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A B S T R A C T

Background: Non-alcoholic fatty liver disease (NAFLD) is a leading cause of liver-related 
morbidity and mortality. The diagnosis of non-alcoholic steatohepatitis (NASH) plays a crucial 
role in the management of NAFLD patients.
Objective: The aim of our observational study was to build a machine learning model to identify 
NASH in NAFLD patients.
Methods: The clinical characteristics of 259 NAFLD patients and their initial laboratory data 
(Cohort 1) were collected to train the model and carry out internal validation. We compared the 
models built by five machine learning algorithms and screened out the best models. Receiver 
operating characteristic (ROC) curves, sensitivity, specificity, and accuracy were used to evaluate 
the performance of the model. In addition, the NAFLD patients in Cohort 2 (n = 181) were 
externally verified.
Results: We finally identified six independent risk factors for predicting NASH, including 
neutrophil percentage (NEU%), aspartate aminotransferase/alanine aminotransferase (AST/ALT), 
hematocrit (HCT), creatinine (CREA), uric acid (UA), and prealbumin (PA). The NASH-XGB6 
model built using the XGBoost algorithm showed sufficient prediction accuracy, with ROC 
values of 0.95 (95 % CI, 0.91–0.98) and 0.90 (95 % CI, 0.88–0.93) in Cohort 1 and Cohort 2, 
respectively.
Conclusions: NASH-XGB6 can serve as an effective tool for distinguishing NASH patients from 
NAFLD patients.

1. Introduction

The prevalence of nonalcoholic fatty liver disease (NAFLD), a leading cause of chronic liver disease, is approximately 25 % globally, 
with an estimated 3.6 million new cases emerging every year [1]. NAFLD encompasses a range of chronic conditions associated with 
obesity, insulin resistance-related type 2 diabetes mellitus (T2DM), and/or metabolic syndromes, including nonalcoholic fatty liver 
(NAFL), nonalcoholic steatohepatitis (NASH), nonalcoholic fatty liver-associated fibrosis, cirrhosis, and liver cancer [2]. NASH, an 
active form of NAFLD, is associated with an increased incidence of adverse liver-related clinical outcomes and mortality [3]. Iden
tifying individuals at risk of developing NASH is the cornerstone of clinical care and interventions [4].
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Currently, liver biopsy remains the "gold standard" for diagnosing NASH. Although generally safe, liver biopsy is not risk-free, often 
unappealing to patients, and limited by sampling variations and inter- and intra-observer variability among pathologists [5]. 
Importantly, given the vast number of individuals at risk of NAFLD, performing liver biopsies on such a large population is impractical, 
making it an ineffective tool for identifying patients with NASH. There is an urgent need for noninvasive biomarkers to support clinical 
care and facilitate the evaluation of new therapies. Several noninvasive biomarkers have been proposed in previous studies. Many 
studies have attempted to identify new single variables to aid in the prediction of NASH, including cytokeratin-18 (CK18) [6], IL-8 [7], 
and miR122 [8]; however, their diagnostic efficacy is not ideal. Multi-index serum biomarker models have also been used in previous 
studies because a single factor is less accurate for assessing NASH. FIB-4 [9] and NFS [10] are the most widely used algorithms and both 
have high negative predictive values. However, the FIB-4 and NFS generally identify only patients with moderate-to-severe 
NASH-associated fibrosis, and both assays have large regions of uncertainty. Therefore, the development of simple, easily acces
sible, and proven noninvasive tests for early NASH diagnosis in the management of patients with NAFLD is essential.

Machine learning is an emerging method for data calculations and statistics that can be used to analyze medical data in multiple 
dimensions [11]. Compared with traditional statistical modeling, machine learning has the advantage of recognizing unique patterns 
and incorporating multiple factors to create predictive models. Given the heterogeneity, complexity, and overlapping confounding 
factors of liver diseases, machine learning is particularly suitable for applications in this field. Multiple studies have used ML tech
nology in conjunction with liver imaging, histological imaging, or other omics data to predict NAFLD. Schawkat et al. achieved an 
impressive overall accuracy of 85.7 % using a support vector machine (SVM) to predict hepatic fibrosis in chronic liver disease based 
on MRI images of the liver [12]. Similarly, Teramoto et al. demonstrated an AUC of 0.95 with a convolutional neural network (CNN) to 
predict NASH from histopathology images [13]. Forlano et al. exhibited strong interclass correlation coefficients for steatosis (0.97), 
inflammation (0.96), ballooning (0.94), and fibrosis (0.92) between manual and software analysis, utilizing AI-based second-harmonic 
generation (SGH) technology for NASH prediction using histopathology images [14]. Oh et al. achieved an AUC of 0.91 with a random 
forest (RF) to predict NAFLD cirrhosis based on 19 distinct species from gut microbiome signatures [15]. However, most studies rely on 
costly examinations, such as MRI or microbiome sequencing, or fail to eliminate the need for liver biopsy, highlighting the need for 
more accessible and accurate diagnostic tools.

In this study, we developed an ML model to distinguish patients with NASH from those with NAFLD. We tested multiple ML models, 
including extreme gradient boosting (XGBoost), logistic regression (LR), light gradient boosting machine (LightGBM), random forest 
(RF), and adaptive boosting (AdaBoost), to screen the optimal algorithm for the effective diagnosis of NASH. Furthermore, we used the 
differences in the temporal dimension to collect the latest two-year clinical data as an externally validated dataset. We hypothesized 
that the ML model could partially replace liver biopsy for the diagnosis of patients with NASH.

