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Abstract: Hepatocellular carcinoma is a primary liver cancer caused by the accumulation of genetic
mutation patterns associated with epidemiological conditions. This lethal malignancy exhibits tumor
heterogeneity, which is considered as one of the main reasons for drug resistance development
and failure of clinical trials. Recently, single-cell technology (SCT), a new advanced sequencing
technique that analyzes every single cell in a tumor tissue specimen, aids complete insight into the
genetic heterogeneity of cancer. This helps in identifying and assessing rare cell populations by
analyzing the difference in gene expression pattern between individual cells of single biopsy tissue
which normally cannot be identified from pooled cell gene expression pattern (traditional sequencing
technique). Thus, SCT improves the clinical diagnosis, treatment, and prognosis of hepatocellular
carcinoma as the limitations of other techniques impede this cancer research progression. Application
of SCT at the genomic, transcriptomic, and epigenomic levels to promote individualized hepato-
cellular carcinoma diagnosis and therapy. The current review has been divided into ten sections.
Herein we deliberated on the SCT, hepatocellular carcinoma diagnosis, tumor microenvironment
analysis, single-cell genomic sequencing, single-cell transcriptomics, single-cell omics sequencing
for biomarker development, identification of hepatocellular carcinoma origination and evolution,
limitations, challenges, conclusions, and future perspectives.

Keywords: hepatocellular carcinoma; liver cancer; RNA sequencing; single-cell technology

1. Introduction

An estimated 844 million people worldwide are affected by liver disease, of which
liver cancer constitutes the most lethal malignancy. Primary liver cancer (starting in
the liver) affects nearly 40,000 Americans each year, and men are affected more than
women [1]. According to the American Cancer Society, approximately 20,020 men and
10,140 women will die this year due to this severe disease, while it has been reported that
nearly 380,000 people in China die every year due to this cancer [2]. The incidence rate of
primary liver cancer has tripled since 1980, with just an 18% survival rate while the death
rate doubled in 2020 [3]. Among various types of primary liver cancer, the most common
is hepatocellular carcinoma (HCC) or hepatoma [4]. Approximately 10–20% of primary
liver cancers are bile duct cancers (intrahepatic cholangiocarcinomas). Hepatoblastoma
(occurs in children below 4 years old), angiosarcoma, and hemangiosarcoma are rare types
of primary liver cancer. Benign liver tumors including hemangioma (starting in liver blood
vessels), hepatic adenoma, and focal nodular hyperplasia are difficult to treat but radiation
and chemotherapy slow their progression [5].

In the past, liver cancers were screened by the alpha-fetoprotein (AFP) blood test,
which failed to detect early-stage cancer. Thus, new blood tests such as DCP (Des-gamma-
carboxy prothrombin), osteopontin, Glypican-3, and Golgi protein-73 were developed in
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addition to imaging tests such as CT (computerized tomography) and MRI (Magnetic
resonance imaging) scans for accurate cancer diagnosis. Liver cancer is the second leading
cause of death worldwide, ranked as the sixth most frequently diagnosed cancer. A higher
rate of deaths due to liver cancer has led to developing novel diagnostic techniques, treat-
ment procedures, and prevention of recurrence after surgery (adjuvant therapy) [6]. The
therapies include radioembolization, chemotherapy or chemoembolization, neoadjuvant
therapies (treatment before surgery) which include targeted therapy [7,8], viral therapy,
ablation therapy (irreversible electroporation), trans-arterial chemoembolization (TACE) [9],
and embolization. Even with all these treatment strategies in hand, progressive stages
of HCC remain mostly incurable as they are diagnosed at an advanced stage, and a gap
remains [4].

Recently, intratumor genomic heterogeneity in several tumor types has been doc-
umented with evidence linking it to cancer prognosis [10]. Zheng et al. hypothesized
that survival of a tumor heterogeneous community is mainly due to the collective role
of each cell which is hierarchically organized in a tumor lesion. However, the existing
genomic analyses are not robust enough to describe the true evolution process of tumors
and the development of cell communities. It is puzzling to imagine how the heterogeneous
tumor cells communicate or regulate or cooperate preparing themselves to survive as an
efficient community. Notably, these tumor communities have not been characterized [11].
In HCC, intratumor molecular heterogeneity is attributed to the presence of cancer stem
cells (CSCs). CSCs or tumor-initiating cells are a subpopulation of cancer cells that are
key responsible cells for tumor initiation and growth maintenance. Each CSC population
is defined by specific cell surface markers characterized by different oncogenic drivers,
which poses a challenge to current targeted molecular therapeutics. A new technique called
single-cell technology (SCT), or single-cell RNA sequencing (scRNA-seq), has filled this gap
by enabling the study of single cells at the transcriptional level. This has paved the way for
the discovery of altered cell types such as liver progenitor cells and subtypes in diseased
liver cancer samples versus normal liver samples. This technique has provided evidence
that CSC subpopulations exhibited distinct molecular signatures at the tissue level while,
at the single-cell level, they were phenotypically, functionally, and transcriptionally hetero-
geneous [11]. The difference in gene expression pattern between individual cells of single
biopsy tissue critically helps in identifying and assessing rare cell populations which nor-
mally cannot be identified from pooled cell gene expression pattern (traditional sequencing
technique) [12]. Interestingly, this diversity has proved to be effective in HCC prognosis.

