left CCA
stenosis [surgery day 1], right CCA stenosis
[surgery day 2])

BCCAS is the result of a two-day surgery beginning
first with a left CCA stenosis of approximately 30%
and after one day with the stenosis of the right CCA
(Figure S1(A)). The compensatory mechanisms acti-
vated at day 1 deeply affect also day 2 outcome.
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The CBF reduction in the left hemisphere one day post-
surgery reaches an average of 72% (20%–98%) in left
striatum and frontal cortex (Figure 2(G); Tables S2 and
S3).This severe CBF drop likely instantly recruits (a) left
PcomA, (b) AcomA and (c) left ECA retrograde flow
(Figure 2(A) and (B)). The AcomA likely redistributes
blood flow from the right to the left hemisphere, with an
overall reduction of right CBF and a consequent
increased vulnerability for ischemic lesions during the
surgery on this remaining side. Indeed, one day post-
surgery, arterial border zones between right anterior

cerebral artery (ACA) and right MCA were the most
susceptible areas (Figure 2(Ba); Figures S4 and S5).

A total of 20 out of 27 mice (74%) presented small to
moderate ventral subcortical lesions affecting overall
1%–37% of the right hemisphere, and particularly
right striatum (17/20 [85%]), prefrontal cortex (14/20
[70%]), hippocampus (10/20 [50%]) and corpus callo-
sum (5/20 [25%]) (Figure 2(H); Table S4). These lesions
were associated with a right CBF reduction which was
more severe (82% [range: 60%–95%]), compared to the
one observed in the left side (Figure 2(G); Tables S2

Figure 1. PcomA and vascular phenotype effect in MCAO and BCCAS mouse models. (A–D). PcomA calibre in normal and ischemic

conditions. (A) Non-patent right PcomA (2a), detected in a naı̈ve mouse; (B) non-patent right PcomA (2a) and absence of left PcomA

in MCAO sham; (C) prominent left PcomA (2b) and non-patent right PcomA (2a) in MCAO; (D) 2 prominent PcomAs in BCCAS (2a,

2b). 1, basilar artery (BA); 2a, right PcomA; 2b, left PcomA; 3a, right posterior cerebral artery (PCA); 3b, left posterior cerebral artery

(PCA). The numbering of the vessels reflects the direction of the collateral blood flow following focal ischemia in the MCA or anterior

brain areas: BA!PcomA!PCA, as already described in detail in the BCCAS and MCAO models in Figure S1(A) and (B). (E–F) Effect

of left PcomA size and PcomA-ECA retrograde flow in MCAO and BCCAS survival. MCAO mice with non-patent left PcomA die few

hours post-surgery. & One-fourth of mice with small left PcomA die within one day post-surgery. The majority of MCAO mice with

small left PcomA and all the MCAO with prominent/very prominent PcomA survive (E). Analogously, BCCAS mice with no PcomAs or

no PcomA-no ipsilateral ECA retrograde flow die within few hours post-surgery. By contrast, BCCAS mice with at least one small to

prominent PcomA and retrograde flow from left or right ECA do survive (F). (G–H) MCAO mice with non-patent left PcomA died

within one day post-surgery with ischemic lesions affecting more than 35% of the left hemisphere and left PcomA and overall left blood

flow were not identifiable on MRA one day post-surgery. (I–J) BCCAS with non-patent right PcomA (*) and absence of right ECA

retrograde flow recruitment (**), presenting severe ischemic lesions affecting >20% of the right hemisphere.
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and S3) and to the absence of retrograde flow from
right ECA, which, on the contrary, was already present
in the left side (Figure 2(A) and (B)).

Recruitment of retrograde flow from ECA and
PcomA patency are the main factors influencing CBF
and therefore lesion extension and overall recovery
(Figures 1(F) and (J) and 2; Figure S5). However, the
significant intra-strain variability of PcomAs and ECA
retrograde flow recruitment leads to markedly different
degrees of hypoperfusion. Among the mice with at least
one patent PcomA, surviving during the first week post-
surgery (15/27 [55.5%]), we identified three main neu-
roimaging and vascular phenotypes: (1) mice presenting
small subcortical lesions, generally affecting right water-
shed areas (5%–20% of the right striatum and corpus

