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Abstract: Heart sound signals reflect valuable information about heart condition. Previous studies
have suggested that the information contained in single-channel heart sound signals can be used to
detect coronary artery disease (CAD). But accuracy based on single-channel heart sound signal is not
satisfactory. This paper proposed a method based on multi-domain feature fusion of multi-channel
heart sound signals, in which entropy features and cross entropy features are also included. A total
of 36 subjects enrolled in the data collection, including 21 CAD patients and 15 non-CAD subjects.
For each subject, five-channel heart sound signals were recorded synchronously for 5 min. After data
segmentation and quality evaluation, 553 samples were left in the CAD group and 438 samples in
the non-CAD group. The time-domain, frequency-domain, entropy, and cross entropy features were
extracted. After feature selection, the optimal feature set was fed into the support vector machine
for classification. The results showed that from single-channel to multi-channel, the classification
accuracy has increased from 78.75% to 86.70%. After adding entropy features and cross entropy
features, the classification accuracy continued to increase to 90.92%. The study indicated that the
method based on multi-domain feature fusion of multi-channel heart sound signals could provide
more information for CAD detection, and entropy features and cross entropy features played an
important role in it.

Keywords: heart sound; coronary artery disease; multi-channel; entropy; cross entropy

1. Introduction

Coronary artery disease (CAD) has been the leading cause of death in cardiovascular
disease globally [1] and is still increasing at an alarming rate. Therefore, there is an urgency
to develop convenient and accurate options for CAD detection of large-scale populations.
Coronary angiography (CAG) [2] is widely regarded as the gold standard for detecting
CAD. But it is not suitable as a routine examination method for early screening due to its
invasive and high price defects. Medical research has confirmed that when blood flows
through the stenosis of a blood vessel, it will impact the wall of the blood vessel and form
turbulence. The turbulence can cause murmurs in heart sound signals [3]. Therefore,
as a non-invasive detection method, heart sound analysis has the potential to become a
cost-effective screening tool to achieve the early detection of CAD [4].
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The correlation between diastolic murmur and stenosis was proved by Akay et al. [5].
In that research, four analysis methods were used, including fast Fourier transform, auto-
regressive, autoregressive moving average, and minimum norm. The results obtained
by Semmlow et al. [6] also indicated that an above-normal percentage of high-frequency
en-ergy is closely related to narrowed coronary arteries. Some researchers used heart
sound-based risk assessment to help detect CAD, and the results demonstrated the poten-
tial use of heart sound to identify CAD [7,8]. In order to make further use of diastolic
murmurs for CAD detection, many scholars analyzed diastolic heart sound signals in the
frequency domain. Schmidt et al. [9] analyzed the frequency distribution of the diastolic
period, and identified new features to describe an increase in low-frequency power in
CAD patients. Gauthier et al. [10] used the energy ratio of high and low-frequency com-
ponents as classification features. Zhao et al. [11] proposed a novel approach based on
Hilbert–Huang transform to analyze the diastolic murmurs of CAD. In addition to fre-
quency-domain features, wavelet-based feature sets in the time-frequency domain are also
used to classify abnormal heart sounds [12]. Nonlinear analysis is an effective way to
re-flect nonlinearity and complexity. It was proven that the correlation dimension can
be used for CAD detection [13]. As a nonlinear feature, entropy is very suitable for the
analy-sis of non-stationary signals. Akay et al. [14] used approximate entropy of heart
sounds to identify CAD. Among these studies based on single-channel heart sound signals,
the highest accuracy of detecting CAD is 78%. The accuracy of detecting CAD based on
heart sound signals needs to be further improved.

Considering multiple auscultation areas, researchers have collected heart sound sig-
nals from multiple locations on the chest for disease detection [15]. Akanksha et al. [16]
used a cross power spectrum to analyze the heart sound signals collected from four posi-
tions of the chest for CAD detection. Rujoie et al. [17] diagnosed and assessed the severity
of tricuspid regurgitation using heart sounds recorded in seven channels. Pathak et al. [18]
collected multi-channel heart sounds and eliminated environmental noise by using the
delayed propagation of heart sounds between different channels. Griffel et al. [19] evalu-
ated the effect of automutual information function for CAD detection by using two-channel
heart sound signals at three positions measured in sequence. The above studies confirmed
that the results of the joint analysis of multi-channel heart sound sig-nals are better than
those of a single channel.

The analysis of entropy measures can provide a valuable tool for quantifying the
regularity of physiological time series [20]. Sample entropy (SampEn) and fuzzy entropy
(FuzzyEn) are widely used in physiological signals for they overcome the shortcomings
of ApEn, such as bias and relative inconsistency [21,22]. However, SampEn and FuzzyEn
need to manually set parameters according to the data, which depends on experience and
is not conducive to the standardization of the formula. Distribution entropy (DistEn) can
preclude the dependence upon input parameters, and it has shown superiority for the
analysis of short-term physiological signals compared to SampEn and FuzzyEn [23,24].
Cross entropy analysis can enable the measurement of the synchrony or similarity of
patterns between two channel signals. Previous studies have shown that cross-sample
entropy (XSampEn) [25], cross fuzzy entropy (FuzzyEn) [26], and joint distribution entropy
(JDistEn) [27] have great potential for physiological signal analysis. These three cross
entropy features have been developed from the above three entropy features, respectively,
so these six features are explored in this study.

To improve the accuracy of detecting CAD based on heart sound signals, this paper
collected five-channel heart sound signals, and then proposed a method based on multi-
domain feature fusion of multi-channel heart sound signals to detect CAD. First, the
time-domain, frequency-domain, entropy, and cross entropy features of heart sound signals
were extracted as features, and different feature sets were composed of these features.
Then, recursive feature elimination based on support vector machine (SVM–RFE) was
used for feature selection, as it iteratively obtains the optimal feature subset. Meanwhile,
information gain was also used for feature ranking. Subsequently, support vector machines
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(SVM) were used for classification. Results showed that this study provided an effective
computer-aided method for the identification of CAD patients. Multi-channel feature,
entropy feature, and cross entropy feature were all helpful for classification performance.
Figure 1 depicts a system block diagram for detecting CAD using multi-domain feature
fusion of multi-channel heart sound signals.

Entropy 2021, 23, x FOR PEER REVIEW 3 of 18 
 

 

information gain was also used for feature ranking. Subsequently, support vector ma-
chines (SVM) were used for classification. Results showed that this study provided an 
effective computer-aided method for the identification of CAD patients. Multi-channel 
feature, entropy feature, and cross entropy feature were all helpful for classification per-
formance. Figure 1 depicts a system block diagram for detecting CAD using multi-domain 
feature fusion of multi-channel heart sound signals. 

 

 
Figure 1. Block diagram of multi-domain feature fusion of multi-channel heart sound signals to 
detect CAD. 