This review consists of nine sections. Section 1 specifically emphasized the SCT, which
provides novel insights for understanding cellular heterogeneity in liver cancer or HCC,
which in turn assist in the design of accurate treatment strategies. Section 2 provides
information on single-cell technology. Section 3 offers information on hepatocellular carci-
noma diagnosis. Section 4 deliberates on the tumor microenvironment analysis. Section 5
presents single-cell genomic sequencing. Section 6 introduces single-cell transcriptomics.
Section 7 includes details on single-cell omics sequencing for biomarker development.
Section 8 encompasses the identification of hepatocellular carcinoma origination and evo-
lution. Section 9 elucidates the limitations and challenges. Section 10 covers conclusions
and future perspectives. We anticipate that this comprehensive review will serve as a
cornerstone for the future developments of SCT. Furthermore, this review will deliver
novel insights on SCT for realizing cellular heterogeneity.

2. An Overview of Single-Cell Technology

SCT, otherwise called scRNA-seq, is the sequencing of a single cell genome or tran-
scriptome to get information about genome or transcriptome or other integrative omics
(proteome, metabolome, and epigenome) (Figure 1). sc-RNA-seq was first introduced
in 2009 by Tang et al. Earlier, this new technology was not highly popular because of
cost constraints, and other problematic issues include the presence of a low proportion of
the genes, limited coverage of the transcript, and cannot be applied for the frozen tissue
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samples, but technical protocol modifications brought widespread popularity by 2014. SCT
encompasses a two-step process: single-cell separation and single-cell analysis. Single-cell
separation is achieved by flow cytometry, laser capture micro-dissection (LCM), optical
tweezers, and microfluidics. All these processes form the basis of single-cell analysis, which
includes the profiling of specific cell genomes, transcriptomes, and proteomes [13]. SCT
has transformed the understanding of disease pathogenesis; subsequently, it describes in
detail unprecedented interactions between pathogenic cell populations and the homeo-
static environment in the tissue. This offers an advantage over the traditional techniques
where profiling of bulk cell population is done. In the conventional approach, tumor cells’
co-occurrence mutation pattern is not resolved, while SCT examines in-depth complexity
by identifying compound mutations which are particularly useful to categorize pathways
activated and the cause of tumor cell resistance. SCT adds a new dimension to the tran-
scriptomic data by analyzing cellular heterogeneity in tumor or diseased tissue. Cellular
heterogeneity of tumor or intratumor heterogeneity (ITH) refers to distinct phenotypes and
genetic alterations happening within a single or different tumor nodule (tissue biopsy) of
the same patient. Cellular heterogeneity imparts major clinical consequences by misdirect-
ing treatment decisions. However, implying molecular information of single tissue biopsy
potentially favors sampling bias and helps in deciding the accurate drug for the treatment
of the patient. Apart from cancer biology, single-cell sequencing technology is nowadays
applied in various biological studies like microbiology, immunology, reproduction biol-
ogy, neurology, digestive, and urinary systems. This clarifies its role in basic science and
clinical research area [14]. In the near future, millions of cells can be routinely analyzed.
Already, a pilot study of the human cell atlas with 35 trillion cells map of the human body
has started [15]. Presently, SCT has provided a favorable platform for tumor diagnosis
by developing specific tumor biomarkers and individualized tumor therapy [16]. Thus,
on a global scale, this technique will bring revolution in the prognosis and treatment of
various types of cancer [17]. For instance, SCT has been designated as a robust technique
to diagnose (through a noninvasive method) bladder cancer by screening urine for rare
malignant cells. This technique surveys malignant cells’ copy number alternations or tumor
(oncogenic) driver gene mutations of characteristic cancer [18]. SCT is indispensable for the
identification of biomarkers of gastric cancer, lung cancer, colorectal cancer, breast cancer,
and various other tumors, thus contributing to early diagnosis and prognostic monitoring
of cancer [16]. Recently, this novel approach has been applied in the field of hepatology.
Figure 1 provides a generalized overview of single-cell RNA sequencing and traditional
sequencing techniques.
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3. An Overview of Hepatocellular Carcinoma Diagnosis

Worldwide, HCC is a serious health challenge as it has created a hefty economic burden
due to increasingly high mortality rates in the general population. At the initial stages of
the disease, an HCC patient displays no clinical symptoms, which leads to a poor prognosis.
Metastasis occurs slowly, and over 60% of HCC patients are diagnosed at an advanced
stage. The molecular evidence indicates that the sudden activation and inactivation of
oncogenes and tumor suppressor genes, respectively, lead to hepatocarcinogenesis. The
identification of other molecular mechanisms and reliable markers are still needed to detect
HCC at the early stages of development [19].