2. Materials and methods

2.1. Study cohort

This study included two distinct cohorts of patients recruited from the First Affiliated Hospital of Jinan University. Cohort 1 was the 
primary cohort for model development and internal validation. This study included patients diagnosed with NAFLD between January 
2019 and December 2021. These patients were further categorized into NAFL and NASH subgroups based on the liver biopsy results, 
facilitating the establishment of a machine learning-based diagnostic model for NASH. Furthermore, Cohort 2 represented the external 
validation cohort, comprising patients diagnosed with NAFLD from January 2022 to December 2023. This cohort underwent the same 
processing procedures as Cohort 1 to validate the diagnostic model externally. The study protocol was approved by the Medical 
Research Ethics Committee of the First Affiliated Hospital of Jinan University (KY-2023-366) and strictly adhered to the ethical 
standards outlined in the Declaration of Helsinki. All methodological approaches were implemented in accordance with approved 
guidelines.

NAFLD was diagnosed according to the 2017 Asia-Pacific Working Group guidelines [16]. The inclusion criteria were as follows: (1) 
no history of excessive alcohol consumption. Excessive alcohol consumption refers to drinking for more than 2 years before liver tissue 
examination and drinking >21 standard units per week in men and >14 standard units per week in women. One standard unit 
constitutes approximately 14 g of pure ethanol [17]. (2) Histological changes in the liver biopsy meet the pathological diagnostic 
criteria for NAFLD. Exclusion criteria: (1) all chronic liver diseases known to cause fatty liver diseases, such as viral hepatitis (espe
cially genotype 3 hepatitis C), Wilson disease, hemochromatosis, and autoimmune hepatitis, and (2) all secondary causes of hepatic 
steatosis, such as drug factors (including tamoxifen, amiodarone, glucocorticoid, synthetic estrogen, methotrexate, and antiviral 
drugs), metabolic or genetic factors (including β-lipoprotein deficiency, lysosomal acid lipase deficiency, and fat metabolism disor
ders), nutritional factors (poor nutrition, malabsorption, total parenteral nutrition, rapid weight loss, and jejunoileal bypass), and 
other special circumstances (such as small intestinal diverticula, petrochemical product exposure, and organic solvent exposure).

2.2. Liver biopsy

The acquisition of histopathological specimens strictly followed the standard operating procedure (SOP). To minimize differences 
in histopathological evaluation, pathology reading involved central reading with a double-blind reading performed by two or more 
liver pathologists according to the fatty liver inhibition of progression algorithm (FLIP-SAF) [18]. This method separately assesses the 
steatosis, mobility, and fibrosis stages. Steatosis was assessed based on the percentage of hepatocytes containing large- and 
medium-sized cytoplasmic lipid droplets, ranging from grade 0 to 3: S0, <5 %; S1, 5%–33 %; S2, 34%–66 %; and S3, >67 %. Activity 
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included lobular inflammation and ballooning. Lobular inflammation was defined as a 20-fold microscopic count of hepatic inflam
matory necrosis: 0—none, 1—1–2 foci of inflammatory necrosis in each liver lobule, and 2–2 or more in each liver lobule. The 
ballooning of hepatocytes varied from 0 to 2:0, normal hepatocytes were vertical with acute angles and pink eosinophilic cytoplasm; 1, 
there were aggregated clusters of hepatocytes with cytoplasmic cavitation (black and white), a grid shape, and differences in size, 
similar to hepatocytes; 2, on a one-point basis, there was at least one enlarged balloon-like cell in the field, and at least one cluster of 
the one-point balloon-like hepatocytes was twice the size of the other balloon-like cells. Liver fibrosis was graded from 0 to 4 as follows: 
0, no fibrosis; 1, perisinus or periportal fibrosis; 2, perisinusoidal fibrosis with periportal fibrosis; 3, bridging fibrosis; 4, cirrhosis. 
NAFLD, according to histological changes in the liver, is divided into NAFL and NASH: (1) NAFL-hepatocyte fat change >5 %, without 
hepatocyte ballooning or lobular inflammation, with or without fibrosis. (2) NASH: hepatocyte fat change >5 % accompanied by 
ballooning and lobular inflammation with or without fibrosis.

Fig. 1. Flow diagram illustrating the process of the machine learning algorithm employed in developing the predictive model. NAFLD: nonalcoholic 
fatty liver disease; NAFL, nonalcoholic fatty liver; NASH, nonalcoholic steatohepatitis. Scale bars = 25 μm.
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2.3. Detection of clinical indicators and laboratory indicators

