
Lack of cortico-limbic coupling in bipolar disorder and
schizophrenia during emotion regulation
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Bipolar disorder (BD) and schizophrenia (Sz) share dysfunction in prefrontal inhibitory brain systems, yet exhibit distinct forms
of affective disturbance. We aimed to distinguish these disorders on the basis of differential activation in cortico-limbic pathways
during voluntary emotion regulation. Patients with DSM-IV diagnosed Sz (12) or BD-I (13) and 15 healthy control (HC) participants
performed a well-established emotion regulation task while undergoing functional magnetic resonance imaging. The task
required participants to voluntarily upregulate or downregulate their subjective affect while viewing emotionally negative images
or maintain their affective response as a comparison condition. In BD, abnormal overactivity (hyperactivation) occurred in the
right ventrolateral prefrontal cortex (VLPFC) during up- and downregulation of negative affect, relative to HC. Among Sz,
prefrontal hypoactivation of the right VLPFC occurred during downregulation (opposite to BD), whereas upregulation elicited
hyperactivity in the right VLPFC similar to BD. Amygdala activity was significantly related to subjective negative affect in HC and
BD, but not Sz. Furthermore, amygdala activity was inversely coupled with the activity in the left PFC during downregulation in
HC (r¼�0.76), while such coupling did not occur in BD or Sz. These preliminary results indicate that differential cortico-limbic
activation can distinguish the clinical groups in line with affective disturbance: BD is characterized by ineffective cortical control
over limbic regions during emotion regulation, while Sz is characterized by an apparent failure to engage cortical (hypofrontality)
and limbic regions during downregulation.
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Introduction

It is increasingly accepted that schizophrenia (Sz) and bipolar
disorder (BD) share some genetic vulnerability,1 comparably
high heritability estimates2,3 and neuropsychological dys-
function in common cognitive domains.4–6 Consistent with
these common traits, the neuroanatomical basis of these
disorders shares various abnormalities in prefrontal, limbic
and paralimbic brain regions.7,8 Recently, however, the
importance of determining the functional impact of these
brain abnormalities has been proposed as a priority to
improve diagnostic validity and identify new treatment
targets.9 An important target may be the specific cortico-
limbic pathways that underlie the distinct forms of overt
emotional dysfunction associated with each disorder. That is,
although BD is characterized by the disturbance of mood,
reflected in manic and depressive states, overt manifesta-
tions of emotionality in Sz are often characterized by
inappropriate or flat affect (that is, lack of context-appropriate
emotional expressivity). In addition, unique differences in the
ability to voluntarily regulate subjective affect have been
associated with BD and Sz, in comparison to healthy adults.
For example, people with Sz have difficulty upregulating
positive emotions,10 while BD patients have inefficient
strategies to downregulate negative affect, in association
with higher levels of depression and anxiety.11 In the present
study, we sought to distinguish these related disorders on the

basis of brain activation during the voluntary regulation of
negative affect, as a means of differentiating cortico-limbic
function in each disorder.

Neuroimaging research of emotion regulation in healthy

adults consistently implicates lateral prefrontal brain regions

such as the dorso- and ventrolateral prefrontal cortex

(DLPFC, VLPFC) in the voluntary regulation of negative

emotion, as well as medial frontal and limbic cortex such as

the anterior cingulate (ACC) and ventromedial PFC.12–15

Moreover, the recruitment of these prefrontal regions,

especially the ventromedial PFC, is inversely correlated with

amygdala reactivity during emotion regulation.14,16–18 Such

data, along with considerable animal lesion and anatomical

tracing studies,19–24 substantiate a top-down (voluntary)

circuit of emotion regulation in which prefrontal regions exert

inhibitory control over subcortical amygdala pathways.18,25

Within this system, the amygdala is critical for the generation

and expression of negative emotions such as fear and

anxiety, while regions such as the DLPFC and VLPFC

are thought to regulate responses to emotional stimuli via

direct projections from the ventromedial PFC to inhibitory

GABAergic neurons in the amygdala.17,20,22–25

Neuroimaging studies implicate cortico-limbic dysfunction
in BD and Sz.26–28 For example, studies of threat-related face
processing in Sz demonstrate decreased amygdala activ-
ity,29–32 while studies involving passive viewing of affective
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images show hypofrontality shortly after viewing affective
stimuli, relative to healthy controls (HC).33 In contrast, BD
patients demonstrate increased activation of subcortical
limbic regions when viewing emotional stimuli alongside
hypofrontality when inhibiting a motor response to emotion
stimuli.34–37 However, such studies do not examine the
function of cortico-limbic circuits during voluntary emotion
regulation, an adaptive ability that may be central to affective
dysfunction in Sz and BD.33,38,39 This is relevant because at
least one recent study indicates the pattern of cortico-limbic
function is quite different during affect regulation in non-
clinical psychosis-prone individuals—with greater activa-
tion in VLPFC regions alongside a decoupled amygdala
response.40 Whether affect regulation confers similar
VLPFC hyperactivity in psychotic individuals has yet to be
examined.