The liver is made up of macrophages, T-cells, cholangiocytes, hematopoietic stem
cells (HSC), liver sinusoidal endothelial cells (LSECs), hepatocytes, and neutrophils that
are highly organized on the acinus proto-central axis. The axis is mainly lined by hepato-
cytes that constitute a functional unit of study under disease conditions. Liver zonation
is observed as a function of the hepatocyte variation along this axis. scRNA-seq’s first
application was a liver zonation study in both mice and humans. Over the past three years,
a surplus of liver scRNA-seq studies has been published [20–22]. A combination strategy
of scRNA-seq and smRNA-FISH (Fluorescence in situ hybridization) was applied to obtain
spatial information on liver zonation [23]. The major challenge of integrating each cell’s
RNA data with spatial information was addressed by using bioinformatics protocol and fol-
lowing specific sequencing strategies. The scRNA-seq method disclosed unimaginable gene
expression gradients in different cell lineages along the sinusoid, demarking hepatocytes of
the portal (E-cadherin markers; ECAD) and central (cytochrome P450 2E1; CYP2E1) zones,
LSECs of the central zone (mast/stem cell growth factor receptor) [24] and HSCs of the
portal zone expressing the tumor necrosis factor receptor (TNFR) superfamily member [20].
These data have been used to study mouse liver zonation using immunohistochemistry [23].
The gene expression patterns of the normal homeostatic environment can be compared
with HCC disease development conditions.

Li and his coworkers’ experimental data with cluster analysis, singleR, cell marker,
pseudotime analysis, and finally Gene ontology and Kyoto encyclopedia of genes and
genomes enrichment analysis provided the key references for the HCC clinical diagnosis
and prognosis. SCT of 21 HCC patients and 256 normal persons liver samples were collected
from the database Gene expression omnibus (GEO). The cells were grouped, marker genes
such as the Hub genes prospective regulatory mechanism were identified, explored, and
its evolution process was defined. Lastly, the cancer genome atlas database was used to
investigate the differential expression pattern of the 10 survival-related hub genes, and it
was correlated with HCC patients’ survival and diagnosis [25]. In HCC patients’ ALDOB
(glycolytic metabolizing enzyme), APOC3 (Apolipoprotein C gene), APOH (Apolipoprotein
H), CYP2E1 and CYP3A4 (members of cytochrome P450 enzyme system), Gc globulin,
HRG (Histidine rich glycoprotein), Linc01554 (long intergenic non-protein coding RNA
1554), and pyruvate dehydrogenase kinase 4 (PDK4) being expressed significantly lower
compared to normal tissues indicates poor prognosis while high expression of thioredoxin
(TXN) was correlated with carcinogenic effect. Thus, based on single-cell data, the hub
genes served as a correlation factor to the survival of HCC patients and further would help
in studying the molecular mechanism involved in the evolution of liver cancer [25].

4. Tumor Microenvironment Analysis

The most efficient treatment for HCC has been reported to be surgical resection [26].
However, in 2018, the European association of study of the liver has reported 50–70% of
cases with a high incidence of relapse, which is a highly painful facet. The HCC tumor
ecosystem is considered one of the complex systems with heterogeneous cell types. Under-
standing the spatiotemporal interactions among the cells in the tumor microenvironment
is highly essential for studying the development and prognosis of HCC [27]. Immune
checkpoint blockades proved to be effective in many cancer types, but for HCC, the results
were unsatisfactory. Recently, sc-RNA seq has been used to profile thousands of cells
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in early relapse HCC patients. This was compared to the profile of primary tumors. It
was observed that regulatory T cells levels were decreased with increased dendritic and
infiltrated CD8+T cells in early relapse tumors compared to that of classically exhausted
primary HCC. CD8+ T cells exhibited an innate-like low cytotoxic state with overexpressed
KLRB1 (CD161) and low clonal expansion, while potent immune response which was
revealed by differential gene expression and interaction analyses in relapsed state HCC
inhibited dendritic cell antigen presentation. Thus, a comprehensive picture of the TME
(tumor microenvironment) divulged by sc-RNA seq was highly beneficial to discover more
potential therapeutic strategies for HCC [28].

Over the past few years, SCT methodologies have shown substantial progress in the
development of the ideal method. Nearly hundreds of methods have been designed, and a
specific method is applied depending upon the research objective of the sequence [13]. Few
of the different types of single-cell sequencing methodologies applied in Hepatocellular
carcinoma have been tabulated (Table 1).

Table 1. Different types of single-cell sequencing methodologies applied in Hepatocellular carcinoma.

Steps/Technique Smart-Seq2 CEL-Seq2 10×-Chromium scATAC-Seq TARGET-Seq

Cell isolation
approach Low throughput High throughput High throughput High throughput High throughput

Platform
96/384-well plates;

Illumina HiSeq
2000

96/384-well plates;
Fluidigm C1,

illumine TrueSeq

Drop Seq: Cells
with barcoded

beads with unique
molecule

identifiers (UMIs)
and primers are

used

10× Genomics;
Illumina NextSeq

500

Plate-based,
Illumina NextSeq

500/550

Measurement Transcriptome Transcriptome Transcriptome Epigenomics Genomics

Reverse
transcription and

c-DNA
amplification

Polymerase chain
reaction (PCR)

in vitro
transcription (IVT).
UMI and specific

bar codes are used
for easy pooling

PCR. UMI and
specific bar codes
are used for easy

pooling

PCR; Barcoded
primers

PCR; Barcoded RT
primers

Library generation Tagmentation Fragmentation Tagmentation and
3′ enrichment Tagmentation Tagmentation

Gene coverage Full length 3′ part of the gene
is sequenced

3′ part of the gene
is sequenced Full length 3′-biased and full

length

Sensitivity

High
(increasing

sensitivity for the
detection of

low-abundance
transcripts,

reducing bias
towards longer

genes, and
enabling

additional analyses
such as assessment
of splice variants).