2. Materials and Methods 
2.1. Data Acquisition 

This study was conducted under the principles of the Helsinki Declaration and its 
subsequent amendments and obtained the approval of the Institutional Review Board 
(No. 034). All the subjects were from Qi Lu Hospital of Shandong University, and were 
provided with informed consent before participation. The inclusion criterion was subjects 
that were scheduled to undergo a CAG within two days. Three types of subjects were 
excluded from the study: (a) subjects who had previously undergone percutaneous coro-
nary intervention or coronary artery bypass surgery, (b) subjects who had valvular heart 
disease verified by echocardiography, (c) subjects who had acute myocardial infarction. 
Subjects with ≥50% stenosis in at least one of three main coronary artery branches (i.e., left 
anterior descending, left circumflex, and right coronary artery) were categorized as CAD, 
otherwise as non-CAD. This study enrolled 36 subjects, including 21 CAD patients and 15 
non-CAD subjects. All CAD patients had left anterior descending stenosis, in which there 
were 7 subjects with first diagonal branch stenosis, 2 subjects with second diagonal branch 
stenosis, 1 subject with septal artery stenosis, 1 subject with middle branch stenosis, and 
16 subjects with left circumflex artery stenosis. The basic characteristics of all subjects are 
given in Table 1. Mann–Whitney U tests were used for continuous variables, for they did 
not conform to the normal distribution. Since the gender group is a binary categorical 
variable, and considering the sample size, this study adopted Fisher’s exact test as the 
statistical test method, and the p value is listed in Table 1. 

Table 1. Basic characteristics of all subjects. 

Characteristic CAD Non-CAD p Value 
Age (year) 57 ± 9 54 ± 7 0.27 

Male/Female 12/9 9/6 0.57 
Height (cm) 166 ± 7 167 ± 7 0.61 
Weight (kg) 73 ± 10 74 ± 7 0.59 

Body mass index (kg/m2) 27 ± 3 26 ± 2 0.90 
Systolic blood pressure (mmHg) 135 ± 16 137 ± 11 0.48 
Diastolic blood pressure (mmHg) 81 ± 15 80 ± 13 0.95 

Figure 1. Block diagram of multi-domain feature fusion of multi-channel heart sound signals to
detect CAD.

2. Materials and Methods
2.1. Data Acquisition

This study was conducted under the principles of the Helsinki Declaration and its
subsequent amendments and obtained the approval of the Institutional Review Board
(No. 034). All the subjects were from Qi Lu Hospital of Shandong University, and were
provided with informed consent before participation. The inclusion criterion was subjects
that were scheduled to undergo a CAG within two days. Three types of subjects were
excluded from the study: (a) subjects who had previously undergone percutaneous coro-
nary intervention or coronary artery bypass surgery, (b) subjects who had valvular heart
disease verified by echocardiography, (c) subjects who had acute myocardial infarction.
Subjects with ≥50% stenosis in at least one of three main coronary artery branches (i.e., left
anterior descending, left circumflex, and right coronary artery) were categorized as CAD,
otherwise as non-CAD. This study enrolled 36 subjects, including 21 CAD patients and
15 non-CAD subjects. All CAD patients had left anterior descending stenosis, in which
there were 7 subjects with first diagonal branch stenosis, 2 subjects with second diagonal
branch stenosis, 1 subject with septal artery stenosis, 1 subject with middle branch stenosis,
and 16 subjects with left circumflex artery stenosis. The basic characteristics of all subjects
are given in Table 1. Mann–Whitney U tests were used for continuous variables, for they
did not conform to the normal distribution. Since the gender group is a binary categorical
variable, and considering the sample size, this study adopted Fisher’s exact test as the
statistical test method, and the p value is listed in Table 1.

Table 1. Basic characteristics of all subjects.

Characteristic CAD Non-CAD p Value

Age (year) 57 ± 9 54 ± 7 0.27
Male/Female 12/9 9/6 0.57
Height (cm) 166 ± 7 167 ± 7 0.61
Weight (kg) 73 ± 10 74 ± 7 0.59

Body mass index (kg/m2) 27 ± 3 26 ± 2 0.90
Systolic blood pressure (mmHg) 135 ± 16 137 ± 11 0.48
Diastolic blood pressure (mmHg) 81 ± 15 80 ± 13 0.95

Heart rate (beats/min) 73 ± 13 79 ± 12 0.21

Note: values are expressed as male/female or mean value ± standard deviation.

A cardiovascular function detection device (CVFD, Huiyironggong Technology Co., Ltd.,
Jinan, China) was used to record the heart sound signals. Since CAD mostly occurs in
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the left coronary artery, under the recommendations of the guidelines and cardiovascular
experts, an acquisition channel on the left was added on the basis of the original four
auscultation areas. The five detectors of electronic stethoscope were respectively placed
in the second intercostal space on the right edge of the sternum, the second intercostal
space on the left edge of the sternum, the third intercostal space on the left edge of the
sternum, the fourth intercostal space on the left edge of the sternum, and the intersection
of the fourth intercostal space and the midclavicular line. For each subject, heart sound
signals in five different locations were simultaneously recorded for 5 min at a sampling
rate of 2 kHz. The collected data were numbered as channel 1 to channel 5.

2.2. Signal Preprocessing

In order to remove the interference of respiration, filtering is a necessary step in
heart sound signal preprocessing. The advantage of the Butterworth filter is that the
amplitude-frequency characteristic is flat and monotonous in the passband [28]. Although
the attenuation of this filter in stopband is relatively slow, the fifth-order filter is still
acceptable in this study. Therefore, a fifth-order Butterworth high pass filter with a cut-off
frequency of 30 Hz was applied to remove the low-frequency noise and the baseline drift.
Subsequently, a 50 Hz notch filter was used to remove power frequency interference. The
comparison before and after preprocessing is shown in Figure 2. To enlarge the sample
size, each five-minute recording was cropped to 30 segments lasting 10 s. Segments with
wheezing of asthma or serious noise interference were considered unqualified. After
quality evaluation and elimination [29], a total of 991 samples were generated, including
553 CAD and 438 non-CAD samples. The heart sounds from channel 1 to channel 5 of a
non-CAD subject and a CAD patient are given in Figure 3. It can be observed that there are
differences between the five channels, such as the amplitude ratio of first heart sound and
second heart sound. There are also differences between the non-CAD subject and the CAD
patient. The heart sound signals of the CAD group have more heart murmur.
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Figure 3. Collected heart sound signals. (a1–a5) The heart sound signals from channel 1 to channel 5
of a non-CAD subject; (b1–b5) The heart sound signals from channel 1 to channel 5 of a CAD patient.

2.3. Features Extraction

The segmentation of the fundamental heart sounds is an essential step in the automatic
analysis of the heart sound signal. There are two main components in a cardiac cycle:
The first heart sound (S1), caused by the closure of the mitral and tricuspid valves and
their vibrations; the second heart sound (S2), generated by the closure of the aortic and
pulmonary valves and their vibrations. The systole interval is the window between S1
and S2, and the diastole interval is from S2 to the beginning of S1 in the next heart cycle.
For each cardiac cycle, the PCG signal was segmented into four states: S1, systole, S2, and
diastole, using the algorithm proposed by Springer et al. [30]. The segmentation diagram is
described in Figure 4. In this study, 20 time-domain, 16 frequency-domain, and 12 entropy
features of each channel were extracted, and there were 240 single-channel features. 3 cross
entropy features were extracted from every two channels. Since there were 10 combinations
of five channels, 30 cross entropy features were extracted in this study.