callosum, 10/15 [66.6%]), displaying at least one prom-
inent and one small PcomAs and retrograde flow from
left ECA at day 1 (Figure 2(A) to (D); Figure S5(A);
TableS1); (2) mice presenting different degrees of ische-
mic lesions in the left hemisphere (3/15 [20%]), asso-
ciated to absence of retrograde flow from left ECA
and one prominent PcomA (Figure 2(E); Figure S5(B);
TableS1) and (3) mice with no ischemic lesions both at
one day and seven days post-surgery (2/15 [13.3%]),
displaying at least one prominent PcomA and retro-
grade flow from both ECAs (Figure 2(F); Figure
S5(C); TableS1). Importantly, even if the CBF drop
may not cause ischemic lesions detectable on T2 MRI,
mild hypoperfusion leads to migration and activation of
microglia/macrophages and astrocytes (Figure S6).

Figure 2. MRA and MRI phenotypes in BCCAS mice one to seven days post-surgery. (A–C) Vascular collateral plasticity during the

first week post-surgery; (a), circle of Willis; (b), ECA flow. (A) Pre-surgery MRA, where PcomAs are not identifiable. (B) MRA one day

post-surgery, showing recruitment of both PcomAs (white arrows), directing the blood flow to the PCAs, whose MRA intensity is

increased, and left ECA retrograde flow (green arrow, yellow dashed line) and hypoperfused border zones between right ACA and

right MCA (a, orange arrow). (C) MRA seven days post-surgery, characterized by increased PcomA (white arrows) and PCAs MRA

intensity signal, recruitment of right ECA retrograde flow (green arrow, yellow dashed line), with a compensatory sustainment of the

right anterior cerebral artery (ACA) territory (a, orange arrow) partially coming from the left hemisphere through the AcomA (blue

dashed line). (D–F) Main ischemic lesion patterns observed in BCCAS 24 h post-surgery on T2-weighted MRI: small right subcortical

lesions (D), big cortical and subcortical lesions (E) and no lesions detectable (F). (G) Percentage of CBF reduction at day 1 in BCCAS

mice in left and right hemispheres, displaying more accentuated hypoperfusion in the right hemisphere, particularly in the frontal

cortex. (H) Most affected brain regions in the BCCAS model 1 day post surgery are the watershed areas between right ACA and right

MCA: right cerebral cortex, corpus callosum, striatum und hippocampus. CCA L: left common carotid artery; ECA L: left external

carotid artery; ECA R: right external carotid artery; PCA L: left posterior cerebral artery; PCA R: right posterior cerebral artery;

PcomA L: left posterior communicating artery; PcomA R: right posterior communicating artery. R: right; L: left. Pre-Op, pre-surgery.
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External–internal carotid shunt via ophthalmic artery
in BCCAS mice

Although we could not assess the ophthalmic artery flow
using a Doppler ultrasonography, we have used angiog-
raphy and histology to study the retina. Seven days post-
surgery, we report severe retina degeneration with gliosis
particularly in the ganglion cell layer and moderate loss
of presynaptic protein CTBP2 in the outer plexiform
layer. During chronic hypoperfusion, we observe
severe thinning and retinal atrophy mostly in the gan-
glion cell layer and inner nuclear layer, with significant
reduction of CTBP2 signal (Figure S7(A) to (C)).
Despite the recruitment of ancillary branches of the

ECA and a likely external-internal shunt, as already
reported in patients with internal carotid occlusive dis-
ease,10,11 we show that retinal degeneration is irrevers-
ible. This is likely due to either the late recruitment of
retrograde flow through the ECA or the pre-existence of
external-internal carotid shunt (retrograde flow from the
eye to the brain) via ophthalmic artery or both with an
overall reduction of blood flow to the retina.

MCAO (left MCA, CCA and ECA occlusion)

MCAO is the result of surgery consisting of 60-min
transient blockage of left MCA and permanent occlu-
sion of CCA and ECA (all in one session) (Figure

Figure 3. Effect of PcomA in MCAO. (A–B) ischemic lesions (red shades) identified on T2-weighted MRI. (A–N) Edges of the

phenotypic spectrum observed in MCAO mice: small lesion (A) associated to very prominent left PcomA (C–G) and absence of

macroscopic left atrophy (H). (C–D) Recruitment of left PcomA is identifiable on MRA one day post-surgery (white arrow) and it is

accompanied by increased intensity of left PCA (blue arrow). (B) Extensive lesion caused by small left PcomA (I-M), leading to

significant left brain atrophy (N). (E–F) and (K–L) progressive increase in the AcomA size (yellow arrows). (O–R) PcomA size is the

most important factor in determining lesion volume during acute hypoperfusion (one day), infarct resolution during subacute hypo-

perfusion (seven days) (O, P, Q), ipsilateral and compensatory contralateral CBF decay in ventral ischemic regions such as striatum (Q,