High

High
(to quantify
individual
transcripts,

reducing technical
noise and

amplification bias,
but introducing 3′

or 5′ bias
depending on the

transcript end
receiving the tag).
Drop-seq exhibits

lower capture
efficiency and

resolution.

Fast and sensitive
epigenomic

profiling; High
variability analysis

High sensitivity,
detects multiple
mutations in a

specific single cell,
detects biallelic

mutations, detect
genomic DNA

variants, targeted
amplification

Cost High Slightly low Low High High

Reference [29] [30] [29] [31] [32,33]
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MacParland et al. revealed a human liver single-cell transcriptomics map with
20 distinct cell populations highlighting the presence of intrahepatic discrete macrophage
populations using 10× chromium technology [34]. The liver cellular composition has
been poorly defined until now, but scRNA-seq studies have aided the construction of
the Human liver atlas (HLA) from 10,000 cells of nine human normal liver donors. The
study has revealed heterogenous EPCAM+ (Epithelial cell adhesion molecule) populations,
cholangiocytes, and TROP2int populations with high potential to form bipotent organoids.
The HLA has also revealed phenotypic changes and allowed for the discovery of distinct
cell types in normal and HCC livers using CEL-Seq2 technology [35].

One of the costliest protocols, which limits scRNA-seq wide application, is Smart-
seq-2. Smart-seq-2 applies template-switching technologies for RT and amplification PCR
technologies. This enables full-length transcript sequencing, splicing events study, and
also allele-specific expression. An alternative to its cost-effective protocol was developed.
CEL-Seq2, in which RNA poly(A) tail is captured by UMI and cellular pre-specified bar-
codes inserted at cDNA synthesis step. This enables cDNA pooling for amplification and,
followed by sequencing from different cells, significantly reduces the cost per run. The
cellular barcodes help to identify the cell of origin and UMI count and normalization helps
to quantify gene expression in every single cell—thus proving the protocol Smart-seq-2
and CEL-Seq2 to be highly sensitive. Compared to all other methods, 10× chromium gen-
erated the strongest consistent data by scaling the largest number of single cells in a short
period of time. It showed higher sensitivity, and mitochondrial genes were read in higher
fractions [36]. Zhang et al. reported that a combination of two scRNA-seq technologies
(SMART-seq2 and droplet-based methods) helped to reveal the liver TME, which had hith-
erto not been clearly defined. SMART-seq2 captures only a small number of cells with full
gene coverage while droplet-based methods analyze a large number of cells with limited
gene coverage. Thus, combining these two technologies gives an in-depth understanding
of the TME immune landscape in HCC. The potential properties of diverse cell types of
CD45+, mature forms of LAMP3+ dendritic cell (DC) clusters exhibiting diverse ligands
to regulate many lymphocytes with migration potential (tumor to lymph nodes), were
observed as quite distinct from normal DCs. Even the SLC40A1 and GPNMB inflamma-
tory roles of tumor-associated macrophages have been established [37]. The above data
provide insight into the nature of immune cells in TME, constituting a valuable resource
for identifying biomarkers and novel immunotherapy targets for HCC.

The biomarkers associated with hepatocellular carcinoma identified through single-
cell sequencing have been tabulated (Table 2). In another interesting study, the Smart-seq2
sequencing method was used to profile the gene expression of isolated single cells from
HCC tumor cells and para-tumor tissue. Firstly, heterogeneous subclones were identified
in the above samples whose hub-gene-co-network and functional annotations analysis
were carried out followed by pseudo-time analysis with regulated transcriptional factor
co-networks to determine HCC cellular trajectory. The experiment found upregulated
expression of carbohydrate responsive element binding protein also called MLX interacting
protein-like (MLXIPL) in cells of HCC which are reported to be associated with the overall
poor survival rate of HCC patients. Notably, MLXIPL upregulation promoted HCC tumor
proliferation by increasing the rate of glycolysis and inhibiting the expression of proteins
associated with apoptosis. These results identified MLXIPL to be a significant biomarker
and potential therapeutic target for HCC [38].
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Table 2. Biomarkers associated with hepatocellular carcinoma were identified through single-cell
sequencing.

Biomarker Expression Pattern Function Ref.