We thus aimed to distinguish unique patterns of cortico-
limbic activation during emotion regulation in BD and Sz,
using an established paradigm designed to examine brain
activity during voluntary up- and downregulation of
negative affect.41 During downregulation, we expected both
clinical groups to demonstrate VLPFC hyperactivation, with
greater amygdala activity in BD distinguishing the patient
groups.31,34,35,40 During upregulation, we expected Sz patients
to demonstrate VLPFC hyperactivation alongside diminished
amygdala activity,31,33 with BD distinguished from Sz by
hypofrontality alongside greater amygdala activation. We
expected that coupling of activation in cortico-limbic regions
during emotional regulation would be absent or reversed in
both groups.25,40

Materials and methods

Participants. In all, 15 HC, 13 people with BD (bipolar-I
disorder) and 12 people with Sz were included in the study
after meeting the criteria for right-handedness, restricted
head movement (o3 mm), no structural brain abnormalities,
no history of head injuries and no recent drug abuse in the
past year. Healthy participants also had no personal or family
history of Sz or BD. Clinical participants were medicated,
chronic outpatients recruited from psychiatric services at the
Prince of Wales Hospital, the Sydney Bipolar Disorders Clinic
at the Black Dog Institute and the Australian Schizophrenia
Research Bank (ASRB). Only participants with a clinician-
confirmed DSM-IV diagnosis of Sz or BD (based on all
available medical information) were included in the study; the
ASRB also provided confirmation of Sz diagnosis using the
Diagnostic Interview for Psychosis (DIP) based on DSM-IV
diagnostic criteria.42,43 All clinical diagnoses were confirmed
independently by a qualified clinical psychologist using the
Mini International Neuropsychiatric Interview (MINI).44 The
MINI was also used to assess (hypo)mania, depression
and anxiety in clinical participants, and to screen for these
disorders in HC. All participants provided written informed
consent according to the approval requirements of the
Human Research Ethics Committees of the South East
Sydney and Illawarra Area Health Service (Protocol
07/171) and the University of New South Wales (Protocol
07/167).

Materials. Premorbid IQ estimates were obtained using the
National Adult Reading Test (NART).45 Symptom severity
ratings on the day of the MRI scan were provided by the
Depression, Anxiety and Stress Scale (DASS)46 and Positive
and Negative Syndrome Scale (PANSS).47 The Edinburgh
handedness inventory48 was used to measure handedness
in each participant. The Internal State Scale (ISS) was used
to measure mood state in BD.49

Emotion regulation task. The experimental task was
adapted from previous studies of emotion regulation in
healthy adults.18,41 The stimulus set comprised 63 negative
(for example, scenes of threat or suffering) and 12 neutral (for
example, household and working scenes) images selected
from the International Affect Picture System (IAPS).50 The
neutral images were assigned to the ‘maintain’ condition as
filler trials to prevent habituation to negative images,14,41 and
were not included in the planned analysis. The negative
images were randomly sorted into three different sets (21 in
each set), and sets were counterbalanced across instruction
conditions (‘increase’, ‘decrease’ and ‘maintain’), such that
there were three versions of the task administered equally
across participant groups to avoid confounding instruction
effects with any particular image sets.

Stimulus presentation and timing of all stimuli were
automatically synchronized with the onset of each echoplanar
images acquisition to ensure accurate event timing. The task
was programmed and executed using Presentation software
(Neurobehavioral Systems, Albany, CA, USA) on a Dell
computer running Windows XP (Microsoft, Redmond, WA,
USA). The participant viewed the task on a monitor placed
at the rear of the MRI scanner, through a mirror positioned
above the headcoil. A Lumina MRI-compatible two-button
response pad (Cedrus, CA, USA) recorded each response.

Procedure. Prior to the scan, participants were given at least
three practice trials under instruction to increase or decrease
their subjective emotional response to each image through
processes of cognitive reframing (including reappraisal and/or
distancing techniques described previously by Oschner
et al.41). Responses were not recorded during this practice
and training continued until the participant successfully
implemented the strategy.41 Methods to ‘increase’ subjec-
tive affect were guided by instruction to, for example, imagine
that they or a loved one were involved in the depicted
situation, while attempts to ‘decrease’ subjective affect were
guided with instructions to imagine that the situation was not
real or that they were a detached observer. In contrast, for the
‘maintain’ condition, participants were instructed to maintain
their initial subjective emotional response to each image,
without alteration. During functional magnetic resonance
imaging (fMRI) acquisition, each trial began with an
instruction to ‘increase’, ‘decrease’ or ‘maintain’ for 2 s,
followed by an image for 10 s. Following each image
presentation, participants were asked to rate their level of
subjective affect on a 7-point likert scale, (where 1¼ no affect
and 7¼ strongest affect), by pressing the response button
until the desired rating was highlighted (Supplementary
Figure 1). The duration of fMRI scanning was 25 min.
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fMRI acquisition. We acquired 760 whole-brain T2*
weighted echoplanar images, with 28 axial slices in
ascending order, 4.5 mm slice thickness with no gap. The
repetition time (TR) was 2000 ms; echo time (TE) was 30 ms;
flip angle, 901; field of view (FOV): 250 mm using a Phillips
Achieva 3T scanner at Neuroscience Research Australia in
Sydney. A T1-weighted high resolution anatomical scan
(MPRAGE) was acquired for each participant for registration
and screening: TR 5.4 ms, TE 2.4 ms, FOV 256 mm, sagittal
plane, 1 mm slice thickness, no gap, 180 slices.