Entropy 2021, 23, x FOR PEER REVIEW 5 of 18 
 

 

 
Figure 3. Collected heart sound signals. (a1)~(a5) The heart sound signals from channel 1 to chan-
nel 5 of a non-CAD subject; (b1)~(b5) The heart sound signals from channel 1 to channel 5 of a 
CAD patient. 

2.3. Features Extraction 
The segmentation of the fundamental heart sounds is an essential step in the auto-

matic analysis of the heart sound signal. There are two main components in a cardiac cycle: 
The first heart sound (S1), caused by the closure of the mitral and tricuspid valves and 
their vibrations; the second heart sound (S2), generated by the closure of the aortic and 
pulmonary valves and their vibrations. The systole interval is the window between S1 and 
S2, and the diastole interval is from S2 to the beginning of S1 in the next heart cycle. For 
each cardiac cycle, the PCG signal was segmented into four states: S1, systole, S2, and 
diastole, using the algorithm proposed by Springer et al. [30]. The segmentation diagram 
is described in Figure 4. In this study, 20 time-domain, 16 frequency-domain, and 12 en-
tropy features of each channel were extracted, and there were 240 single-channel features. 
3 cross entropy features were extracted from every two channels. Since there were 10 com-
binations of five channels, 30 cross entropy features were extracted in this study. 

 
Figure 4. Heart sound signal after segmentation. 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time/s

-4

-2

0

2

4

6

8
Heat sound signal
Derived statesDiastoleS2SystoleS1

Figure 4. Heart sound signal after segmentation.



Entropy 2021, 23, 642 6 of 19

2.3.1. Time-Domain Features (20 × 5 Features)

The duration of each cardiac activity state often reflects changes in the state of the
heart, since they are generated by the specific cardiac activities. The amplitude of heart
sound can represent the intensity of cardiac mechanical activity, which may be potentially
helpful for the detection of CAD. In this study, the mean value and standard deviation (SD)
of interval durations, duration ratios, and average amplitude ratios were calculated [31].
The details are given in Table 2.

Table 2. Extracted time-domain features during a cardiac cycle of each channel.

Abbreviation Description

CC The cardiac cycle duration
IntS1 The S1 interval duration
IntS2 The S2 interval duration
IntSys The systolic interval duration
IntDia The diastolic interval duration

Ratio_SysCC The ratio of systolic interval to the cardiac cycle duration
Ratio_DiaCC The ratio of diastolic interval to the cardiac cycle duration
Ratio_SysDia The ratio of systole interval to the diastole interval

Ratio_Amp_SysS1 The ratio of average amplitude during systole to that during S1
Ratio_Amp_DiaS2 The ratio of average amplitude during diastole to that during S2

2.3.2. Frequency-Domain Features (16 × 5 Features)

Frequency spectrum analysis is the most widely used approach in heart sound anal-
ysis. The fast Fourier transform (FFT) was used in this study. The normal heart sound
signal generally had a frequency band below 200 Hz, and the noise related to diseases was
generally ranging between 200 and 800 Hz [32]. At the same time, heart sound signals of
CAD patients and non-CAD subjects were also significantly different at the low-frequency
power of 25–60 Hz, especially at 31.5 Hz [9]. According to the existing research conclu-
sions [33], 200 Hz and 50 Hz were used as the thresholds of high and low frequency. The
spectrum ratios were extracted as frequency domain features, and a detailed description
is presented in Table 3. First, the spectrum values of each state were calculated using
fast Fourier transform. Then, the proportions of high frequency (above 200 Hz) and low
frequency (below 50 Hz) components in the spectrum of four state spectra were obtained
separately. Their mean values and SD were calculated as features.

Table 3. Extracted frequency-domain features during a cardiac cycle of each channel.

Abbreviation Description

HFAll_S1 The proportion of high-frequency component in total spectrum S1s
LFAll_S1 The proportion of low-frequency component in total spectrum S1s
HFAll_S2 The proportion of high-frequency component in total spectrum S2s
LFAll_S2 The proportion of low-frequency component in total spectrum S2s

HFAll_Sys The proportion of high-frequency component in total spectrum systoles
LFAll_Sys The proportion of low-frequency component in total spectrum systoles
HFAll_Dia The proportion of high-frequency component in total spectrum diastoles
LFAll_Dia The proportion of low-frequency component in total spectrum diastoles

2.3.3. Entropy Features (12 × 5 Features)

Entropy features were extracted including SampEn, FuzzyEn, and DistEn. For this
work, the mean value and SD of entropy features in systole and diastole were calculated,
and the details are given in Table 4.
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Table 4. Extracted entropy features during a cardiac cycle of each channel.

Abbreviation Description

SampEn_Sys The sample entropy of systolic
SampEn_Dia The sample entropy of diastolic
FuzzyEn_Sys The fuzzy entropy of systolic
FuzzyEn_Dia The fuzzy entropy of diastolic
DistEn_Sys The distribution entropy of systolic
DistEn_Dia The distribution entropy of diastolic

1. SampEn is a nonlinear feature to calculate the probability of generating new patterns
in signals [20]. It is also a common method to measure the complexity of time
series [21]. SampEn can be calculated as follows:

SampEn(m, r, N) = − ln
∑N−m

i=1 B(m+1)
i (r)

∑N−m
i=1 B(m)

i (r)
, (1)

where N is the length of signals, m is the embedding dimension, r is the threshold
parameter, and B(m)

i (r) is the probability that any two epochs match each other.
2. FuzzyEn [34] is actually a refined algorithm of SampEn. The difference between them

lies in the thresholding procedure. The fuzzy membership function to determine the
fuzzy similarity Sm

ij between Xm
i and Xm

j is:

Sm
ij = exp

(
−d2

ij/r
)

, (2)

where dij is the distance between Xm
i and Xm

j . In this study, for SampEn and FuzzyEn,
the pattern length m was set to 2, and matching tolerance r was set to 0.2 times the
SD of the input time series [35]. It has been shown in published studies that the
introduction of the fuzzy membership function significantly improves the stability
and consistency of the algorithm [36].

3. DistEn [23] uses empirical probability distribution functions (ePDF) to achieve the
global measurement of the distance matrix, avoiding the parameter dependence
caused by local evaluation. The ePDF of dm

ij is estimated using a histogram with a
predefined bin number B. Then DistEn is defined by the Shannon formula for entropy:

DistEn(m) = − 1
log2(B)

B

∑
m=1

pt log2(pt), (3)

Thus, the range of DistEn should be within [0, 1]. In this study, B was set to 2ˆ8.

2.3.4. Cross Entropy Features (3 × 10 Features)

Coupling, also known as synchrony, was first proposed by Huygens [37]. XSampEn,
XFuzzyEn, and JDistEn used in this study are accepted methods to measure coupling [38].
As the cross entropy features were extracted from every two channels, there were 10 com-
binations of five channels. Therefore, 30 cross entropy features were extracted in this study.