MLXIPL Molecular mechanism of
glycolysis activated

Marker exhibits malignant biological behavior
by activating glycolysis [38]

LncRNA HOXA-AS2 High expression Initiation and progression of HCC [19]

CKS2, MIF, RPL12,
HSP90AB1, and S100A6 High expression Overall survival rate decreased [39]

CCL14, CD5L, and APOC3 Low expression Overall survival rate decreased [39]

ZNF717 High-frequency mutation Tumor suppressor activity regulating
IL-6/STAT3 pathway [40]

IGF2 Over expression Growth regulation [41]

Osteopontin Over expression Potentially regulate different immune cell types
in TME; invasion and progression of HCC [42]

Another dynamic scRNA-seq study on the T cell subset population in HCC patients
revealed discrete subtypes and characteristics of the tumor-infiltrating T cell landscape.
The transcriptional profile of 5063 single T cells isolated from six HCC patients’ peripheral
blood, normal and tumorous liver tissues revealed 11 distinct T cell subsets (signature
genes of each subset were identified). The subsets were identified based on their similarity
to T-cell receptor sequences and molecular and functional properties. Finally, an expression
profile study revealed a developmental pathway with connectivity among T cell subsets.
Enriched expression and clonal expansion of the T cell subpopulation, such as exhausted
CD8+ T cells and infiltrating Tregs, have been observed in HCC. LAYN (Layilin) is one of
the genes upregulated in exhausted CD8+ T cells and infiltrating Tregs, but in vitro studies
have reported that LAYN’s repress the function of CD8+ T cells. The researchers have
compiled a single T cell transcriptome database compendium for the research community
to study the characteristics of infiltrating T cells in HCC. They have also developed (http:
//hcc.cancer-pku.cn, accessed on 25 November 2021) a highly interactive web-based tool
to help analyze, visualize, and download the transcriptome data of T cell genes (Figure 2).
These comprehensive data provided insights to understand immune TME in HCC [43].
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populations and subpopulations in HCC and liver fibrosis. Single-cell trajectory analysis
results revealed that HCC has greater heterogeneity and the differential gene expression
pattern of the epithelial cell subgroups showed unique transcriptional configuration in both
HCC and fibrosis. Eight genes were expressed specifically in endothelial and stellate cells
of HCC and were correlated with the survival rate of the HCC patients. Five genes (CKS2,
MIF, RPL12, HSP90AB1, and S100A6) were highly expressed and three genes (CCL14,
CD5L, and APOC3) lowly expressed were associated with shorter survival in HCC patients
compared to the low and high expression, respectively, of the same in normal tissues. Thus,
this study helped in the identification of new biomarkers for HCC diagnosis and potential
treatment targets for HCC therapy [39].

5. Single-Cell Genomic Sequencing

Single-cell genome sequencing (sc-genomic-seq) is rapidly advancing in analyzing the
complexity of the biological system. It helps in the identification of the location of somatic
mutational hotspot areas in genes. Mutation accumulation in this region from birth to
centenarians is hypothesized to be the main cause of aging and cancer. Recently, it has been
discovered that the Ig genes region in human B lymphocytes is associated with hypermuta-
tion hotspots [37]. Sc-genomic-seq is considered to be more challenging than transcriptome
sequencing because of the presence of only two copies of DNA compared to thousands of
RNA copies per cell. Thus, there is a requirement for whole genome amplification (WGA)
before sequencing. The application of this technique is limited because of low accuracy in
the detection of variation in copy number and low fidelity. There are two types of WGA
techniques based on thermal cycling procedure and isothermal reaction. They are PCR and
non-PCR-based technologies. The most commonly applied is degenerative-oligonucleotide-
PCR (DOP-PCR) and the non-PCR-based technology includes linear amplification via
transposon insertion (LIANTI), and multiple displacement amplification (MDA). Hybrid
methods include multiple annealing and looping-based amplification cycles (MALBAC)
and PicoPLEX [44]. LIANTI outperforms the above methods. It enables the detection of
micro-copy number variation with high resolution at the kilobase level. LIANTI also allows
the identification of single nucleotide variations and aids the direct observation of cell to
cell differences in the origins of DNA replication stochastic firing. A combination of Tn5
transposition and T7 promoters for in vitro transcription (IVT) is typically used to obtain
ample linear amplified transcripts followed by library sequencing. Since LIANTI does not
involve exponential amplification, the stability of amplification is greatly enhanced, and
spatial resolution is improved [45].

Hybrid methods apply isothermal pre-amplification primarily followed by ampli-
fication. Initially added common sequences are amplified by PCR. Compared to the
other methods, hybrid technology provides uniformity and intermediate coverage of the
genome [46]. In a further study, Duan et al. used sc-WGA sequencing to divulge the
relationship between histomorphology and tumor heterogeneity. They studied the profile
of 96 liver tumor cells of HBV- associated HCC patients and 15 normal cells and showed
that the clonal origin of specific HCC could be either monoclonal or polyclonal (confluent
multimodule tumor). In monoclonal HCC, it was observed that variation in copy number
occurred in early hepatocarcinogenesis and then remained stable throughout the tumor
progression, while the spreading of early intrahepatic clones led to multifocal tumor forma-
tion. Notably, ZNF717 was identified as a potential driver gene, exhibiting high-frequency
mutation, acting as a tumor suppressor, and regulating the IL-6/STAT3 pathway at both
the levels- single and population levels. These results highlight specific tumor evolutionary
mechanisms in HCC [40].