fMRI data analysis. Functional images were realigned and
slice time corrected using SPM8 (Wellcome Department of
Cognitive Neurology, London, UK). Anatomical images were
coregistered to the mean functional image and normalized to
a standard template brain; functional images were normalized
using parameters generated by anatomical image normaliza-
tion and interpolated to 3� 3� 3 mm3 voxels. Functional
images were smoothed with a Gaussian filter (9 mm full
width–half maximum). A high pass filter with a cutoff period
of 128 s was applied to remove drifts within sessions.

Fixed effects for each participant were modeled at the first-
level of analysis. The 10-s regulation periods in each condition
(increase, decrease, maintain, neutral) were modeled as
separate boxcar regressors, convolved with the canonical
hemodynamic response function. A general linear model
analysis in SPM8 was used to create contrast images
representing differences between conditions for each partici-
pant. On the basis of prior work,41 we defined specific
contrasts of the ‘increase’ and ‘decrease’ conditions relative to
the ‘maintain’ baseline condition to reveal the effect of emotion
upregulation (increase 4maintain) and downregulation
(decrease 4maintain) on neural activity in each participant,
when viewing negative images. These contrast images from
each participant were then analyzed in a second-level general
linear model to determine group effects in the mean level of
cortical activation. As we were interested in group differences
in the extent of prefrontal cortical activation rather than
differences in peak voxels, the threshold for statistical maps of
group analyses was set at an uncorrected voxel-level
Po0.005, and we report regions with a mean t-value that
exceeds the FWER corrected cluster-level Po0.05. This
implies mean activity in each region exceeded significance,
rather than only a peak voxel within that region. Regions
wherein mean activity exceeded the clusterwise threshold
were automatically labeled using the WFU PickAtlas tool in
SPM8,51 and Brodmann area labels were confirmed accord-
ing to the Talaraich atlas.52

Cortico-limbic coupling. We first determined whether
amygdala activity was related to the level of negative affect
in line with models of emotion generation and affect regulation.
A standard anatomical mask defining the bilateral amygdala
region was constructed using the PickAtlas tool,51 and this
aROI was used across participants. Average percent signal
change in the aROI (beta weights averaged across all voxels
as a proportion of global signal) were extracted using REX.53

In this manner, the mean percent signal change in the
amygdala was calculated in a non-biased manner for each
individual, in each condition (increase, decrease, maintain and

neutral). The association between amygdala activity and
negative affect was estimated using the Pearson r
correlation between the aROI values and mean subjective
affect ratings for each group. To investigate cortico-limbic
coupling, we calculated the difference in percent signal
change in the amygdala aROI for each participant, in the
downregulation contrast (decrease—maintain). These delta
values were then entered as a covariate-of-interest in an
analysis of cortical activation during downregulation for each
group separately. Thus, each group’s covariate analysis
aimed to reveal cortical regions inversely correlated with
amygdala deactivation (that is, cortico-limbic coupling18). In
line with the main analysis described above, we controlled the
cluster-level FWER at Po0.05. To compare common regions
of cortico-limbic coupling between groups, we used the
resulting significant cortical region from the healthy adult
group as a functional ROI (fROI) in the other groups. There
were no cortical regions with significant correlations with
amygdala deactivation in either patient group, so no reverse
comparison of aberrant cortico-limbic coupling (with the
healthy adult group) was possible.

Covariates-of-interest. Separate covariate-of-interest
analyses in SPM were conducted to test potential
associations between neural activation and medication
dosage, symptom severity and the behavioral measure of
emotion regulation (that is, subjective affect ratings).
Potential medication effects were tested by converting
antipsychotic medication dosage to a chlorpromazine (CPZ)
or imipramine (IMI) equivalent;54,55 these values were
included as covariates-of-interest in separate whole-brain
tests of the upregulation and downregulation contrasts in
each patient group. We also tested post-hoc correlations
between medication dosage and BOLD signal in PFC
regions for which significant group differences emerged in
between-group comparisons of emotional up- and
downregulation, as a further test of the possible effects of
medication. To determine associations between symptoms
and neuropathology, the positive and negative symptom
scores from the PANSS were included as covariates-of-
interest for within-subjects contrasts to determine activation
in up- and downregulation conditions. These post-hoc
analyses were restricted to regions of abnormal activity in
the patient groups (relative to controls). Finally, to test
whether the success of emotion regulation was linearly
related to cortical activation, we included individual change
scores (D) in subjective affect ratings during upregulation and
downregulation. The average change (D) relative to the
maintain condition were calculated for each participant and
included as covariates-of-interest in separate whole-brain
analyses of upregulation and downregulation in each group.