Age and sex were recorded for all patients, and basic measures of height, weight, systolic blood pressure (SBP), and diastolic blood 
pressure (DBP) were recorded following standard clinical procedures. Fasting blood samples were collected to analyze routine blood 
and biochemical variables. The indicators tested included 23 hematological measures: red blood cells (RBCs), the coefficient of 
variation of the width of the RBC distribution (RDW-CV), the standard deviation of the RBC distribution width (RDW-SD), hematocrit 
(HCT), hemoglobin (HGB), mean BC hemoglobin content (MCH), mean red blood cell hemoglobin concentration (MCHC), mean red 
blood cell volume (MCV), white blood cells (WBCs), neutrophils (NEU#), percentage of neutrophils (NEU%), lymphocytes (LYM#), 
lymphocytes (LYM%), monocytes (MONO#), percentage of monocytes (MONO%), basophiles (BASO#), percentage of basophiles 
(BASO%), eosinophils (EOS#), percentage of eosinophils (EOS%), platelet (PLT), mean platelet volume (MPV), NLR (neutrophil/ 
lymphocyte), and dNLR (neutrophil/leukocyte–neutrophil), and 47 serological parameters: anionic gap (AG), albumin (ALB), glob
ulins (GLB), A/G (albumin/globulin), prealbumin (PA), total protein (TP), alkaline phosphatase (ALP), aspartate aminotransferase 
(AST), alanine aminotransferase (ALT), AST/ALT (aspartate aminotransferase/alanine aminotransferase), amylase (AMY), apolipo
protein A (APOA), apolipoprotein B (APOB), APOA/APOB (apolipoprotein A/apolipoprotein B), ceruloplasmin cholinesterase (CHE), 
total cholesterol (TCHOL), triglyceride (TG), creatine kinase (CK), creatine kinase isozyme (CKMB), creatinine (CREA), cystatin C (Cys- 
C), combined with bilirubin (DBL), nonbound bilirubin (IBIL), total bilirubin (TBL), iron (Fe), γ-glutamyl transferase (GGT), glucose 
(GLU), glycated serum protein (GSP), α-hydroxybutyrate dehydrogenase (HBDH), high-density lipoprotein (HDL), high-density li
poprotein C (HDL-C), low-density lipoprotein C (LDL-C), lactate dehydrogenase (LDH), lipoprotein A (LPa), sodium, potassium, 
chlorine, magnesium, total carbon dioxide (CO2), osmotic pressure (OSM), phosphorus, zinc, calcium, total bile acid (TBA), transferrin 
(TRF), uric acid (UA), and urea (UREA). All routine blood variables were measured using an UniCel DxH 800 (Beckman Coulter, 
California, USA). All biochemical variables were measured using a Hitachi 7600 autoanalyzer (Hitachi).

2.4. Statistical analysis

Statistical analyses were conducted using R software (version 3.6.2), SPSS 22.0, and the Beckman Coulter DxAI platform (w ww. 
xsm artanalysisbeckman/login/). Data with more than 30 % missing data were excluded from the analysis. Based on the characteristics 
of the data distribution, methods that could represent the central tendency of the variables, such as the median or average, were 
selected to fill in missing values. Continuous variables were represented either as the mean ± standard deviation (SD) or the median 
with the interquartile range (IQR). We employed Student’s t-test, Mann–Whitney U test, ANOVA, or Kruskal–Wallis H-test to compare 
variable distributions across groups. A confusion matrix was used to calculate model evaluation indices. Categorical variables were 
expressed as composition ratios and were compared between groups using Pearson’s χ2 test or Fisher’s exact test. Receiver operating 
characteristic (ROC) curves were used to assess the diagnostic value of the model. The areas under the ROC curves (AUC) were 
compared using DeLong’s test. A calibration curve was used to assess the agreement between model predictions and sample proba
bilities. Decision curve analysis (DCA) was used to evaluate the clinical utility of the model. The interpretation of feature ranking was 
facilitated by Shapley additive explanation (SHAP) plots. Statistical significance was set at P < 0.05.

2.5. Model development and evaluation of machine learning

A total of 75 features per subject were included in the analysis, including nearly all common clinical indicators, including 5 de
mographic, 23 hematological, and 47 serological measures. Liver biopsy results were used as dependent variables. A detailed flowchart 
depicting the stepwise process of model development using a machine learning algorithm is presented in Fig. 1. The feature selection 
involved three steps. First, all differential features were compared with baseline data. Second, the Least Absolute Shrinkage and Se
lection Operator (LASSO) method was used to select the most useful differential features from the primary dataset [19]. Finally, the 
selected differential features were included in the model, and the final included indicators were constantly optimized according to the 
weight ranking of the features.

Cohort 1 employed a 5-fold cross-validation method, in which the entire dataset was partitioned into five folds. In each iteration, 
four folds served as the training dataset for model development, whereas the remaining fold functioned as an internal validation set for 
assessing model performance. This process was repeated five times to ensure a comprehensive evaluation. We compared the predictive 
models built using extreme XGBoost [20], LR [21], LightGBM [22], RF [23], and AdaBoost [24] and identified the most effective 
machine learning algorithms for predicting NASH patients within the validation set. To optimize the model performance, hyper
parameters such as the number of estimators and criteria were carefully fine-tuned. The hyperparameters were tuned using a grid 
search. This involved systematically exploring a predefined set of hyperparameters, testing all possible combinations, and selecting the 
combination that yielded the best model performance according to the selected evaluation metric. The model generated a score that 
indicated the likelihood of each patient belonging to the NASH group. During the grid search process, we conducted extensive searches 
on multiple hyperparameters to determine the optimal model configuration. These parameters include the optimization objective 
function (binary:logistic or binary:logitraw), learning rate (ranging from 0 to 1), maximum tree depth (ranging from 0 to infinity), 
minimum split weight sum (ranging from 0 to infinity), and L2 regularization coefficient (ranging from 0 to infinity). The best esti
mator is the model instance that performs the best based on cross-validation results automatically selected after the grid search is 
completed. The specific parameter configuration of this model is as follows: objective (binary:logistic), learning rate (0.1), maximum 
tree depth (6), minimum split weight sum (1), and L2 regularization coefficient (1). These parameter values were found through grid 
search within the search range and enabled the model to achieve the best generalization performance on the validation set. Model 
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performance was comprehensively assessed using metrics such as the area under the curve (AUC), accuracy (ACC), sensitivity (SEN), 
specificity (SPE), positive predictive value (PPV), and negative predictive value (NPV). Additionally, Cohort 2 served as an inde
pendent dataset for external validation of the model, ensuring its generalizability and reliability.