DOP-PCR is an efficient method for performing WGA of low-copy genomic DNA.
DOP-PCR products are used to genotype insertion or deletion polymorphisms, single
nucleotide polymorphism (SNP), and single-stranded conformation polymorphism (SSCP).
SSCP is widely used to screen a large number of samples to identify diverse genomic
variants in a population of liver cancer cells. It can detect even single point mutations and
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small sequence variations through the difference in electrophoretic mobility. However, due
to a few defects, it is not considered to be optimal for sc-seq. The six base pair random
primer used specifically anneals at the 3′ end and amplifies the genome randomly. This
results in the loss of information due to low coverage and non-homogenous amplification.
Thus, there is a need for a method with low amplification deviation and high fidelity [47].
MDA, a patented method uses random hexamers and phi29 DNA polymerase to gener-
ate/amplify unbiased/unlimited genomic DNA. Thus, with wide amplification coverage
of the genome, it generates high yields of DNA. Proofreading and 3′-5′ exonuclease activity
of phi29 DNA polymerase result in high replication fidelity and low amplification bias
compared to DOP-PCR. However, random primers provide uneven genome coverage and
amplification bias normally results in a lack of detection and differentiation of alleles in a
single cell genome, which, in turn, results in incorrect interpretation of the homozygous and
heterozygous loci. Recently, MDA has been used to amplify the genomes of thousands of
cancer cells [48,49]. The single-cell epigenetic sequencing (SCES) technique is instrumental
in uncovering epigenetic signatures of specific cell types in normal and diseased tissues.
Epigenetic profiling also helps to investigate how these cell types and origins develop
in tissue and are significantly affected in a disease condition. Recently, single-cell assay
transposase-accessible chromatin with sequencing (scATAC-seq) has been used to profile
multiple molecular modalities (open chromatin analysis). In the chromatin open regions,
sequencing adapters are inserted with the help of transposase, which allows amplification
and sequencing of these regions. This gives insight into the role of epigenetic regulation
in the progression of different types of cancer and also in brain cell differentiation and
maturation [49]. This technique has been extensively applied to create atlases of cell types
of disease processes, tissues, and various organisms [50]. From the complex tissue samples,
cells are sorted out without applying FACS or magnetic mode of sorting in the sc-ATAC-seq
technique. This helps to prevent alteration in the biology of the tissue samples during
the isolation process. This technique is widely applied to identify different chromatin
accessibility profiles of novel cell subpopulations like cancer stem cells, drug-resistant cells,
and infiltrating macrophages in advanced tumors. In a single experiment, thousands of
cells’ chromatin accessibility enables to provide insights into developmental trajectories of
the cell types. An integrated approach, where scRNA-seq and ATAC-seq were performed
along with a partially hepatectomized mice model. This challenge not only mapped the
transition state of 13,000 hepatocytes during the liver regeneration process but also uncov-
ered the above mechanism simultaneously performing the key tissue-specific activities [51].
scATAC-seq recently has emerged as a powerful approach as it enabled characterization of
gene regulatory activities in HCC. The breakthrough came when chromatin accessibility
profiling helped in analyzing transcription regulation (the interaction between cis-acting
DNA elements with transcription factor) [52]. Cumulatively, the technique provides a
significant reference for the HCC analyses and prognosis. This novel approach aids re-
searchers in easily analyzing changing epigenetic profiles in specific tumor clones and
designing epigenetic drugs accordingly. In the future, this approach could be applied to
analyze HCC heterogeneity and progression.

6. Single-Cell Transcriptomics

Single-cell transcriptomics has scaled the entire human body by developing a Human
Cell Atlas (HCA) at single-cell resolution (single-cell atlas). Spatial single-cell transcrip-
tomics is the combination of computational and spatial methodologies that yield data
with high resolution and scan genes activities at the cellular level. It is also applied in
understanding animals like mice and primates. Recently, it has been widely applied to un-
derstand COVID-19 infection by identifying potential sites of viral transmission [53]. These
methodologies with improved engineering to map cells of fundamental organs like the
liver [54], and in vitro cellular models (organoids) have created wide medical importance.
It includes cell therapies, target drug discovery, and regenerative medicine. It has become
a valuable platform to create healthy tissue reference maps/atlas and compare it with
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diseased tissue maps. Genetic variation between the above tissues provides insight into
disease mechanisms. This high-throughput technology helps to assess aging progression,
gradual disease development, and screening therapeutic response to treatments [54].

It was reported that the scRNA-seq lone approach does not completely diagnose HCC
outcome as it does not describe the spatial distribution, it just identifies a subpopulation
of cells within the tissue. However, the integration of spatial transcriptomics with this
methodology resolves intercellular communication in tumor cells acting in situ. Even
hi-plex RNA imaging, multiplexed FISH, and spatial barcoding integration can resolve
this issue. However, another report demonstrates that scRNA-seq provides a complete
transcriptomic picture underscoring the need for an integrated approach [55].