Results

Participant characteristics. Demographic data are sum-
marized in Table 1. Significant group differences existed in
age (Sz4HC, t25¼ 2.71, P¼ 0.01) and years of education
(HC4Sz, t25¼ 3.65, Po0.01). There were no significant group
differences in adult reading scores (NART) (the largest
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difference was BD4Sz, t25¼ 1.45, P¼ 0.08). On average, BD
patients reported significantly higher stress, anxiety and
depression scores on the DASS than HC (t26¼ 2.67, 3.07
and 2.3, respectively, all Po0.05). Sz patients, on average,
had significantly higher PANSS scores than people with BD
(t23¼ 4.25, 4.69, 3.03, all Po0.01), and also significantly
higher anxiety scores than HCs (t25¼ 2.42, P¼ 0.02). Among
clinical participants, nine of the Sz patients and five of the BD
patients were being treated with atypical antipsychotic
medication, and all BD patients were taking antidepressant
medication. Scores on the ISS scale for BD participants were
interpreted to estimate illness phase: six BD patients met
criteria for euthymia (that is, activation scoreo150, well-being
score 4120) and five met criteria for hypomania (that is,
activation score 4150, well-being score 4120); the mean
(s.d.) activation and well-being scores for the entire BD group
on the ISS were 167 (60) and 185 (133), respectively.

Ratings of subjective affect. Mean subjective negative
affect ratings elicited by negative or neutral images in each
condition are shown in Figure 1. A mixed design 3� 4
ANOVA, with group (HC, Sz, BD) as the between-subject
factor, and task condition (neutral, maintain, increase,
decrease) as the within-subject factor, tested for differences
between groups. There was a significant main effect of group
(F2,37¼ 9.31, Po0.01), reflecting greater subjective affect
ratings in both patient groups compared with HC across all

conditions. A post-hoc Dunnett’s test (versus HC) confirmed
the Sz group had significantly higher subjective affect ratings
across conditions than HC (F2, 37¼ 18.53, Po0.001),
while the BD group was not significantly greater than HC
(F2, 37¼ 2.15, P¼ 0.69). In addition, there was a main effect of
condition (F3,11¼ 70.82, Po0.01), such that subjective affect
was significantly greater for negative images than neutral
images across groups. The group� condition interaction was
also significant (F6, 11¼ 2.57, P¼ 0.02); within-group paired
t-tests between maintain and regulation conditions revealed
that HC participants reported significant increases in sub-
jective affect during upregulation, and significant decreases
in subjective affect during downregulation of negative affect,
compared with the maintain condition (t14¼ 4.19 and 2.31,
respectively, both Po0.05). In BD and Sz, significant
increases in subjective negative affect were reported for
upregulation conditions, (t12 and t11¼ 5.02 and 2.94,
respectively, both Po0.05), while observed reductions in
subjective affect during downregulation approached stati-
stical significance (BD t12¼ 2.02, P¼ 0.07; Sz t11¼ 1.89,
P¼ 0.09).

SPM t-test of downregulation of negative affect (decrease
4maintain)
Healthy controls. Downregulation of negative affect
produced bilateral activation throughout the PFC, with the
mean activity in the left VLPFC exceeding significance
(BA45/BA47, shown in Figure 2). Significant activation also
occurred in the left OFC (BA10, BA11), as well as the right
DLPFC (BA46) and rostral ACC (BA32), consistent with an
inhibitory role of these regions (on limbic centers of affect
generation) during the cognitive control of emotion.18,25,41

Supplementary Table 1 shows the list of significant within-
group differences in the PFC for each group.

Bipolar disorder. During downregulation, large significant
clusters of activation occurred bilaterally throughout the
prefrontal cortex, with mean significant activity occurring in

Table 1 Demographic means (s.e.m.)

Healthy adults (15) Bipolar-I
(13)

Schizophrenia
(12)

Age 35 (2) 41 (3) 44 (3)*
Females 9 5 4
Education 16 (1) 16 (1) 13 (1)*
Handedness 90 (4) 92 (5) 85 (5)
NART 114 (2) 118 (2) 109 (3)
Antipsychotic
Amisulpride 2
Clozapine 5
Olanzapine 1 1
Palliperidone 1
Quetiapine 2 1
Risperidone 1 4
Zuclopenthixol 3
CPZ (mg) 168 (106) 352 (58)
Antidepressant
Citalopram 2
Dosulepin 1
Phenelzine 1
Sertraline 2 1
IMI (mg) 132 (32)
DASS
Anxiety 2 (1) 12 (3)* 8 (2)*
Stress 6 (2) 18 (3)* 11 (3)
Depression 2 (1) 10 (3)* 8 (4)
PANSS
Positive 10 (1) 19 (2)^
Negative 11 (1) 22 (2)^
General 25 (2) 32 (2)^

Abbreviations: CPZ, chlorpromazine equivalent dose; DASS, depression,
anxiety and stress scale; IMI, imipramine equivalent dose; PANSS, positive
and negative syndrome scale; WASI, Weschler abbreviated scale of
intelligence; WTAR, Weschler test of adult reading.
*Po0.05 versus healthy adults, ^Po0.05 versus bipolar-I.