3. Results

3.1. Patient characteristics

Cohort 1 (for model building and internal validation) included 259 patients with NAFLD, including 56 with NAFL and 203 with 
NASH (Fig. 1). A total of 75 features per subject were included in the analysis, including 5 demographic measures, 23 hematological 
measures, and 47 serological measures. Because of the low event rate of NAFL, which leads to an imbalanced dataset, we used the 
SMOTE algorithm to balance the data from the study cohort [25]. In cohort 1, after testing for normality and homogeneity of variance, 
we chose the Mann–Whitney U test or Welch’s t-test based on the results to compare the parameters of the two groups. Patients with 
NASH were typically older, female, and had higher values for BMI, DBP, AG, ALP, ALT, AST, AST/ALT, APOB, CYSC, GGT, GLU, CREA, 
GSP, NEU%, MCHC, MONO#, TG, UA, NLR, and dNLR, and lower values for A/G, AMY, APOA/APOB, DBIL, HCT, HGB, LYM#, PA, 
TBIL, and UREA than subjects without NASH. Table 1 presents a detailed overview of the baseline clinical characteristics of the study 
population.

3.2. Establishment and evaluation of the NASH diagnostic model based on machine learning

3.2.1. Feature selection
The original model encompassed 75 variables, which were subsequently narrowed down to 25 potential predictors through a 

LASSO regression analysis conducted in Cohort 1. These predictors encompass a diverse array of metrics, including UA, TG, RDWCV, 
PA, OSM, NEU%, MONO, LYM, LPA, HCT, GSP, FE, DBIL, CREA, CKM, APOB, APOA, AMY, AST/ALT, AST, ALP, ALB, DBP, age, and 
sex. The numerical coefficients of these variables are listed in Supplementary Table 1, and their corresponding profiles are presented in 
Fig. 2. Specifically, Fig. 2A shows a cross-validated error plot of the LASSO regression model, offering insight into its predictive ac
curacy and stability. Moreover, Fig. 2B highlights the most regularized and parsimonious model, which achieved a cross-validated 
error within one standard error of the minimum and retained 25 variables, thereby emphasizing its efficiency and effectiveness in 
capturing the underlying patterns in the data.

3.2.2. Comparison of machine learning algorithms and the identification of the optimal model
The fivefold cross-validation results for the five machine learning algorithms incorporating 25 variables are presented in Table 2

and Fig. 3. In the test cohort, the results of the five machine learning algorithms showed AUCs of 0.93 (0.89–0.96) for XGBoost, 0.83 
(0.80–0.86) for logistic regression, 0.92 (0.88–0.95) for LightGBM, 0.92 (0.89–0.95) for random forest, and 0.87 (0.82–0.91) for 
AdaBoost. The performances of the algorithms were further visualized using ROC curves (Fig. 3A), calibration curves (Fig. 3B), and 
decision curve analyses (Fig. 3C). Notably, XGBoost emerged as a superior algorithm, leading to the establishment of a NASH diag
nostic model named NASH-XGB25. The importance of each predictive variable in the prediction results of the XGBoost model is 
determined using the SHAP algorithm. All 25 variables are listed in descending order of importance in the variable importance plot 
shown in Supplementary Fig. 1. Subsequently, we conducted feature screening of this model by selecting the top six variables with the 
highest feature weights for model building, named NASH-XGB6. Statistical analysis using the DeLong test revealed no significant 
difference in the AUC between the first six indicators and all other variables (Table 3 and Fig. 4). Consequently, NASH-XGB6 was 
selected as the final diagnostic model for NASH, incorporating six key features: NEU%, AST/ALT, HCT, CREA, UA, and PA.

3.2.3. Analysis and evaluation of the machine learning model
The internally validated ROC curve results demonstrated the remarkable classification capabilities of the NASH-XGB6 model in 

predicting NASH risk, exhibiting an AUC of 0.95 (95 % CI; 0.91–0.98) along with a sensitivity of 0.85 and a specificity of 0.93 (Fig. 5A). 
The calibration curve exhibited a strong concordance between the probabilities predicted by the model and actual outcomes (Fig. 5B). 
Furthermore, decision curve analysis revealed the substantial clinical utility of the model (Fig. 5C). Fig. 5D illustrates the correlation 
between the observed and SHAP values of the six most pertinent features included in our final model. As shown in Fig. 5E, the feature- 
ranked interpretation of the NASH-XGB6 model using the SHAP algorithm identified NEU%, AST/ALT, HCT, CREA, UA, and PA as the 
most significant predictors for NASH patients. In addition, an online tool for the NASH-XGB6 model was established to provide 
convenient access to the predictions. (http://www.xsmartanalysis.com/model/list/predict/model/html? 
mid=12752&symbol=817090gKfG367dE0dq52).