Liquid biopsy revolutionized hepato-oncology as this helps in the access of tissue
samples of the advanced stage HCC patients. Circulating tumor cells’, which are released
by the HCC patients in their bloodstream, are the main source of biomarker development.
Avola et al. used a genome-wide expression profiling (sequential combination of both flow
cytometry and high-density sc-RNA seq) approach to analyze CTC transcriptome hetero-
geneity and detected overexpression of IGF2 as an oncogenic driver in HCC. Supportively,
an anti-tumoral effect was reported in HCC experimental models that were selectively
blocked by IGF2 monoclonal antibodies. Remarkably, by just probing tumor mutation
landscape, we cannot assess IGF2 downregulation, but, at this juncture, sc-RNA seq of
CTC proved to be an outstanding tool in detecting non-mutated genomic aberrations like
overexpression of IGF2 [41]. CSCs play a critical role at different stages of tumorigenesis,
from initiation to organization of fatal malignancies. Moreover, lncRNAs are reported
to be regulating CSCs’ biological function by modulating stem cell-related pathways; its
expression (lncRNA HOXA-AS2) in normal cells and HCC cell lines were explored in
another pioneering study. The HCC model was developed followed by the determination
of its transcriptome profile and stem cell-related markers using high throughput RNA-seq
technology combined with single-cell mass cytometry and flow cytometry. It was reported
that lncRNA HOXA-AS2 was abnormally upregulated, which plays a pivotal role in the
progression of HCC and could be designated as a prognostic biomarker and promising
therapeutic target for the treatment of HCC [19].

Yan et al. used single-cell transcriptome analysis to identify the central mechanism
triggering the HCC development and progression. Comparison of sc-RNA-seq data of
one in vivo tumor cell, two in vitro cell lines, and normal peripheral blood mononuclear
cells (PBMCs) was done. They identified proto-oncogene JunB (JUNB), a key component
that elicits an immune response and serves a role in HCC development and progression.
Integrated results of differential expression analysis—Chromatin immunoprecipitation
followed by sequencing (ChIP-seq) and the protein–protein interaction (PPI) network,
facilitated the detection of gene regulatory networks and interaction between transcription
factors and promoter events. Simultaneously, apolipoprotein A2 (APOA2) with a similar
expression pattern as JUNB has been identified as a genetically susceptible protein in HCC.
Thus, the study contributed to the identification of novel therapeutic targets to control the
progression of HCC [56]. A recent study on single-cell transcriptome analysis exhibited a
strong link between ITH (feature specific for tumor aggressiveness) and HCC prognosis.
Nearly 56,721 single cells of 46 HCC and intrahepatic cholangiocarcinoma biopsies were
analyzed of which 17,164 malignant cells were identified using the above method. Identi-
fication of tumor cell evolution players is the significant aspect of the core experimental
work. SPP1 was identified as a key candidate, which encodes osteopontin. Osteopontin
is a phosphorylated glycoprotein linked with many human diseases. Overexpression of
osteopontin is well documented with its pivotal role in HCC progression by regulating
different immune cell types in TME [42,57]. Losic et al. integrated three techniques: RNA,
DNA, and TCR-sequencing with SNP array data to quantify transcriptomic ITH. Two
liver cancer patients’ seven specific regions of 38,553 single cells of the specimen revealed
the ITH gene signature. The ITH ecosystem consisted of hepatocytes, cancer-associated
fibroblast cells, endothelial, myeloid-derived, and sporadic B-cells. This helped to map or
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study spatial-temporal interactions between immune and cancer cells. Clonal expansion
happening in different regions of the same cancer was also detected. The majority of the
cells in clusters were observed to belong to hepatocyte lineage in both of the patients.
However, another lineage was observed in the second patient. There was overexpression
of GNLY (cytolytic protein secreted to kill tumor cells by activated T cells and NK cells),
NKG7, and CCL5 and co-expression of CD3 and GNLY (cytotoxic phenotype). These data
clearly state that the first patient HCC cells belong to a less aggressive S3 class compared
to the second patient and reveals that TME drives ITH in HCC. These data improved the
survival predictions of the patient and elaborated on how components of the heterogenic
environment interact during cancer evolution [57]. Single-cell chromatin immunocleav-
age sequencing (scCHIC-seq) and CoBATCH are high throughputs’ single-cell analysis
techniques. These techniques are easier to operate and provide high accuracy, and signal-
to-noise ratio with the quality compared to previous technologies [44]. Despite all this
advantages, the limitation in the techniques restricts the research and treatment analysis of
HCC. These limitations have been overcome by improving technology to get multiomic
information at a single cell resolution.

7. Single-Cell Omics Sequencing for Biomarker Development

The single-cell triple omics sequencing (scTrio-seq) technique applies all the three
omics sequencing methods–single-cell genome sequencing, DNA methylome, and tran-
scriptome sequencing technologies—on the same single cell. Hou et al. applied this
sensitive and reliable technique to identify heterogeneity and complexity within the cell
population of the liver biopsied sample, which paved the way for understanding cancer
development. It has helped to reveal genetic, epigenetic, and transcriptomic heterogene-
ity in HCC [58]. Another technique of single-cell multi-omics sequencing (sc-COOL-seq)
combines two other techniques for the simultaneous analysis of nucleosome positioning,
chromatin state, DNA methylation, nuclear variance, and ploidy in a single cell. Such
techniques include nucleosome occupancy, methylome sequencing, and post bisulfite adap-
tor tagging sequencing. scCOOL-seq helps elucidate the different layers of regulation
occurring in both the genetic and epigenetic regions of a particular cell [44].