Figure 1 Mean subjective affect ratings. Healthy controls (HC), bipolar disorder
(BD) and schizophrenia (Sz) rated emotionally negative pictures after instructions to
increase, decrease or maintain the emotional response. Neutral pictures were rated
only under instructions to maintain, as filler stimuli. Bars represent s.e.m.
*Po0.05; **Po0.01.

Emotion regulation in bipolar disorder and schizophrenia
RW Morris et al

4

Translational Psychiatry



the left VLPFC (BA47/45), as in healthy adults. Other regions
with significant activation included the right VLPFC, OFC
(BA47, BA11), as well as the DLPFC (BA46). Significant
activity in the rostral ACC (BA32) as well as the adjacent BA9
region was also evident (Supplementary Table 1).

Schizophrenia. In contrast to the other two groups, no
significant differential activity was revealed during emotion
downregulation among people with Sz. Application of a more
liberal threshold (voxel Po0.05, uncorrected) revealed
clusters of activation in the middle occipital gyrus (bilateral)
but no significant clusters in the PFC.

BD versus HC. Abnormal overactivity occurred in BD relative
to HC, centered in the right VLPFC (BA47, Figure 2). Table 2
lists the complete set of regions of significant group
differences in the PFC. Overactivation of the VLPFC in BD
is consistent with the relatively large cluster of strong activity
revealed in the same region by the within-group contrast for
this group described above. Examination of the beta weights
(in arbitrary units) at the peak voxel in the VLPFC confirmed
the results were consistent with abnormal prefrontal
hyperactivity, as predicted.

Sz versus HC. Less activation appeared in the right inferior
frontal gyrus (IFG) (BA45), extending to the right VLPFC
(BA47) in Sz relative to HC. Less activation also occurred in
the left superior frontal lobe (BA8) and frontal pole (BA10)
(Table 2). Examination of the beta weights at the peak voxel
in BA45 confirmed activity was absent in Sz (Figure 2). The
abnormal hypofrontality in the right IFG of Sz is consistent
with the lack of differential activity during downregulation
reported above for this group.

In light of substantial evidence that apparent hypoactivation
occurs in Sz due to a higher baseline level of activity that
reduces differential activity,29,32 we also tested for significant
differences between Sz and HC during the ‘maintain’
condition, to clarify the source of the hypoactivation revealed
in the ‘decrease 4 maintain’ contrast. The ACC/medial frontal
gyrus (BA32/10) was relatively overactive in Sz during the
‘maintain’ (that is, baseline) condition. However, there was no
overlap between the ACC and hypoactive regions during
downregulation among Sz.

BD versus Sz. During emotion downregulation, there were no
regions significantly more active in people with Sz compared
with BD participants. However, significantly greater bilateral
activation occurred in BD throughout the prefrontal cortex,
including the right VLPFC, the OFC and the DLPFC (BA46),
compared to Sz. The right amygdala was also more active
among BD compared to Sz (peak voxel: 20 �6 20,
t¼ 3.18, Po0.005), consistent with our prediction.

SPM t-test of upregulation of negative affect (increase
4maintain)
Healthy controls. Significant unilateral activation occurred in
the left IFG, including the left VLPFC (BA47) during
upregulation, in an area contained within that activated for
downregulation but more focal. Other regions significantly
activated included the superior frontal lobe (BA8) and
premotor cortex (BA6) (Supplementary Table 1).

Bipolar disorder. A largest cluster of significant activation
occurred in the left PFC, extending from BA6 to BA47, while
smaller distinct clusters also occurred in the ACC (BA32) as
well as the right VLPFC (BA47) (Supplementary Table 1).
Significant bilateral amygdala activation occurred during
upregulation of negative emotion in people with BD (right
amygdala peak voxel: 20 �6 �16, t¼ 5.12, Po0.005, left
amygdala peak voxel: �12 �6 �16, t¼ 6.30, Po0.005),
as might be expected in line with the greater levels of negative
affect reported by this group.

Schizophrenia. A significant cluster of activation occurred in
the left PFC in the lateral superior frontal lobe (BA6),
extending to adjacent regions on the IFG (for example,
BA44) during upregulation (Supplementary Table 1).

BD versus HC. Abnormal hyperactivity occurred in the right
VLPFC (BA47), as well as the ACC (BA9, BA32) in BD
(Table 2). Examination of the beta weights at the peak voxel
in the right VLPFC confirmed hyperactivity in the BD during
upregulation was due to positive activation in this group,
rather than an absence of ‘deactivation’ (Supplementary

Figure 2 Activation during emotion downregulation in HC, and regions of
relative hyperactivation in BD and hypoactivation in Sz. Color bars represents
t-values (Po0.005). Bar charts show beta weights (s.e.m.) at peak voxels in BD
and Sz (relative to HC), respectively.
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Figure 2). No regions were abnormally underactive in BD
relative to HC.