1. XSampEn [20] is developed from SampEn. It measures the synchronization of two
signals by focusing on the similarity of patterns between two signals. XSampEn is
defined as:

XSampEn(m, τ, r) = − ln
∑N−mτ

i=1 B(m+1)
i (r)

∑N−mτ
i=1 B(m)

i (r)
, (4)

where m is the embedding dimension, τ is the time delay and r is the threshold parameter.
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2. XFuzzyEn [26] has the same algorithm framework as XSampEn. FuzzyEn substituted
a Gaussian function for the Heaviside function as the membership function, i.e., the
B(m)

i (r) is defined by:

B(m)
i (r) =

1
N −mτ

N−mτ

∑
j=1,j 6=i

e− ln(2)(
di,j

r )
2

, (5)

The parameter m was set to 2 in this study. Since the signal is normalized, the SD is 1.
In order to find out the best parameter r, the XSampEn and XFuzzyEn with r = 0.1,
r = 0.15, r = 0.2, r = 0.25, and r = 0.3 were calculated. After comparing the results, r
was set to 0.2.

3. The JDistEn algorithm [27] is developed by combining the joint distance matrix and
DistEn. The ePDF of dm

ij is estimated by histogram with a predefined bin number B,
which is denoted by Pt where t = 1, 2, . . . B. Then JDistEn is defined by the Shannon
formula for entropy:

JDistEn(m, τ, B) = − 1
log2(B)

B

∑
t=1

pt log2(pt), (6)

JDistEn has been shown to have especially good performance in short-length data [27].
In this study, the number of histogram bins B was set to 2ˆ8.

2.4. Feature Set Construction

In order to explore whether the multi-channel signal features perform better and
whether the two types of entropy features can improve the classification accuracy, five
types of feature sets were established. Single-channel feature set 1 was composed of
one-channel features without entropy features, which was abbreviated as ‘Sin–feature
set 1’. Single-channel feature set 2 was composed of one-channel features with entropy
features, which was abbreviated as ‘Sin–feature set 2’. Multi-channel feature set 1 included
five-channel features without entropy features, which was abbreviated as ‘Mul–feature
set 1’. Multi-channel feature set 2 included five-channel features with entropy features,
which was abbreviated as ‘Mul–feature set 2’. Multi-channel feature set 3 included five-
channel features with entropy features and cross entropy features, which was abbreviated
as ‘Mul–feature set 3’. Sin–feature set 1 and Sin–feature set 2 represented five feature sets
from channel 1 to channel 5, respectively.

2.5. Statistical Analysis

The generalized linear mixed model (GLMM) [39] is used for the statistical analysis
in this paper. GLMM can be regarded as the fusion of the generalized linear model and
linear mixed model, whose dependent variable need not satisfy the normal distribution.
GLMM is suitable for processing repeated measurement data. The dependent variable of
this study was the binary categorical variable, so the distribution of the fitted mixed model
was set as binomial distribution, and the link function was set as a logit function. Statistical
significance was set a priori at p < 0.05.

2.6. Feature Selection

Feature selection is particularly important. It is difficult to obtain a satisfactory
performance by directly inputting the features into the classifier. This study used two
feature selection methods including information gain and SVM–RFE to reduce feature
dimension and enhance classification performance.

1. Information gain [40] is a statistic used to describe the ability to distinguish data
samples. Features with larger information gain values are considered to contribute
more to classification. Information gain is defined as information entropy minus
conditional entropy.
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2. SVM–RFE can repeatedly build SVM models to obtain the optimal feature subset.
Features with the lowest contribution are iteratively eliminated from the training
set, and the ranking from salient to non-salient features is generated [41]. Thus, the
optimal feature subset is constructed by selecting the appropriate feature number.

2.7. Classification

The task of CAD classification is a typical binary classification problem. SVM was
chosen in this study because of its excellent performance in small sample binary classifi-
cation problems [42]. In n-dimensional space, SVM separates input data into the classes
using hyperplanes. When the sample cannot be divided linearly, the kernel function is
used to map the sample to a higher latitude space, and then find the hyperplane. The radial
basis function kernel is a common kernel function of SVM, which contains two important
hyper-parameters: C and gamma. The cost parameter C is used to control the overfitting of
the model, and gamma is used to control the non-linear degree of the model [43]. According
to previous experimental experience and relevant research [44], the detailed parameter
configuration of the SVM classifier is shown in Table 5.

Table 5. Detailed parameter configuration of the SVM classifier.

Parameter Instructions

C ‘2−5–25’
Gamma ‘2−5–25’

Kernel function ‘radial basis function’
Scoring ‘accuracy’

Cv 5
Class_weight ‘balanced’

2.8. Performance Evaluation

Five-fold cross validation was performed in this work, and the final classification
result was the average of five cross validations to make the evaluation more realistic. In
order to ensure that the segments of the training group and the validation group came
from completely different subjects, the recordings were divided into five parts firstly, and
then every recording in each part was cropped into 30 segments lasting 10 s. Stratified
sampling was used to ensure the balance of positive and negative samples.

In this study, the standard metrics including sensitivity (Se.), specificity (Sp.), and
accuracy (Acc.) were used to measure the classification performance [45]. The equations
associated with these metrics are calculated as

Acc. =
TP + TN

TP + TN + FP + FN
, (7)

Se. =
TP

TP + FN
, (8)

Sp. =
TN

TN + FP
, (9)

where TP, TN, FP, and FN stand for the number of the true positives, true negatives, false
positives, and false negatives, respectively.

3. Results

In this study, the data pre-processing, feature extraction, and machine learning code
were executed in Matlab R2019a. The entire experiment was implemented on a PC with a
3.70 GHz Intel Core i7-8700 k CPU, 16 GB of RAM, and a Windows 10 operating system.
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3.1. Results Based on Statistical Analysis

In this paper, all the features were fitted by GLMM for statistical analysis. A total
of 31 features were proven to be statistically different, including 5 time-domain features,
10 frequency-domain features, 2 entropy features, and 18 cross entropy features. The details
of features with statistical differences are shown in Table 6. In the statistical analysis, 1
represented subject with CAD and 0 represented subject without CAD. Therefore, the odds
ratio represented the increment of CAD odds for each 1 unit increased in the feature. In the
comparison of the features of different domains, cross entropy features accounted for the
largest proportion of the features with statistical differences, although the number of them
was the least. The feature with the largest odds ratio was the frequency-domain feature.

Table 6. Details of features with statistical differences.