3.3. External verification

Cohort 2, which was dedicated to external validation, included 181 patients with NAFLD, including 37 with NAFL and 144 with 
NASH. As presented in Table 4 and Fig. 6A, the NASH-XGB6 model exhibited a remarkable and consistent diagnostic accuracy for 
NASH, achieving an AUC of 0.90 (95 % CI; 0.88–0.93) along with a sensitivity of 0.78 and specificity of 0.90. Furthermore, Fig. 6B 
visually demonstrates the strong alignment between the risks predicted by the model and the actual observed risks, indicating cali
bration. The decision curve analysis (DCA) curves shown in Fig. 6C confirm the substantial clinical benefits of the model in the external 
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Table 1 
Baseline parameters and characteristics of all patients in the training set and validation sets.

Variable
Cohort 1 (model building and internal validation) Cohort 2 (external validation)

Total (n = 406) NAFL (n = 203) NASH (n = 203) P-value Total (n = 181) NAFL (n = 37) NASH (n = 144) P-value

Age (year) 28 (23–33) 26 (22–32) 29 (24–34) 0.003b 27 (23–32) 26 (22–30) 29 (24–34) <0.001c

Gender
Female (n 

%)
321 (79.06) 176 (86.70) 145 (71.43) <0.001c 227 (78.82) 124 (86.11) 103 (71.53) 0.002b

Male (n%) 85 (20.94) 27 (13.30) 58 (28.57) ​ 61 (21.18) 20 (13.89) 41 (28.47) ​
BMI (kg/m2) 37.01 

(33.65–41.11)
36.19 
(33.38–39.57)

37.72 
(33.83–42.28)

0.013b 36.93 
(33.84–40.42)

36.45 
(33.58–38.86)

37.53 
(34.29–42.00)

0.011a

SBP (mmHg) 126 (120–135) 125 (120–134) 126 (118–138) 0.518 126 (120–137) 126 (120–135) 126 (120–135) 0.914
DBP 

(mmHg)
79 (72–87) 77 (71–84) 81 (74–91) <0.001c 80 (74–86) 78.00 (73–83) 81 (74–89) 0.005b

A/G 1.52 
(1.39–1.63)

1.55 
(1.42–1.64)

1.48 
(1.36–1.62)

0.032a 1.51 
(1.38–1.61)

1.52 
(1.41–1.60)

1.47 
(1.36–1.62)

0.321a

AG 11.42 
(10.20–12.60)

11.20 
(10.13–12.20)

11.80 
(10.20–13.31)

0.003b 11.70 
(10.20–12.53)

11.60 
(10.25–12.18)

11.80 
(10.10–13.40)

0.06

ALP (U/L) 75 (64–88) 72 (62–80) 79 (66–95) <0.001c 74 (64–88) 71 (61–79) 79 (66–94) <0.001c

ALT (U/L) 36 (23–60) 32 (21–50) 43 (28–80) <0.001c 38. (25–63) 32 (20–50) 46 (28–84) <0.001c

AST (U/L) 22 (18–31) 21 (17–26) 25 (18–42) <0.001c 22 (18–34) 20 (17–28) 27 (18–43) <0.001c

AST/ALT 1.54 
(1.21–1.93)

1.41 
(1.15–1.87)

1.65 (1.36–2) <0.001c 1.59 
(1.28–1.92)

1.45 
(1.20–1.78)

1.67 
(1.42–2.06)

<0.001c

AMY (U/L) 41 (34–50) 44 (37–54) 39 (30–47) <0.001c 40 (33–50) 44 (36–53) 37 (30–45) <0.001c

APOA/ 
APOB

1.47 
(1.26–1.79)

1.58 
(1.29–1.86)

1.42 
(1.20–1.74)

<0.001c 1.44 
(1.25–1.77)

1.52 
(1.32–1.78)

1.40 
(1.19–1.74)

0.01b

APOB (g/L) 0.93 
(0.78–1.07)

0.90 
(0.77–1.02)

0.96 
(0.82–1.12)

<0.001c 0.95 
(0.80–1.07)

0.94 
(0.77–1.03)

0.97 
(0.83–1.12)

0.017a

CREA 
(umol/ 
L)

63 (55–71) 61 (51–70) 65 (58–74) <0.001c 63 ± 13 60 ± 14 65 ± 11 0.003b

CYSC (mg/ 
L)

0.87 
(0.80–0.97)

0.85 
(0.79–0.92)

0.90 
(0.81–1.01)

<0.001c 0.87 
(0.79–0.95)

0.86 
(0.79–0.91)

0.89 
(0.80–1.00)

0.017a

DBIL (umol/ 
L)

3.00 
(2.10–4.20)

3.14 
(2.20–4.40)

2.70 
(1.90–4.00)

0.02a 3.01 
(2.15–4.30)

3.34 
(2.39–4.52)

2.70 
(2.00–4.00)

0.01b

GGT (U/L) 33 (23–50) 30 (21–45) 35 (24–59) <0.001c 32 (23–43) 29 (20–39) 36 (25–57) <0.001c

GLU (mmol/ 
L)

5.22 
(4.86–5.73)

5.10 
(4.73–5.41)

5.47 
(4.95–6.41)

<0.001c 5.19 
(4.82–5.97)

5.10 
(4.66–5.49)

5.55 
(4.93–6.47)

<0.001c

GSP (umol/ 
L)

146 (133–16) 141 (132–154) 152 (134–173) <0.001c 145 (133–16) 134 (132–154) 153 (134–173) <0.001c

HCT (%) 42.27 
(39.85–45.1)

42.91 
(40.59–45.31)

41.35 
(39.38–45.09)

0.007b 41.68 
(39.50–45.0)