Sz versus HC. During upregulation, Sz displayed abnormal
hyperactivation in the right VLPFC (BA47) relative to HC, as
well as hyperactivity in the right ACC (BA32, BA9) (Table 2).
Supplementary Figure 2 shows the regions and amount of
hyperactivity were remarkably similar to that observed
among people with BD.

BD versus Sz. There were no significant group differences
between BD and Sz during upregulation.

Cortico-limbic coupling. Mean percent signal change in
the amygdala ROI during each condition and self-reported
negative affect in each condition were significantly related in
HC (r¼ 0.67, Po0.01) and BD (r¼ 0.76, Po0.001), but not

Sz (r¼ 0.49, P¼ 0.1). Thus, negative affect was related to
amygdala activity in HC and people with BD. For HC,
amygdala activation during downregulation was negatively
correlated with cortical activity in the left IFG of HCs, in a
significant cluster overlapping BA46, BA47 and BA11,
including the peak voxel of activity during downregulation
(Figure 3). The negative correlation at this significant cluster
in the IFG of HCs (r¼�0.76, Po0.001) indicates cortico-
limbic coupling consistent with prefrontal inhibition of limbic
regions during emotion downregulation.18,25 Among the
patient groups, there were no significant correlations
between the amygdala aROI and left cortical activation
(fROI) (r¼ þ 0.12 and þ 0.19 for BD and Sz, respectively,
both P40.05) (Figure 3). Directly comparing the BD and Sz
r-values with HC in this post-hoc (fROI) region confirmed
cortico-limbic coupling was significantly weaker in each

Table 2 Regions of group differences in the PFC

Downregulation: BD4HC, k¼185, t-crit¼2.79 Upregulation: BD4HC, k¼ 197, t-crit¼ 2.79
Cluster 1: 186 voxels, peak at (40 42 �10), t¼ 4.82, z¼1.52, P¼ 0.045 Cluster 1: 170 voxels, peak at (46 14 �12), t¼ 4.26, z¼ 1.60, P¼0.039
Label Voxels Mean T Label Voxels Mean T

Brodmann area 11 27 3.38 Brodmann area 38 59 3.35
Brodmann area 47 25 3.29 Brodmann area 47 48 3.08

Brodmann area 22 2 2.99

Downregulation: HC4Sz, k¼ 269, t-crit¼ 2.79
Cluster 1: 506 voxels, peak at (50 26 6), t¼ 5.45, z¼ 1.71, P¼ 0.001 Cluster 2: 397 voxels, peak at (10 46 18), t¼ 4.11, z¼2.62, P¼ .004
Label Voxels Mean T Label Voxels Mean T

Brodmann area 45 76 3.77 Brodmann area 9 64 3.25
Brodmann area 47 22 3.47 Brodmann area 32 11 2.93
Brodmann area 46 8 3.39 Brodmann area 10 8 3.00

Cluster 2: 478 voxels, peak at (�22 30 46), t¼ 5.20, z¼ 2.58, P¼ 0.002 Cluster 3: 221 voxels, peak at (40 40 �10), t¼ 4.05, z¼ 2.11, P¼ .035
Label Voxels Mean T Label Voxels Mean T

Brodmann area 8 122 3.55 Brodmann area 47 19 3.29
Brodmann area 9 5 3.03 Brodmann area 10 12 3.04
Brodmann area 32 2 2.94 Brodmann area 11 7 2.96

Cluster 3: 970 voxels, peak at (�46 2 �24), t¼ 4.83, z¼ 1.56, Po0.001 Upregulation: Sz4HC, k¼280, t-crit¼ 2.79
Label Voxels Mean T Cluster 1: 298 voxels, peak at (40 42 �10), t¼ 4.40, z¼ 2.80, P¼ 0.036

Brodmann area 21 162 3.31
Label Voxels Mean T

Brodmann area 38 101 3.26
Brodmann area 10 16 2.98

Brodmann area 47 90 3.21
Brodmann area 47 12 3.46

Cluster 4: 557 voxels, peak at (�12 64 22), t¼ 4.09, z¼1.35, P¼ 0.001

Brodmann area 11 7 3.03

Label Voxels Mean T Cluster 2: 436 voxels, peak at (8 42 18), t¼ 4.25, z¼ 1.98, P¼0.004

Brodmann area 10 154 3.10
Label Voxels Mean T

Brodmann area 11 5 2.97
Brodmann area 32 44 3.14

Brodmann area 9 4 3.13
Brodmann area 9 25 3.36

Downregulation: BD4Sz, k¼ 260, t-crit¼ 2.81
Brodmann area 10 22 3.28

Cluster 1: 777 voxels, peak at (50 28 6), t¼ 5.89, z¼ 2.25, Po0.001
Label Voxels Mean T