Feature Domain Odds Ratio p Value Feature Domain Odds Ratio p Value

XSampEn_12 Cro-en 3.86 × 107 0.00 m_Amp_SysS1_1 Time 1.17 0.01
XSampEn_13 Cro-en 5.01 × 107 0.00 m_LFAll_Sys_1 Frequency 9.63 × 10−25 0.01
XSampEn_14 Cro-en 2.74 × 104 0.01 m_LFAll_Dia_1 Frequency 1.56 × 10−22 0.01
XSampEn_15 Cro-en 6.29 × 104 0.00 m_Amp_SysS1_2 Time 1.25 0.00
XSampEn_23 Cro-en 1.24 × 106 0.00 m_HFAll_S1_2 Frequency 3.23 × 1061 0.00
XSampEn_24 Cro-en 1.02 × 104 0.01 m_LFAll_S1_2 Frequency 1.45 × 10−21 0.01
XSampEn_25 Cro-en 4.53 × 104 0.00 m_LFAll_Sys_2 Frequency 1.56 × 10−18 0.03
XSampEn_35 Cro-en 7.19 × 103 0.01 m_LFAll_S2_2 Frequency 2.91 ×10−22 0.00
XSampEn_45 Cro-en 4.33 × 102 0.04 m_LFAll_Dia_2 Frequency 3.34 × 10−22 0.01
XFuzzyEn_12 Cro-en 3.39 × 1011 0.00 m_Amp_SysS1_3 Time 1.35 0.00
XFuzzyEn_13 Cro-en 9.99 × 1011 0.00 m_FuzzyEn_Sys_3 Entropy 6.40 × 10−10 0.03
XFuzzyEn_14 Cro-en 5.78 × 106 0.01 m_DistEn_Sys_3 Entropy 5.33 × 1030 0.02
XFuzzyEn_15 Cro-en 2.30 × 107 0.00 m_Amp_SysS1_4 Time 1.21 0.03
XFuzzyEn_23 Cro-en 2.15 × 109 0.00 m_Amp_SysS1_5 Time 1.26 0.02
XFuzzyEn_24 Cro-en 1.07 × 106 0.01 m_HFAll_S1_5 Frequency 2.14 × 1026 0.03
XFuzzyEn_25 Cro-en 1.00 × 107 0.00 m_LFAll_Sys_5 Frequency 5.69 × 10−15 0.04
XFuzzyEn_35 Cro-en 8.56 × 105 0.01 m_LFAll_Dia_5 Frequency 1.22 × 10−15 0.03
XFuzzyEn_45 Cro-en 8.18 × 103 0.04

Note: ‘Cro-en’ is short for ‘Cross entropy’, the odds ratio is represented by scientific notation, and the suffix number indicates the channel.

The boxplots of entropy and cross entropy features are shown in Figure 5. The
abscissa ‘1_s’ in (a)–(f) means systolic period of channel 1, and ‘1_d’ means diastolic period
of channel 1. The abscissa ‘1–2’ in (g)–(h) represents the cross entropy feature extracted
jointly by channel 1 and channel 2. Features marked with * are statistically significantly
different. It can be seen that the XSampEn and XFuzzyEn on most channels had statistically
significant differences between CAD patients and non-CAD subjects. The eigenvalues of
XSampEn, XFuzzyEn, and JDistEn of CAD patients were generally larger than those of
non-CAD subjects.



Entropy 2021, 23, 642 11 of 19Entropy 2021, 23, x FOR PEER REVIEW 11 of 18 
 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

Figure 5. Boxplots of entropy features and cross entropy features. (a) The mean value of SampEn in different states; (b) 
The mean value of FuzzyEn in different states; (c) The mean value of DistEn in different states; (d) The standard deviation 
of SampEn in different states; (e) The standard deviation of FuzzyEn in different states; (f) The standard deviation of 
DistEn in different states; (g) XSampEn in every two channels; (h) XFuzzyEn in every two channels; (i) JDistEn in every 
two channels. Features marked with * are statistically significantly different. 

3.2. Ranking Results Based on Information Gain 
The value of information gain reflects the importance of features. In this study, infor-

mation gain values of 270 features were calculated, and were sorted from large to small. 
In order to explore the importance of different domain features for CAD detection, the 
numbers of different domain features in the top 10, top 20, and top 30 are counted and 
shown in Figure 6. In Figure 6, Mul–feature set 1 was used in (a), Mul–feature set 2 was 
used in (b), and Mul–feature set 3 was used in (c). It can be seen that the cross entropy 

1_s 1_d 2_s 2_d 3_s 3_d 4_s 4_d 5_s 5_d

0.1

0.2

0.3

0.4

0.5

0.6

FuzzyEn-mean
CAD
non-CAD

*

1_s 1_d 2_s 2_d 3_s 3_d 4_s 4_d 5_s 5_d

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

DistEn-std
CAD
non-CAD

1-2 1-3 1-4 1-5 2-3 2-4 2-5 3-4 3-5 4-5

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
XSampEn CAD

non-CAD

** * ** *
***

Figure 5. Boxplots of entropy features and cross entropy features. (a) The mean value of SampEn in different states; (b) The
mean value of FuzzyEn in different states; (c) The mean value of DistEn in different states; (d) The standard deviation of
SampEn in different states; (e) The standard deviation of FuzzyEn in different states; (f) The standard deviation of DistEn in
different states; (g) XSampEn in every two channels; (h) XFuzzyEn in every two channels; (i) JDistEn in every two channels.
Features marked with * are statistically significantly different.

3.2. Ranking Results Based on Information Gain

The value of information gain reflects the importance of features. In this study,
information gain values of 270 features were calculated, and were sorted from large to
small. In order to explore the importance of different domain features for CAD detection,
the numbers of different domain features in the top 10, top 20, and top 30 are counted and
shown in Figure 6. In Figure 6, Mul–feature set 1 was used in (a), Mul–feature set 2 was
used in (b), and Mul–feature set 3 was used in (c). It can be seen that the cross entropy
features and frequency domain features perform excellently in feature ranking, while
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entropy features perform mediocrely. As always, the performance of frequency domain
features is better than that of the time domain feature.
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3.3. Classification Performance

The information gain and SVM–RFE method were used to select features. After being
sorted and selected, the features were put into the SVM classifier to compare whether
the features from multi-channel signals performed better and whether entropy and cross
entropy features can improve the classification accuracy. The number of features from
single-channel feature sets was selected incrementing at step size 2, and the number of
features from multi-channel feature sets was at step size 10. In order to explore the impact
of multi-channel features on classification performance, classification accuracy based on
single-channel feature sets and multi-channel feature sets were compared. The results are
shown in Figure 7. It is worth noting that the number of features from different feature sets
is different, so the abscissa of Figure 7 is a percentage of the total number of features. It can
be clearly seen that multi-channel feature sets have advantages over single-channel feature
sets in detecting CAD.
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Figure 7. Comparison of classification accuracy between single-channel feature sets and multi-
channel feature sets. (a) classification accuracy of Sin–feature set 1 and Mul–feature set 1 under
information gain; (b) classification accuracy of Sin–feature set 1 and Mul–feature set 1 under SVM–
RFE; (c) classification accuracy of Sin–feature set 2, Mul–feature set 2 and Mul–feature set 3 under
information gain; (d) classification accuracy of Sin–feature set 2, Mul–feature set 2 and Mul–feature
set 3 under SVM–RFE.

Figure 8 uses the same data as Figure 7, it is drawn to explore the role of entropy
and cross entropy features in classification. For the single-channel feature set, the highest
classification accuracy among the five channels was used to draw Figures 7 and 8. When
using information gain, the feature set of channel 3 had the highest classification accuracy.
When using SVM–RFE, the feature set of channel 2 had the highest classification accuracy.
But the classification accuracy of the two channels differed by only 0.85%. It can be seen
from Figure 8 that the accuracy of classification is improved by adding entropy and cross
entropy features to either the single-channel feature set or the multi-channel feature set.