R). Detailed description of MCAO mice phenotype as well as collateral blood flow direction is provided in the supplementary

materials. Small, prominent and very prominent refer to the left PcomA size. SL: striatum left; SR: striatum right; d: day/s; w:weeks.
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S1(B)). This causes a significant drop in CBF in the
ipsilateral hemisphere. One day post-surgery, the aver-
age CBF reduction is&60% (range: 22%–81%) in ipsi-
lateral striatum and frontal cortex (Tables S5 and S6).
This acute and severe hypoperfusion, likely causes a
hemodynamic gradient between anterior hypoperfused
brain areas and posterior areas normally perfused. The
blood flow in left PcomA and the more intense AcomA
signal, detected one day post-surgery on MRA, is an
indirect indication of left PcomA and AcomA patency
(Figure 3(C) to (F), (K) and (L)). A new global and
stable hemodynamic balance close to the baseline is
reached in 9/10 (90%) mice seven days post-surgery
(Table S5) and left PcomA and AcomA from ancillary
vessels became critical vessels (Figure 3(D) to (G) and
(K) to (L); Figure S8(A)).

Despite this general pattern, high intra-strain vari-
ability of PcomA patency is the most important
factor in determining the stroke outcome. Indeed,
it significantly influences the lesion volume, the
lesion extension, the CBF recovery and the contra-
lateral drop in CBF (Figure 3(O) to (R); Tables S6
and S7). In our cohort, we report a spectrum of left
PcomA sizes, from non-patent and small (Figure
3(M), 4/13 [30.7%] and 2/13 [15.4%], respectively)
to prominent and very prominent (Figure 3(G), 6/
13 [46%] and 1/13 [7.7%], respectively). Mice with
left non-patent PcomA died within few hours post-
surgery. MCAO mice with a small left PcomA
(Figure 3(M); S8(B)) displayed the largest lesions
affecting up to 34% of the left hemisphere (Figure
3(B)) and including also dorsal areas (orbital cortex
and cerebellum) (Figure 3(B), (O) and (P); Table S8),
the most severe drop in CBF (up to 80% in left
striatum) (Figure 3(Q) and (R)), the slowest recovery
(up to four weeks) (Table S5) and a marked brain
atrophy (Figure 3(N)). In these mice, we observed a
significant proportional compensatory decrease of
contralateral CBF (up to 30% in right striatum,
Figure 3(Q)). In comparison, mice with prominent
left PcomA (Figure S8(A)) showed lesions 2.6 times
smaller (Figure 3(P); Table S7), mostly affecting ven-
tral areas (prefrontal cortex, striatum and ventral
hippocampus) (Figure 3(O)) and a moderate drop
in ipsilateral and contralateral CBF (&57% and
15% in left and right striatum, respectively) (Figure
3(Q)). Very prominent PcomA (Figure 3(G)) was
associated to the smallest lesions (5% of the left
hemisphere) (Figure 3(A)), mild CBF reduction,
more rapid recovery (Figure 3(Q) and (R)) and
absence of macroscopic ipsilateral brain atrophy
(Figure 3(H)).

In the supplementary, we describe in details the
extreme phenotypes. The other cases fall within this
phenotypic spectrum (Figure S8).

The hemisphere contralateral to MCAO

In MCAO mice, the blood flow redistribution from the
right to the left hemisphere via AcomA causes a signifi-
cant and proportional CBF reduction in the right hemi-
sphere: 17% (range: 4%–33%), 28% (range: 18–41%)
in striatum and frontal cortex, respectively (Figure
3(Q); Tables S5 and S6). Interestingly, MCAO mice
with small left PcomA display significantly lower
global CBF values, both for the left and right hemi-
sphere at day 1 (Figure 3(Q); Tables S5 and S6) and
right CBF reduction (&30% in right striatum) which is
close to the CBF reduction seen in BCCAS mice with
the most effective vascular phenotype (retrograde flow
from both ECAs and two prominent PcomAs) (&40%)
at day 7 (Tables S3 and S6). This pattern mimics the
hemodynamic effects of unilateral CCA stenosis and
therefore triggers analogous compensatory mechanisms
such as right ECA retrograde flow, although temporar-
ily and only during the first 24 h post-surgery (Figure
S8(C)). On the contrary, a more stable involvement of
the contralateral hemisphere is evident at the micro-
vascular level (leptomeningeal arterioles and deep
microvessels), where increased number of larger arteri-
oles and a more dense vascular network are detected in
the infarct and peri-infarct areas, respectively, seven
weeks post-surgery (Figures 4 to 6).