42.26 
(39.79–45.50)

41.37 
(39.44–45.00)

0.354

HGB (g/L) 138 (131–14) 139 (133–148) 138 (129–148) 0.046a 138 (129–14) 139 (129–149) 138 (129–149) 0.459
LYM# (109/ 

L)
2.39 
(2.12–2.80)

2.47 
(2.12–2.98)

2.35 
(2.12–2.65)

0.011a 2.46 
(2.19–2.85)

2.56 
(2.15–3.00)

2.47 
(2.20–2.73)

0.043a

MCHC (g/L) 327 (322–33) 326 (322–332) 329 (321–334) 0.043a 329 (323–33) 328 (324–332) 330 (322–334) 0.402
MONO# 

(109/L)
0.43 
(0.37–0.56)

0.41 
(0.36–0.53)

0.47 
(0.37–0.58)

0.016a 0.48 
(0.38–0.55)

0.49 
(0.40–0.54)

0.47 
(0.36–0.57)

0.178

NEU% 60.15 
(55.40–64.1)

58.70 
(53.90–64.70)

60.44 
(57.35–63.54)

0.044a 59.69 
(55.05–63.5)

59.00 
(54.70–64.20)

60.80 
(55.54–62.66)

0.048a

PA (g/L) 256 (227–28) 261 (236–291) 252 (217–283) 0.027a 255 (225–28) 258 (228–290) 251 (219–278) 0.039a

TBIL 
(mmol/ 
L)

10.93 
(8.50–13.80)

11.79 
(8.96–13.80)

10.40 
(8.10–14.00)

0.021a 10.90 
(8.40–13.90)

11.60 
(8.81–13.95)

10.00 
(8.10–13.50)

0.079

TG (mmol/ 
L)

1.46 
(1.17–1.89)

1.36 
(1.10–1.62)

1.63 
(1.25–2.11)

<0.001c 1.53 
(1.25–1.99)

1.43 
(1.20–1.69)

1.69 
(1.31–2.19)

<0.001c

UA (umol/L) 442 (382–51) 431 (382–497) 454 (378–528) 0.022a 442 (380–494) 430 (385–482) 455 (378–512) 0.037a

UREA 
(umol/ 
L)

4.42 
(3.79–5.13)

4.54 
(3.88–5.20)

4.27 
(3.75–5.04)

0.047a 4.58 ± 0.10 4.81 ± 0.93 4.36 ± 1.02 <0.001c

NLR 1.92 
(1.59–2.36)

1.84 
(1.49–2.38)

1.95 
(1.70–2.34)

0.023a 1.89 
(1.58–2.26)

1.89 
(1.64–2.20)

1.96 
(1.52–2.35)

0.039a

dNLR 1.51 
(1.24–1.80)

1.42 
(1.17–1.82)

1.53 
(1.35–1.76)

0.023a 1.49 
(1.23–1.74)

1.49 
(1.26–1.68)

1.54 
(1.21–1.80)

0.038a

Ultrasound ​ ​ ​ N/A ​ ​ ​ N/A
Fatty liver 406 (100) 203 (100) 203 (100) ​ 181 (100) 37 (100) 144 (100) ​
Fibrosis stage ​ ​ ​ 0.084 ​ ​ ​ 0.2552
0–1 369 (90.89) 190 (93.60) 179 (88.18) ​ 160 (88.40) 35 (94.59) 125 (86.81) ​
2–4 37 (9.11) 13 (6.40) 24 (11.82) ​ 21 (94.59) 2 (5.41) 2 (5.41) ​

Normally or approximately normally distributed variables are expressed as the mean ± standard deviation, and skewed variables are expressed as the 
median (interquartile range). BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; HCT, hematocrit; MCHC, mean red 

Y. Yan et al.                                                                                                                                                                                                            Heliyon 10 (2024) e38848 

6 



validation cohort.

4. Discussion

Despite these limitations, the initial diagnosis of NAFLD is generally feasible owing to the development of ultrasonographic 
techniques. However, ultrasonography cannot be used to determine the severity of NAFLD. Distinguishing patients with NASH from 
those with NAFLD is an important challenge for clinicians. A liver biopsy is the gold standard for diagnosing NASH. Nevertheless, 
performing a liver biopsy for each NAFLD patient is not feasible, and the risks and cost-effectiveness of invasive procedures must be 
considered [26]. It is difficult for clinicians to assess the status of patients with NAFLD when clinical symptoms are inconspicuous and 
pathological findings are lacking. This study aimed to solve practical clinical problems to establish a diagnostic model that could 
effectively identify patients with NASH.

blood cell hemoglobin concentration; NEU%, percentage of neutrophils; LYM#, lymphocytes; LYM%, lymphocytes; MONO#, monocytes; NLR, 
neutrophil/lymphocyte; dNLR, neutrophil/leukocyte–neutrophil; AG, anionic gap; A/G, albumin/globulin; PA, prealbumin; ALP, alkaline phos
phatase; AST, aspartate aminotransferase; ALT, alanine aminotransferase; AST/ALT (aspartate aminotransferase/alanine aminotransferase); AMY, 
amylase; APOB, apolipoprotein B; APOA/APOB, apolipoprotein A/apolipoprotein B; TG, triglyceride; TBL, total bilirubin; GGT, γ-glutamyl trans
ferase; GLU, glucose; GSP, glycated serum protein; UA, uric acid; UREA, urea; N/A, not applicable. Liver fibrosis grade from 0 to 4: 0—no fibrosis; 
1—perisinus or periportal fibrosis; 2—perisinusoidal fibrosis with periportal fibrosis; 3—bridging fibrosis; 4—cirrhosis.

a P < 0.05.
b P < 0.01, and.
c P < 0.001.