Entropy 2021, 23, 642 14 of 19

Entropy 2021, 23, x FOR PEER REVIEW 13 of 18 
 

 

Sin–feature set 2 selected by SVM–RFE achieved the best performance of single-channel 
features with an accuracy of 83.02 %. 

  
(a) (b) 

  
(c) (d) 

Figure 7. Comparison of classification accuracy between single-channel feature sets and multi-
channel feature sets. (a) classification accuracy of Sin–feature set 1 and Mul–feature set 1 under 
information gain; (b) classification accuracy of Sin–feature set 1 and Mul–feature set 1 under 
SVM–RFE; (c) classification accuracy of Sin–feature set 2, Mul–feature set 2 and Mul–feature set 3 
under information gain; (d) classification accuracy of Sin–feature set 2, Mul–feature set 2 and Mul–
feature set 3 under SVM–RFE. 

  
(a) (b) 

0 20 40 60 80 100
Percentage of total(%)

60

65

70

75

80

85

90
Information gain

Sin–feature set 1
Mul–feature set 1

0 20 40 60 80 100
Percentage of total(%)

60

65

70

75

80

85

90
SVM–RFE

Sin–feature set 1
Mul–feature set 1

0 20 40 60 80 100
Percentage of total(%)

65

70

75

80

85

90

95
Information gain

Sin–feature set 2
Mul–feature set 2
Mul–feature set 3

0 20 40 60 80 100
Percentage of total(%)

65

70

75

80

85

90

95
SVM–RFE

Sin–feature set 2
Mul–feature set 2
Mul–feature set 3

0 20 40 60 80 100
Percentage of total(%)

60

65

70

75

80

85
Information gain

Sin–feature set 1
Sin–feature set 2

0 20 40 60 80 100
Percentage of total(%)

60

65

70

75

80

85
SVM–RFE

Sin–feature set 1
Sin–feature set 2

Entropy 2021, 23, x FOR PEER REVIEW 14 of 18 
 

 

  
(c)  (d) 

Figure 8. Comparison of classification accuracy with or without entropy features and cross en-
tropy features. (a) classification accuracy of Sin–feature set 1 and Sin–feature set 2 under infor-
mation gain; (b) classification accuracy of Sin–feature set 1 and Sin–feature set 2 under SVM–RFE; 
(c) classification accuracy of Mul–feature set 1, Mul–feature set 2 and Mul–feature set 3 under in-
formation gain; (d) classification accuracy of Mul–feature set 1, Mul–feature set 2, and Mul–feature 
set 3 under SVM–RFE. 

Table 7. Comparison of the best classification performance of different single-channel feature sets under different selection 
methods. 

 Information Gain SVM–RFE 
 Without Entropy With Entropy Without Entropy With Entropy 

 Acc. (%) Se. 
(%) 

Sp. 
(%) Acc. (%) Se. 

(%) 
Sp. 
(%) Acc. (%) Se. 

(%) 
Sp. 
(%) Acc. (%) Se. 

(%) 
Sp. 
(%) 

Ch-1 75.94 ± 8.19 
73.38 ± 
15.41 

77.56 ± 
11.07 

80.57 ± 
5.98 

79.87 ± 
21.92 

81.23 ± 
17.22 

77.55 ± 
11.59 

74.45 ± 
23.12 

80.14 ± 
14.01 

79.41 ± 
7.02 

77.75 ± 
18.19 

81.78 ± 
10.62 

Ch-2 
77.92 ± 
10.52 

73.00 ± 
13.36 

81.71 ± 
10.72 

80.77 ± 
8.50 

73.65 ± 
24.95 

87.38 ± 
12.84 

78.75 ± 
6.94 

79.93 ± 
18.75 

78.32 ± 
4.43 

83.02 ± 
11.99 

80.39 ± 
18.72 

84.07 ± 
18.35 

Ch-3 74.09 ± 8.35 
73.03 ± 
15.08 

74.11 ± 
9.96 

82.17 ± 
6.55 

78.89 ± 
17.52 

85.31 ± 
11.18 

74.52 ± 
10.99 

70.77 ± 
26.94 

78.55 ± 
16.88 

82.38 ± 
8.18 

76.42 ± 
8.97 

87.24 ± 
9.75 

Ch-4 67.86 ± 9.37 
66.28 ± 
20.86 

71.27 ± 
25.60 

69.03 ± 
15.79 

69.52 ± 
14.52 

69.48 ± 
20.05 

61.86 ± 
10.99 

50.79 ± 
17.94 

71.24 ± 
14.16 

66.76 ± 
5.43 

63.12 ± 
17.49 

68.76 ± 
16.72 

Ch-5 
68.48 ± 
11.94 

66.63 ± 
6.98 

70.81 ± 
20.60 

70.33 ± 
5.80 

68.97 ± 
18.48 

70.88 ± 
5.57 

70.10 ± 
9.13 

66.51 ± 
16.92 

72.80 ± 
19.74 

79.69 ± 
12.78 

75.79 ± 
20.13 

83.03 ± 
14.60 

Note: the bold format represents the highest classification accuracy in each selecting method, ‘Ch-1′ means ‘Channel 1′, 
and data are expressed as mean value ± standard deviation. 

Table 8. Comparison of the best classification performance of different multi-channel feature sets under different selection 
methods. 

 Information Gain SVM–RFE 
 Acc. (%) Se. (%) Sp. (%) Acc. (%) Se. (%) Sp. (%) 

Mul–feature set 1 84.11 ± 5.47 75.76 ± 14.26 90.98 ± 6.42 86.70 ± 6.42 80.89 ± 16.74 91.01 ± 11.85 
Mul–feature set 2 88.30 ± 7.27 79.09 ± 13.07 95.06 ± 6.70 87.33 ± 8.55 80.28 ± 15.77 92.90 ± 3.50 
Mul–feature set 3 90.52 ± 5.67 80.66 ± 14.81 98.30 ± 2.85 90.92 ± 6.89 87.96 ± 8.71 93.04 ± 9.30 

Note: the bold format represents the highest classification accuracy in each selecting method, and data are expressed as 
mean value ± standard deviation. 

4. Discussion 
Considering the location of coronary artery occlusion, all CAD patients had left ante-

rior descending stenosis, in which there were 7 subjects with first diagonal branch steno-
sis, 2 subjects with second diagonal branch stenosis, 1 subject with septal artery stenosis, 
1 subject with middle branch stenosis and 16 subjects with left circumflex artery stenosis. 
That is to say, most coronary artery occlusion occurred in the left coronary artery. Among 

0 20 40 60 80 100
Percentage of total(%)

70

75

80

85

90

95
Information gain

Mul–feature set 1
Mul–feature set 2
Mul–feature set 3

0 20 40 60 80 100
Percentage of total(%)

70

75

80

85

90

95
SVM–RFE

Mul–feature set 1
Mul–feature set 2
Mul–feature set 3

Figure 8. Comparison of classification accuracy with or without entropy features and cross entropy
features. (a) classification accuracy of Sin–feature set 1 and Sin–feature set 2 under information gain;
(b) classification accuracy of Sin–feature set 1 and Sin–feature set 2 under SVM–RFE; (c) classification
accuracy of Mul–feature set 1, Mul–feature set 2 and Mul–feature set 3 under information gain; (d)
classification accuracy of Mul–feature set 1, Mul–feature set 2, and Mul–feature set 3 under SVM–RFE.