Microcollaterals (leptomeningeal and deep arter-
ioles) in BCCAS and MCAO mice

In both models, part of the microvessels likely represent
microcollaterals, given the increased number of vessel
length, vascular junctions and reduction of end points
compared to naı̈ve mice (Figure 5(E) to (G)). These
microvessels display in the cortical and deep gray
matter a similar pattern, whereas the white matter
arterioles appear significantly rare and sparse (Figures
4 and 5; Figures S9 and S10)

Infarct and peri-infarct areas and other hypoxic
regions are characterized by significantly different
microvascular features. Increased size up to 50 mm
diameter and reduced density of arterioles are a hall-
mark in the infarct area (Figure 4(A) to (CIV); Table
S9). Their increased diameter is associated with a sig-
nificant invasion of microglia/macrophages, generally
in the form of islets (Figure 4(CI) and (CII)) during
the hypoxic subacute phase, whereas activated astro-
cytes are detected in the peri-infarct area and delimit
the infarct-peri-infarct border (Figure 4 (CIII)). By
contrast, the peri-infarct area and moderately hypo-
perfused regions are characterized by a network of
microvessels with moderately increased length and
whose number of anastomoses is proportional to the
degree of hypoperfusion (highest density of junctions
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in right and left hemisphere in BCCAS and MCAO
mice, respectively) (Figure 5(E); Table S10).
Importantly, in MCAO, this phenomenon affects
also the relatively hypoperfused hemisphere contralat-
eral to the focal ischemia and at the leptomeningeal
superficial level gives rise to a symmetric picture, with
both right and left leptomeningeal vessels presenting
overlapping vascular anastomoses, vessel density and
length seven weeks post-surgery (Figure 6(C) to (F);
TableS11).

Discussion

The aim of the study was to capture the collateral vessel
evolution during brain ischemia and to comprehen-
sively describe the hemodynamic changes over time
(one day, seven days, four and seven weeks) in two
widely used experimental models of brain hypoperfu-
sion with C57BL/6J background: MCAO and BCCAS.

We show that contralateral hemisphere, vertebroba-
silar circulation and retrograde flow from ECA repre-
sent three essential reservoirs for the CBF
redistribution during focal ischemia. In presence of
acute ischemia, these three pools, normally independ-
ent, are interconnected by AcomA, PcomAs and ECA
ancillary branches and become a pivotal and integrant
part of the same hemodynamic circuit. Moreover, the

partial functional overlap between them leaves the pos-
sibility for some backup solutions.

PcomAs are the main determinants of stroke sur-
vival in MCAO. First, MCAO mice with no/non-
patent PcomAs die within 24 h post-surgery. Second,
MCAO mice display lesion volume, lesion resolution
and ipsi and contralateral CBF reduction proportional
to the left PcomA calibre, with mice with small and
very prominent PcomAs showing the biggest and smal-
lest lesion volumes and least and most effective lesion
resolution, respectively (Figure 3). Analogously,
PcomA patency together with the promptness of ECA
retrograde flow recruitment plays a key role in BCCAS.

Overall, in both these hypoperfusion mouse models,
we report a similar percentage of PcomA variability
with 15.4% and 37% mice with none or two non-
patent PcomAs, 30.8% and 22.2% mice with at least
one small PcomA, 53.8% and 37% with one promin-
ent/very prominent PcomA and 33.3% mice with two
prominent PcomAs. By contrast, McColl et al.3

reported in the same C57BL/6 strain 3/10 (30%), 6/10
(60%) and 1/10 (10%) mice with none, one and two
PcomAs, respectively.3 This difference may be due to
three main factors: first, McColl studied the collateral
status in naı̈ve mice and we show that collaterals are
recruited under moderate-severe acute hypoxia, there-
fore representing a functional vascular phenotype that