Fig. 2. Outcomes of the LASSO regression analysis. (A) Profiles of LASSO coefficients, which quantify the impact of each predictor variable on the 
response variable. These coefficients are obtained by fitting the LASSO model with varying regularization strengths. (B) Cross-validation error curve 
for the selection of the tuning parameter (λ). The curve plots the cross-validation error as a function of λ, indicating the λ value that minimizes the 
error and thus provides the best model fit.

Table 2 
Diagnostic efficacy of the five machine learning algorithms in the internal validation set.

Algorithm AUC±SD Accuracy Sensitivity Specificity PPV NPV F1 score

XGBoost 0.93 ± 0.03 0.80 ± 0.03 0.92 ± 0.08 0.83 ± 0.06 0.93 ± 0.05 0.70 ± 0.04 0.89 ± 0.05
LR 0.83 ± 0.03 0.76 ± 0.05 0.72 ± 0.07 0.86 ± 0.03 0.80 ± 0.06 0.75 ± 0.03 0.75 ± 0.06
LightGBM 0.92 ± 0.04 0.73 ± 0.04 0.90 ± 0.07 0.85 ± 0.04 0.91 ± 0.06 0.66 ± 0.05 0.90 ± 0.04
RF 0.92 ± 0.03 0.80 ± 0.03 0.90 ± 0.06 0.80 ± 0.07 0.90 ± 0.07 0.78 ± 0.03 0.89 ± 0.04
AdaBoost 0.87 ± 0.04 0.80 ± 0.05 0.84 ± 0.08 0.81 ± 0.12 0.81 ± 0.07 0.80 ± 0.06 0.82 ± 0.03

XGBoost, extreme gradient boosting; LR, logistic regression; LightGBM, light gradient boosting machine; RF, random forest; AdaBoost, adaptive 
boosting. AUC, area under the curve; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value.
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Traditional statistical techniques are hypothesis-driven and have inherent limitations. Specifically, they often restrict the analysis 
to only potential risk factors that are presumed relevant, potentially leading to the neglect of crucial information pertinent to outcome 
prediction. Alternatively, machine learning methods exhibit a remarkable capacity to handle multiple variables, capture intricate 
nonlinear interactions, and generate highly accurate predictive models [27]. We developed an ML-based NIT to discriminate between 
patients with NASH and NAFLD. It showed excellent performance on both internal and external validation datasets. The challenge in 
developing accurate predictive models for NASH is to achieve a good balance between specificity and sensitivity. Before applying the 
SMOTE algorithm, 56 and 203 patients were included in the NAFL and NASH groups, respectively. Misclassification errors may occur if 
the outcome classes are not equally distributed. The performance of machine learning algorithms is typically evaluated using pre
dictive accuracy, which is not appropriate when the data are imbalanced or the costs of different errors vary significantly. The SMOTE 
algorithm was used to address the issue of imbalanced datasets and improve the accuracy of ML classifiers [28]. Compared with other 
methods such as random oversampling, SMOTE not only helps the model learn more nuanced patterns of the minority class but also 

Fig. 3. Performance evaluation of five machine learning algorithms in the internal validation set. (A) Receiver operating characteristic curve 
analysis assessing the discriminatory capacity of the model based on true positive rate and false positive rate. (B) Calibration curve analysis 
evaluating how well the predicted probabilities of the algorithms align with the actual outcomes. (C) Decision curve analysis comparing the net 
benefit of using the model predictions versus making decisions solely based on the majority class.

Table 3 
DeLong test of NASH-XGB6 and NASH-XGB25.

Algorithm AUC (95 % CI) z p

NASH-XGB25 0.93 (0.89–0.96) − 1.437 0.151
NASH-XGB6 0.95 (0.91–0.98) ​ ​

AUC, area under the curve; CI, confidence interval. *P < 0.05, **P < 0.01, and ***P < 0.001.

Fig. 4. Receiver Operating Characteristic curve analysis in the NASH-XGB6 and NASH-XGB25 models.
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avoids the problem of simply duplicating existing minority class examples. Random undersampling is not suitable for our study 
because it reduces the data of the majority of NASH patients and decreases the sample size, which could lead to the loss of potentially 
valuable information. To construct the NASH prediction model, the predictor–outcome association was tested by narrowing the 
regression coefficient using the LASSO method, reducing 75 candidate features to 25 potential predictors. This method not only ex
ceeds the method of selecting predictors based on the univariate association strength of predictors and outcomes [29] but also enables 
the panel of selected features to be combined into a NASH prediction model. In the internal validation dataset, the XGBoost algorithm, 
which included 25 variables to establish the model (NASH-XGB25), exhibited the best diagnostic efficacy (Table 2 and Fig. 3). Through 
further screening, we reduced the number of features to six to establish the NASH-XGB6 model (Fig. 5). To validate the generalization 

Fig. 5. Performance evaluation of the NASH-XGB6 model within the internal validation dataset. (A) Receiver operating characteristic curve 
analysis. (B) Calibration curve analysis. (C) Decision curve analysis. (D) SHAP value indicating the impact of each feature on the model predictions 
along the abscissa. (E) Ranking of feature importance based on the SHAP analysis providing insights into the relative contribution of each feature to 
the overall performance of the model. SHAP, SHapley Additive exPlanations.