Tables 7 and 8 shows the highest classification accuracy of each feature sets. After
feature selection, the top 30 features of Mul–feature set 3 selected by SVM–RFE achieved
the best performance with an accuracy of 90.92%. Besides, the top 22 features of Sin–feature
set 2 selected by SVM–RFE achieved the best performance of single-channel features with
an accuracy of 83.02 %.
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Table 7. Comparison of the best classification performance of different single-channel feature sets under different selection methods.

Information Gain SVM–RFE

Without Entropy With Entropy Without Entropy With Entropy

Acc. (%) Se. (%) Sp. (%) Acc. (%) Se. (%) Sp. (%) Acc. (%) Se. (%) Sp. (%) Acc. (%) Se. (%) Sp. (%)

Ch-1 75.94 ± 8.19 73.38 ± 15.41 77.56 ± 11.07 80.57 ± 5.98 79.87 ± 21.92 81.23 ± 17.22 77.55 ± 11.59 74.45 ± 23.12 80.14 ± 14.01 79.41 ± 7.02 77.75 ± 18.19 81.78 ± 10.62
Ch-2 77.92 ± 10.52 73.00 ± 13.36 81.71 ± 10.72 80.77 ± 8.50 73.65 ± 24.95 87.38 ± 12.84 78.75 ± 6.94 79.93 ± 18.75 78.32 ± 4.43 83.02 ± 11.99 80.39 ± 18.72 84.07 ± 18.35
Ch-3 74.09 ± 8.35 73.03 ± 15.08 74.11 ± 9.96 82.17 ± 6.55 78.89 ± 17.52 85.31 ± 11.18 74.52 ± 10.99 70.77 ± 26.94 78.55 ± 16.88 82.38 ± 8.18 76.42 ± 8.97 87.24 ± 9.75
Ch-4 67.86 ± 9.37 66.28 ± 20.86 71.27 ± 25.60 69.03 ± 15.79 69.52 ± 14.52 69.48 ± 20.05 61.86 ± 10.99 50.79 ± 17.94 71.24 ± 14.16 66.76 ± 5.43 63.12 ± 17.49 68.76 ± 16.72
Ch-5 68.48 ± 11.94 66.63 ± 6.98 70.81 ± 20.60 70.33 ± 5.80 68.97 ± 18.48 70.88 ± 5.57 70.10 ± 9.13 66.51 ± 16.92 72.80 ± 19.74 79.69 ± 12.78 75.79 ± 20.13 83.03 ± 14.60

Note: the bold format represents the highest classification accuracy in each selecting method, ‘Ch-1’ means ‘Channel 1’, and data are expressed as mean value ± standard deviation.

Table 8. Comparison of the best classification performance of different multi-channel feature sets under different selection methods.

Information Gain SVM–RFE

Acc. (%) Se. (%) Sp. (%) Acc. (%) Se. (%) Sp. (%)

Mul–feature set 1 84.11 ± 5.47 75.76 ± 14.26 90.98 ± 6.42 86.70 ± 6.42 80.89 ± 16.74 91.01 ± 11.85
Mul–feature set 2 88.30 ± 7.27 79.09 ± 13.07 95.06 ± 6.70 87.33 ± 8.55 80.28 ± 15.77 92.90 ± 3.50
Mul–feature set 3 90.52 ± 5.67 80.66 ± 14.81 98.30 ± 2.85 90.92 ± 6.89 87.96 ± 8.71 93.04 ± 9.30

Note: the bold format represents the highest classification accuracy in each selecting method, and data are expressed as mean value ± standard deviation.
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4. Discussion

Considering the location of coronary artery occlusion, all CAD patients had left
anterior descending stenosis, in which there were 7 subjects with first diagonal branch
stenosis, 2 subjects with second diagonal branch stenosis, 1 subject with septal artery
stenosis, 1 subject with middle branch stenosis and 16 subjects with left circumflex artery
stenosis. That is to say, most coronary artery occlusion occurred in the left coronary artery.
Among the five auscultation locations designed in this study, the positions of channel 2
and channel 3 mainly detected the left coronary artery. Therefore, channel 2 and channel 3
had excellent classification performance, which is consistent with our results. Previous
studies [5,6] showed that coronary stenosis produces high-frequency sounds due to the
turbulent blood flow in partially occluded arteries. This is consistent with the conclusion
that the feature with the largest odds ratio in our study is the frequency domain feature.

Statistical analysis is an important step in exploring the validity of features. This study
expands the sample size by segmenting the heart sound signal, so the samples of the same
person are not independent of each other. Data segmentation is equivalent to the repeated
measurement of data, which is suitable for analysis using GLMM. GLMM includes both
fixed effects and random effects, and random effects can eliminate the influence of feature
correlation within the group. The role of information gain is to estimate the importance of
extracted features. The results show that the cross entropy feature not only accounts for
the largest proportion in the top 10, top 20, and top 30, but also has the largest number
of features that are statistically different. Considering that there are only 30 cross entropy
features in the total 270 features, this result is more encouraging. SVM–RFE is a greedy
algorithm for finding the optimal feature subset. Although it is time-consuming, it can
enormously improve the accuracy of classification. The index of SVM–RFE is based on
classification. Therefore, it is more reliable in improving the accuracy of classification.

Figure 7 shows that the classification performance using features extracted from multi-
channel signals is better than that from single-channel signals. Compared with single-
channel signals, multi-channel signals can provide more information about detecting CAD
from suspected patients. The murmurs generated by coronary artery occlusion are more
likely to be picked up by multiple heart sound sensors located at different locations. In
other words, multi-channel signals acquisition can increase the probability of detecting
CAD. In addition, in this study, the application of multi-domain features also plays a
significant role. Previous studies have proven that features from multiple domains are
more conducive to feature classification [33,46].

Figure 8 shows the comparison of classification accuracy before and after adding
the entropy feature. It can be seen that the accuracy of classification is improved by
adding entropy and cross entropy features. Figure 5g–i show that the cross entropy
features of CAD patients have a consistent increase compared with non-CAD. Cross
entropy is a physical quantity to represent synchronization. The increase of the cross
entropy represents a decrease in the synchronization of the two signals. For CAD patients,
the stenosis of blood vessels will lead to myocardial ischemia and reduction of myocardial
contractility. In cases of myocardial ischemia, the energy supply decreases, which can
result in systolic dysfunction, such as delayed contraction, decreased contraction force, and
non-synchronized motion in the myocardium. Changes in the state of the heart affect the
flow of blood, which is reflected in the heart sound and captured by a microphone on the
body surface. Previous studies concluded that there is disturbed myocardial synchrony in
CAD patients, with greater dyssynchrony than in the control group [47]. This is consistent
with the increase of the cross entropy of CAD patients in Figure 5.