Figure 4. Microvascular plasticity in the infarct area in MCAO and BCCAS models. The infarct area is characterized by arterioles

reduced in number and increased in size both at the leptomeningeal level (A) and striatal one (B-CIV)(white arrows), generally

associated in the subacute phase (seven days) to significant microglia infiltration (CI–CII). Scale bars: B, CI, CIII, CIV¼ 1 mm; B0,

CII¼ 0.5 mm. Mice perfused with WGA Alexa Fluor� 680 conjugate (Thermofisher, W32465). D: day/s; wk: weeks.
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can only be seen in response to ischemia. Thus, the
presence of very subtle vessels in naı̈ve mice does not
imply their potential patency. Second, the small sample
size that can significantly bias the results. Third,
PcomA size represents a dynamic spectrum, varying
significantly from non-patent to very prominent and
therefore an unambiguous classification is difficult
to draw.

A growing body of evidence reported hemodynamic,
metabolic, neuroimaging and functional changes in the
stroke contralateral hemisphere in the acute phase (first
hours-days post ischemia).12–16 Here, we provide evi-
dence that the contralateral hemisphere represents an
important reserve of blood flow that can be shifted to
the ischemic focus, to counterbalance any CBF gradi-
ent. First, the average reduction of right CBF in the
BCCAS model (&83%) is higher compared to the
hypoperfusion detected in left hemisphere (&72%),
likely due to the pre-existent right to left CBF shunt

due to the surgery on left CCA at day 1, the left-right
CBF gradient drop and the later recruitment of the
right ECA. Consequently, the right ACA territory
and the border zones between right MCA and right
ACA become particularly susceptible to ischemic
lesions (Figure 2 (Ba); Figures S4 and S5). Second,
MCAO right CBF reduction is proportional to the
reduction of CBF in the left hemisphere and thus to
the left PcomA calibre (Figure 3(Q); Table S6). This
is in line with previous studies in patients that measured
CBF with positron emission tomography (PET) and
found a significant correlation between flow impair-
ment in the ischemic area and proportional CBF reduc-
tion in the contralateral hemisphere.12 Third, the CBF
drop in MCAO mice with small left PcomA (up to 37%
of the pre-surgery value) is very close to the CBF reduc-
tion seen in BCCAS mice with two prominent PcomAs
and retrograde flow from both ECAs seven days post-
surgery (&40%) (Tables S3 and S6). Therefore, this

Figure 5. Moderately hypoperfused areas are characterized by microvessels with moderately increased length in MCAO compared

to naı̈ve mice (A-D0, F), whose significantly increased number of anastomoses (E–G) is proportional to the degree of hypoperfusion at

day 1 (H). (A–B0 and C–D0) Microvessels stained with WGA in left and right striatum in naı̈ve and MCAO mice, respectively. (A0–B0 and

C0–D0) angiotool analysis of the homologous histological sections (A–B and C–D). Mice perfused with WGA. Scale bars¼ 0.5 mm.

Alexa Fluor� 680 conjugate (Termofisher, W32465). L: left; R: right; CL: cortex left; CR: cortex right; SL: striatum left; SR: striatum

right.
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simulates the hemodynamic effects of a CCA stenosis
and thus temporarily triggers the same compensatory
mechanisms such as right ECA retrograde flow (Figure
S8(C)). Moreover, the critical importance of the contra-
lateral hemisphere in the sustainment of the CBF is
highlighted by the different time of recovery between
MCAO mice and BCCAS; 90% of MCAO mice
recover almost to the baseline after one week, whereas
BCCAS mice take four weeks.7 Finally, the significant
involvement of the contralateral hemisphere leads to a
moderate hypoperfusion that even if it is not sufficient
to cause ischemic lesions and remains below the thresh-
old of T2-weighted MRI detectability, is responsible for
a significant microvascular remodelling at different
levels: from the superficial leptomeningeal to the deep
striatal layers (Figures 5 and 6).