Brodmann area 45 64 3.83
Brodmann area 47 57 3.63
Brodmann area 46 15 3.10

Cluster 2: 317 voxels, peak at (26 24 �20), t¼ 4.22, z¼ 1.53, P¼ 0.023
Label Voxels Mean T

Brodmann area 38 82 3.19
Brodmann area 47 37 3.35
Brodmann area 11 16 3.42

List of significant clusters and associated Brodmann regions with a mean T-value greater than the t-critical (clusterwise FWER Po0.05).
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patient group (both Po0.01). A whole-brain analysis with
amygdala deactivation in each of the patient groups also
revealed no significant correlations occurred anywhere else in
the cortex of these groups. Thus, evidence of cortico-limbic
coupling during downregulation was not found in either a
whole-brain or a fROI analysis of the patient groups.

We also tested whether activity in cortical regions was
coupled with amygdala activation during emotion upregulation.
Positive correlations with mean amygdala activation (aROI)
from the increase 4maintain contrast were tested; however,
no significant correlations in the cortex occurred in any group.

Covariates-of-interest
Medication effects. There were no significant associations
between CPZ or IMI and cortical activity during emotion
regulation in Sz or BD groups, when medication dosage was
included as a covariate in within-group analyses of up- and
downregulation in clinical groups (voxel P40.005). In
addition, post-hoc analyses confirmed no significant
correlations between medication dosage and brain
activation in the VLPFC (as the main region of group
differences) in emotion regulation (Supplementary Figure
4). However, a near-significant trend emerged for a positive
association between CPZ and activity in the right VLPFC of
Sz during downregulation (r¼ 0.51, P¼ 0.09); we note that
this positive association cannot explain the group differences
of hypoactivation of PFC regions in Sz during downregulation,
relative to HC or BD groups (reported above), because any
antipsychotic medication effects would have served to
increase PFC activation in Sz, consistent with the desired
therapeutic effects, but clearly in contrast to the effects
reported here. In contrast, for the BD group during
downregulation, IMI was not significantly correlated with

hyperactivity in (the right) VLPFC (r¼�0.06, P¼ 0.85).
During upregulation, medication dosages were not related to
VLPFC activity in either BD (IMI and right VLPFC r¼�0.09,
P¼ 0.70) or Sz (CPZ and right VLPFC r¼�0.13, P¼ 0.69).

Symptoms. There were significant correlations between
symptoms and cortical activity in patients. In Sz, there was
a strong correlation between negative symptoms and
hyperactivity in the right ACC during the maintain condition
(r¼ 0.78, Po0.005), indicating the severity of negative
symptoms increased with the neural response to negative
images, and consistent with heightened processing of
anxiety-provoking stimuli. Among people with BD, a
significant negative correlation between positive symptoms
and hyperactivity was revealed in the rACC during emotion
upregulation (r¼�0.72, Po0.005).

Subjective affect ratings. The amount of downregulation of
subjective affect was linearly related to change in the left IFG
(BA46/10) among individuals in the HC group (r¼�0.83,
Po0.005). This region overlapped the same region coupled
with amygdala activity (Supplementary Figure 3). Percent
signal change in this left cortical region increased with
greater decreases in subjective affect during downregulation,
as expected if this region has a functional role in inhibition of
negative affect. However, no significant relationship in the
same cortical region (fROI) existed among patient groups.
Upregulation of subjective affect was not linearly related to
changes in prefrontal cortex activity in any group.

Discussion

We examined cortico-limbic brain function during voluntary
regulation of negative emotion in Sz, BD and HC groups,
using an established task known to activate prefrontal cortical
regions concomitant with changes in amygdala activity during
regulation of subjective affect. Consistent with previous
reports in healthy individuals,12–15 downregulation of negative
affect elicited VLPFC activity in healthy participants, and
moreover, a region of the left IFG was inversely correlated
with amygdala activation during emotional regulation of
negative affect (cortico-limbic coupling). Among BD patients,
we found bilateral prefrontal activity to be evoked by both
emotional upregulation and downregulation conditions, with
between-group comparisons revealing abnormal hyperactiva-
tion in the right VLPFC during both up- and downregulation
conditions (as well as amygdala hyperactivity during down-
regulation), relative to controls and Sz. In contrast, Sz
participants displayed relative hypoactivation of prefrontal
regions during attempts to downregulate negative affect, while
attempts to upregulate negative affect produced abnormal
hyperactivity in the VLPFC. Thus, BD was distinguished by
hyperfrontal activity during both up- and downregulation of
subjective emotion, and this activation was not coupled with
amygdala activity.40 By contrast, Sz was uniquely hypofrontal
during downregulation of negative affect, with little or no limbic
activity across emotion regulation conditions. Collectively,
these results confirm unique patterns of cortico-limbic activa-
tion in Sz and BD during both down- and upregulation of
negative affect: in contrast to our hypotheses (that distinctions

Figure 3 Scatterplots showing the correlation between left PFC activity and
negative amygdala parameter estimates during downregulation in each group. Brain
image shows cortical activation during downregulation alongside the region of
correlation in the left IFG (cool) of healthy controls, Po0.005.
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in PFC activation would be most apparent during upregula-
tion), PFC activation during downregulation differentiated the
two groups.