Table 9 summarizes the existing studies that use heart sound signals for CAD detection.
Among these studies, the highest accuracy of CAD detection using heart sound signals
is 84% [17]. Most of the studies in Table 9 identified CAD patients and healthy subjects.
Obviously, it is easier to identify CAD patients and healthy subjects, because of their
obvious differences in clinical symptoms and examination results. However, for the
similarity of clinical symptoms, metabolism and electrocardiogram between CAD and



Entropy 2021, 23, 642 17 of 19

suspected CAD patients [48], it is very difficult for physicians to accurately diagnose
them. A previous study concluded that 10–30% of patients who received CAG due to
angina pectoris had “normal” or “near normal” coronary arteries during CAG [49], which
causes an additional significant burden on patients, families, and society. In this study,
CAD and suspected CAD patients were identified, and the classification accuracy of the
multi-domain features extracted from multi-channel signals is 90.92%.

Table 9. Summary of the existing studies on the detection of CAD using PCG signals.

Author Database Feature & Classifier Result (%)

Gauthier et al. [10] (2007) 30 subjects: 24 CAD & 6 normal Fast Fourier Transform
Optimal threshold detection

Acc. = 73.3
Se. = 71.0
Sp. = 83.0

Akay et al. [15] (2009) 40 subjects: 30 CAD & 10 normal Approximate entropy
Optimal threshold detection

Acc. = 77.0
Se. = 78.0
Sp. = 80.0

Griffel et al. [14] (2012) 31 subjects: 16 CAD & 15 non-CAD Automutual information function
Linear support vector machine classifier

Acc. = 81.0
Se. = 87.0
Sp. = 85.0

Schmidt et al. [9] (2015) 133 subjects: 63 CAD & 70 non-CAD Frequency and nonlinear features
Quadratic discriminant function

Acc. = 68.5
Se. = 72.0
Sp. = 65.2

Akanksha et al. [17] (2017) 50 subjects: 25 CAD & 25 normal Cross power spectral density
Support vector machine classifier

Acc. = 84.0
Se. = 82.0
Sp. = 81.3

Pathak et al. [19] (2020) 80 subjects: 40 CAD & 40 normal Imaginary part of cross power spectral density
Support vector machine classifier

Acc. = 75.0
Se. = 76.5
Sp. = 73.5

This paper 36 subjects: 21 CAD & 15 non-CAD Multi-domain and multi-channel features
Support vector machine classifier

Acc. = 90.9
Se. = 88.0
Sp. = 93.0

5. Conclusions

Among all the single-channel features, the highest classification accuracy was 83.02%.
After collecting heart sound signals from five different locations, the classification accuracy
of the multi-channel features was 86.70%. After adding entropy features and cross entropy
features, the classification accuracy improved to 90.90%. It is concluded that multi-channel
heart sounds can provide further information for CAD detection, and entropy features
and cross entropy features have the advantage of improving classification accuracy. Due
to the advantages of non-invasive, low cost, and simple operation, the use of heart sound
signals will inevitably provide great help in disease screening and detection. Cross entropy
features have shown great potential in statistical analysis and feature ranking, and more
in-depth research can be done in the future. Multi-domain feature fusion of multi-channel
heart sound signals can provide additional information, which will play an important
role in the process of preventing and overcoming cardiovascular diseases. In future
work, signals from more subjects are necessary to test the performance of the proposed
method further. Moreover, we will pay attention to exploring more useful features and
classification methods.
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44. Babaoğlu, I.; Fındık, O.; Bayrak, M. Effects of principle component analysis on assessment of coronary artery diseases using

support vector machine. Expert Syst. Appl. 2010, 37, 2182–2185. [CrossRef]
45. Sharma, D.; Yadav, U.B.; Sharma, P.J.M.E.R.J. The concept of sensitivity and specificity in relation to two types of errors and its

application in medical research. Math. Ences Res. J. 2009, 2, 53–58.
46. Tang, H.; Dai, Z.; Jiang, Y.; Li, T.; Liu, C. PCG classification using multidomain features and SVM classifier. BioMed Res. Int. 2018,

2018, 4205027. [CrossRef]
47. Tian, J.-W.; Du, G.-Q.; Ren, M.; Sun, L.-T.; Leng, X.-P.; Su, Y.-X. Tissue Synchronization Imaging of Myocardial Dyssynchronicity

of the Left Ventricle in Patients with Coronary Artery Disease. J. Ultrasound Med. 2007, 26, 893–897. [CrossRef]
48. Arbogast, R.; Arbogast, R.; Bourassa, M.G.; Bourassa, M.G. Myocardial function during atrial pacing in patients with angina

pectoris and normal coronary arteriograms: Comparison with patients having significant coronary artery disease. Am. J. Cardiol.
1973, 32, 257–263. [CrossRef]

49. Crea, F.; Lanza, G.A. Angina pectoris and normal coronary arteries: Cardiac syndrome X. Heart 2004, 90, 457–463. [CrossRef]

http://doi.org/10.3390/e22121439
http://doi.org/10.1016/j.ins.2010.01.004
http://doi.org/10.1109/TBME.2016.2515543
http://www.ncbi.nlm.nih.gov/pubmed/26760967
http://doi.org/10.1166/jmihi.2020.2926
http://doi.org/10.1109/TBME.2015.2475278
http://doi.org/10.1088/0967-3334/37/12/2181
http://www.ncbi.nlm.nih.gov/pubmed/27869105
http://doi.org/10.1109/10.61034
http://doi.org/10.1088/1361-6579/abc323
http://www.ncbi.nlm.nih.gov/pubmed/33080588
http://doi.org/10.1109/TNSRE.2007.897025
http://doi.org/10.1016/j.medengphy.2008.04.005
http://doi.org/10.1063/1.1554136
http://doi.org/10.1016/j.bspc.2015.05.005
http://doi.org/10.1080/03610926.2019.1599021
http://doi.org/10.3389/fnbot.2017.00019
http://doi.org/10.1145/1961189.1961199
http://doi.org/10.1016/j.cmpb.2016.10.011
http://www.ncbi.nlm.nih.gov/pubmed/27886710
http://doi.org/10.1016/j.eswa.2009.07.055
http://doi.org/10.1155/2018/4205027
http://doi.org/10.7863/jum.2007.26.7.893
http://doi.org/10.1016/S0002-9149(73)80130-4
http://doi.org/10.1136/hrt.2003.020594

	Introduction 
	Materials and Methods 
	Data Acquisition 
	Signal Preprocessing 
	Features Extraction 
	Time-Domain Features (20  5 Features) 
	Frequency-Domain Features (16  5 Features) 
	Entropy Features (12  5 Features) 
	Cross Entropy Features (3  10 Features) 

	Feature Set Construction 
	Statistical Analysis 
	Feature Selection 
	Classification 
	Performance Evaluation 

	Results 
	Results Based on Statistical Analysis 
	Ranking Results Based on Information Gain 
	Classification Performance 

	Discussion 
	Conclusions 
	References