Table 4 
Diagnostic efficacy of XGBoost in the external validation set.

Algorithm AUC (95 % CI) Accuracy Sensitivity Specificity PPV NPV F1 score

XGBoost 0.90 (0.88–0.93) 0.81 0.78 0.90 0.92 0.75 0.84

AUC, area under the curve; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value.

Fig. 6. Performance evaluation of the NASH-XGB6 model in the external validation set. (A) Receiver operating characteristic curve analysis. (B) 
Calibration curve analysis. (C) Decision curve analysis.
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capability of NASH-XGB6, we included a study cohort based on latitude for external validation. External validation showed that 
NASH-XGB6 had excellent diagnostic ability for identifying patients with NASH (Table 4 and Fig. 6), with the model’s AUC, specificity, 
and PPV performing well. Based on these results, the NASH-XGB6 model was selected as the final algorithm. NASH-XGB6 is a 
noninvasive, easy-to-perform serum marker diagnostic model that can effectively support the management of patients with NAFLD.

Based on NAFLD cases diagnosed through liver tissue biopsy, we constructed a noninvasive diagnostic model characterized by six 
independent indicators (NEU%, AST/ALT, HCT, CREA, UA, and PA). The six features used in the ML model were closely related to the 
pathophysiology of NAFLD and its disease progression, which is similar to the findings on NAFLD reported in recent years. The SHAP 
value explained the contribution of a single sample to the prediction results and the percentage of neutrophils had the greatest impact 
on the performance of the NASH-XGB6 model (Fig. 5E). Neutrophils are the most abundant type of leukocytes in humans. In addition to 
acute inflammation, they play an important role in chronic inflammation such as that observed in nonalcoholic fatty liver disease [30]. 
NASH is an important stage in the development of NAFLD, and one of its characteristics is the large amount of neutrophil infiltration 
around lipotoxic hepatocytes, which promotes liver injury [31]. Our results also showed a significant increase in the number of 
neutrophils in the circulation of patients with NASH (Table 1), which is in line with previous findings [32]. In our study cohort, AST 
and ALT levels and AST/ALT ratios were significantly higher in the NASH group than in the NAFL group (Table 1), as expected. 
AST/ALT ratio, also known as the De Ritis ratio, is clinically significant [33] and was included in the model in this study. Some re
searchers believe that the prevalence of NAFLD increases with an increase in uric acid levels and that hyperuricemia is a risk factor for 
NAFLD [34]. Interestingly, PA levels significantly decreased in patients with NASH. When liver damage leads to the synthesis of 
hepatocyte proteins, the short half-life of PA in serum is more sensitive and can quickly reflect the presence of hepatocyte damage in 
the early stages [35].

The current study had some limitations. This was a retrospective, single-center study with a sample size limited to Chinese patients. 
Our model showed excellent performance in the current research environment, but we recognized that it may not be applicable to all 
populations. Specifically, our study may not have fully considered the characteristics of certain specific populations, such as the 
elderly, children, or certain ethnic minority groups. Therefore, when applying these models to a broader clinical setting, further 
validation and adjustment may have been necessary. Differences in resource availability, patient management, and clinical practices 
across different clinical environments may also have affected the performance of the model. Subsequent studies in different pop
ulations and centers, including various clinical settings, are needed to further validate our findings. In addition, there was a bias in the 
proportion of patients with NAFL and NASH. This is because clinicians decide which patients with NAFLD will undergo liver biopsy 
and select those who are in the more advanced stages of NASH through experience; thus, there is an inherent selection bias. However, 
this also makes the proposed ML model fit better in real-world situations. However, this study has several strengths. Firstly, by utilizing 
advanced algorithms and deep learning techniques, our model was able to analyze data more accurately, providing results that were 
more precise than those obtained from traditional non-invasive tests. By leveraging machine learning, our model analyzed a wide 
range of clinical and demographic features, enabling it to capture complex patterns and relationships that may not be considered in 
conventional tests. This comprehensive analysis contributed to its improved diagnostic performance. Secondly, by providing accurate 
predictions without requiring invasive procedures, our model offers a more effective and cost-efficient solution for diagnosing NASH 
and NAFLD. This can help reduce medical costs and improve patient outcomes. Thirdly, the liver biopsy results were obtained through 
a central review with a double-blind reading by two or more liver pathologists. This approach ensured the accuracy of pathological 
outcomes in our patients and prevented observer bias. Additionally, we have created a web-based version of the NASH-XGB6 model to 
provide greater convenience and accessibility to medical professionals in their daily practice. This web version allows healthcare 
providers to easily access and utilize the model’s predictive capabilities without the need for specialized software or hardware, 
enabling them to make more informed decisions regarding the diagnosis and management of non-alcoholic steatohepatitis (NASH) and 
related liver conditions.

5. Conclusions

After evaluating the performance of five machine learning models built using different algorithms, we identified the NASH-XGB6 
model, which was developed using the XGBoost algorithm, as the most effective. This model incorporates six key features: NEU%, AST/ 
ALT, HCT, CREA, UA, and PA. Its excellent diagnostic capabilities for NASH enable timely intervention, ultimately improving the 
clinical outcomes for NAFLD patients with NAFLD. Our findings establish a solid foundation for the development of future machine 
learning models for disease prediction and provide valuable insights for clinical decision-making.
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