Analogously to the peri-infarct area, moderately
hypoxic ipsilateral and contralateral areas are covered
with a dense network of microvessels with moderately
increased length and significantly augmented anasto-
moses (Figure 5). Given its hemodynamic features,
this microvascular phenotype likely results in a greater
perfusion volume thus improving the tissue oxygen-
ation and the uptake of catabolites. Moreover, this vas-
cular web likely exerts a trophic function through the
synthesis and release of neurotrophins such as NGF,
IGF-I, and BDNF, that further catalyse the long-last-
ing vessel formation and recruitment of immune cells.17

Therefore, this hypoxia-triggered-vascular plasticity
may shape and significantly influence pre-existent neur-
onal circuits, explaining neurophysiologic changes also
in the contralateral hemisphere.18

Figure 6. (A–F) Leptomeningeal vessels in MCAO mice seven weeks post-surgery. Leptomeningeal vessels in naı̈ve mouse (A) and

MCAO (B). (C) Anastomoses between terminal branches of PCA and MCA in the right cortex of MCAO mice. MCAO mice are

characterized by a symmetric network of leptomeningeal arterioles with increased anastomoses (D), density (E) and moderately

increased vessel length (F), both in cortex ipsilateral and contralateral to MCAO. MCA: middle cerebral artery; PCA: posterior

cerebral artery; L: left; R; right; wks: weeks.
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By contrast, and as already reported in stroke
patients,19 the infarct area is characterized by rarefied
arterioles with increased diameter, up to 4.5 times the
diameter of the largest arterioles observed in the
respective brain regions in naı̈ve mice (Figure 4;
TableS9). These vascular features assure a reduced
resistance and are particularly effective for a rapid
delivery of microglia/macrophages, removing debris
and exerting a neuroprotective function in the subacute
phases (seven days post-surgery) (Figure 4(CI) and
(CII)).20,21

In addition, the abrupt redistribution of blood in
ancillary vessels or vessel normally characterized by
lower intravascular pressure causes macromodifications
such as increased tortuosity, which is a hallmark of
intravascular hypertension (Figure 3(M), blue arrow;
Figure S8(A) and (B)).22,23 Over time, this may lead
to (1) arteriolar ialinosis in microvessels,24 with an
increased risk for subcortical microbleeds, already
reported in the same BCCAS model, six months post-
surgery7 and differing from amyloid related micro-
bleeds, given the main subcortical location and the
absence of lobar involvement25 and (2) aneurisms in
macrovessels.22,23 Therefore, strengthening a possible
cause-effect link between ischemic and haemorrhagic
strokes, which is supported already by several genetic
risk factors such as COL4A1 associated to both.26,27

Finally, we showed that the BCCAS model, which
has been used as an experimental model of chronic
hypoperfusion is firstly characterized by an acute and
severe hypoperfusion leading to the rapid vascular
response and ischemic lesions particularly affecting sub-
cortical and watershed areas (striatum, corpus callosum
and prefrontal cortex). The acute hemodynamic com-
pensatory response leads to a gradual recovery and in
the long-term a modest hypoperfusion. Therefore,
BCCAS mice significantly differ from patients, where
chronic hypoperfusion is a gradual phenomenon,
occurring in years or decades and leaving the time for
a progressive adaptation of collateral circulation both
at the level of the circle of Willis and leptomeningeal
collaterals. The compensatory responses triggered
during this acute and most severely hypoperfused
phase (1 day) are the main determinants of the long-
term outcome both in terms of lesion volume, exten-
sion, recovery and brain atrophy. Thus, the loss of
neurons reported in corpus callosum in the chronic
phase in this BCCAS model28 may be attributable to
ischemic lesions and acute severe drop in CBF, rather
than resulting from chronic mild global hypoperfusion.

In summary, we show that focal ischemia triggers a
global hemodynamic response, significantly affecting
also the contralateral hemisphere until the effective re-
establishment of a new hemodynamic balance. Acute
hypoperfusion immediately leads to a negative selection

of mice with no PcomAs. PcomA patency ipsilateral to
the focal ischemia determines the infarct volume and
recovery in MCAO mice. Similarly, the rapidity of
retrograde ECA blood flow recruitment, together with
PcomA patency, mainly shapes the extension and the
side of ischemic lesions in BCCAS mice. Finally, given
the significant intrastrain collateral variability, when
using C57BL/6J mice as MCAO and BCCAS ischemia
models to test the independent effect of neuroprotec-
tants and genes on stroke outcome, PcomAs and the
overall collateral recruitment particularly during the
most severe brain hypoperfusion (one to seven days
post-surgery) have to be critically considered as addi-
tive and main factors influencing brain lesions and per-
fusion recovery.
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