Investigation of the inverse association between the
amygdala and prefrontal cortices revealed the novel finding
that people with BD and Sz had significantly less cortico-limbic
coupling than healthy adults. The cortical region most strongly
associated with amygdala activity in healthy adults occurred in
the left IFG. Testing correlations in the same region as
patients may have introduced a bias towards a null result in
these independent groups. However, we also tested for
significant correlations in each patient group using a voxel-
wise approach, and both the whole-brain and ROI analysis
failed to reveal any significant cortico-limbic coupling in
patients. Other studies have shown that among healthy
adults, the amygdala is downregulated by lateral parts of the
IFG via connections with the ventromedial PFC.25 The latter
region is directly connected to the amygdala and actively
participates in inhibition of amygdala function.24 Thus,
contemporary models of emotion regulation suggest limbic
centers of emotion generation are tightly regulated by top-
down inhibitory control from the PFC. With respect to this
model, the apparent lack of cortico-limbic coupling in BD and
Sz indicates the putative inhibitory connections are absent or
dysfunctional in these diseases. Furthermore, the strong
relationship between amygdala activity and affect ratings in
BD (r¼ 0.76) suggests the absence of top-down inhibitory
control over the amygdala may manifest as greater limbic and
emotional reactivity. By contrast, in Sz there was no evidence
of association between amygdala activity and subject affect,
so the absence of top-down control of limbic function may be
epiphenomenal to flat affect in Sz. Furthermore, the high
levels of negative affect in people with Sz are paradoxical in
the absence of amygdala reactivity. However, we did find
significant hyperactivity in the rostral ACC and medial frontal
gyrus during maintenance of negative affect in Sz: this region
has been associated with self-monitoring of negative af-
fect,41,56 and suggests heightened contextual processing of
anxiety-provoking stimuli occurred. Thus, overactivity in this
region may be responsible for the high levels of reported
negative affect in Sz, despite overt affective blunting and lack
of amygdala reactivity.

With regard to the subjective emotional experience during
each condition, only healthy participants’ self-reported affect
decreased significantly during downregulation, while a similar
pattern in Sz and BD did not reach conventional levels of
significance. Although the (non-significant) decrease in
negative affect during downregulation in both clinical groups
suggests the task was attempted as instructed, the small
sample size may have prevented sufficient power to detect
within-group differences. Nevertheless, we note the decrease
in negative affect was linearly related to the amount of activity
in the left IFG in healthy adults, consistent with other evidence
of a critical role for this left lateralized region in the voluntary
regulation of affect.18,25 This suggests that reliable down-
regulation of subjective affect might not have been achieved
by clinical participants precisely because of dysfunction in the
IFG, or it’s functional connectivity with the amygdala.

As in other neuroimaging studies of psychiatric illness,
medication dose may be an important confound among our

groups. As detailed in Table 1, less than half the people with
BD and all of those with Sz were being treated with
antipsychotics. However, a correlation analysis including the
CPZ equivalent dose among people with Sz did not reveal any
significant effect of medication during upregulation. Further-
more, a linear effect of antipsychotic treatment alone cannot
explain the opposite group differences relative to healthy
adults, which we obtained during emotion downregulation
(Figure 2). Another limitation of our study may have been the
low n, especially in the Sz group, which potentially reduced
statistical power. However, we found the smallest significant
effect size in the Sz group (Supplementary Table 1, z¼ 1.01),
indicating power was not substantially reduced in the smallest
sample size. Nevertheless, due to the low n in all groups, the
present results must be considered as preliminary.

In summary, this preliminary study demonstrates differen-
tial fronto-limbic activity in BD and Sz during efforts to regulate
negative affect, relative to HCs, and in direct comparison to
each other. The results for healthy adults are consistent with
many other animal and human studies that demonstrate an
inhibitory influence of the prefrontal cortex on subcortical
limbic regions that generate negative affect. However, the
opposite effect of emotional downregulation on cortical and
limbic activation in BD and Sz (hyperactivity in BD, hypoactiv-
ity in Sz) demonstrate these disorders can be distinguished on
the basis of functional neuroanatomy during subjective
emotion regulation. Furthermore, the dysregulated affect in
BD may be due to an absence of normal cortico-limbic
coupling, despite the presence of PFC hyperactivity during
voluntary efforts to regulate emotion. In contrast, lack of
activity in the PFC and amygdala during downregulation
in Sz, as well as lack of limbic activity during upregulation
was consistent with predominant flat affect in this group.
Thus, the unique functional neuroanatomy demonstrated in
these groups during affect regulation is in line with the
characteristic emotional dysfunction of each disorder, and
may contribute to future biologically based diagnostic criteria
for these conditions.
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