A combination approach, scRNA-seq along with multi-omics provide necessary infor-
mation to reconstruct tumor populations subclones’ evolutionary trajectories and resolution
analysis at a single cell variant level. The genetic as well as phenotypic heterogeneity in-
formation helps to identify functional linkage and defines clonal evolution and principles
that regulate cancer drug resistance. Based on mutational profiles of the single cell, Su et al.
attempted human liver cancer single variant resolution with a clonal evolution reconstruct
based on single-cell mutational profiles [59]. The whole-exome sequencing of five HCC
samples revealed major inter-tumor heterogeneity with scRNA seq revealing both genetic
and phenotypic heterogeneity. It was interesting to note that different patients’ tumor
cells showed gene mutations with a similar expression pattern. The genes analyzed were
grouped according to the tissue origin, and the expression pattern was arranged in different
panels. These data reported that, in liver cancer, tumor-specific mutations caused pheno-
typic heterogeneity by modifying the expression of the genes rather than their own ones.
These gene expression profiles revealed through bioinformatics data analysis demonstrates
which gene is switched on and off, thereby giving clarity as to why specific cancer cells
are therapy resistant. This supports oncologic precision medicine in designing new essen-
tial therapeutic strategies [59]. In the era of precision medicine, muti-omics (single-cell
transcriptomes, proteomes, and epigenetic information) was used to provide multifaceted
perceptions into HCC development. Five HCC cell lines (with different metastasis capacity)
were analyzed. The integrated approach revealed that the HCC proliferation rate had
a negligible role in metastasis, while high mesenchymal status played a pivotal role in
strong metastasis capacity. In addition, a hypoxic signature (14 genes of gene set) exhibited
by subgroups common in numerous cell lines was identified, which can be related to
drug-resistant mechanisms in cell lines. Thus, the results comprehensively provide a better
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understanding of the molecular mechanism behind the metastasis capacity of HCC, which
will guide researchers towards the development of an efficient prognosis for HCC [52].

8. Identification of Hepatocellular Carcinoma Origination and Evolution

Identification of HCC origination provides vital information for cancer pathogenesis,
initial or early diagnosis, and treatment. Cancer cell origination of melanoma, intestinal,
and breast cancer have long been identified and was reported to be the role of progenitor
cells, while HCC was reported not to have been originated from progenitor cells but mature
hepatocytes. Its high plasticity further complicated the identification of liver cancer origin.
However, recently, using SCT, it was found that bone marrow-derived cells (BMDCs)
played an important role in HCC origination and evolution [60]. Single cells were isolated
from the liver tumor in the DEN-induced HCC model (exhibited histological phenotype
and genomic profile similar to human HCCs). Every single cell’s whole genome was
amplified using MALBAC. The MALBAC method uses quasi-linear amplification. Primers
with eight interchangeable nucleotides and for homogenous hybridization twenty-seven
common nucleotides sequences are used. False-positive rates are high due to the common
DNA polymerase with proofreading property being used. This can be ruled out by using
thermostable or high-fidelity DNA polymerase to generate a microgram of DNA, which can
be used for the next-generation sequencing process. Quantitative PCR was used to evaluate
amplified DNA products’ genome integrity. Sequencing libraries were constructed using
these products (Illumina HiSeq X Ten system). Then, single-cell sequencing data analysis
was done, and an ACCTRAN criterion was used to infer phylogeny branch lengths and
ancestral character probability distributions. This sequence of experiments indicated the
role of BMDCs in mouse HCC formation. However, in humans, it is yet to be confirmed [60].

Over the past few years, SCT has provided information regarding the molecular state
of all the individual cells of different cell types in normal liver samples and the thousands
of individual cells in tumor tissue biopsy samples. SCT has optimized treatment strategies
for metastasis by predicting drug sensitivity, analyzing the mechanism by which a tumor
becomes drug-resistant, finding alternatives to overcome tumor resistance, and, finally,
understanding relapse after cancer treatment. SCT has emerged as a powerful tool for
HCC treatment and is being modified to save time, money, and resources to improve the
prognosis of HCC and ultimately liver cancer survival [61].

An interesting study by Navin and his coworkers demonstrated that analyzing multi-
ple cells from the same tumor and single-cell sequencing examining high-resolution copy
number profiles aid in understanding the evolution and metastasis of cancer [62]. Further-
more, this method helps in the identification of cell types that were previously undetectable
by other approaches. To understand tumor heterogeneity and evolution, 100 single cells
from primary breast tumors (52 single cells; monogenomic; genetically homogeneous)
and its metastatic liver carcinoma (48 cell nuclei) were analyzed applying single nucleus
sequencing. The investigation reported that a single clonal expansion gave rise to the pri-
mary tumor and seeded its metastasis. The primary tumor harbored a genetically diverse
stagnant copious subpopulation of pseudodiploid cells (diploid peak) and a single subpop-
ulation of aneuploid cells (tetraploid peak), both with low leukocyte infiltration. Among
the 24 diploid normal cells of the primary tumor, two cells were reported to have T-cell
receptor deletion while not a single pseudodiploid cell was observed among 26 diploid
cells from the metastasis. Thus, the emergence of metastatic cells does not take place from
an earlier intermediate or a subpopulation but mainly from the advanced expansion. These
results were consistent with primary-met pairs deep-sequencing studies indicating that
metastatic cells will arise late during the development of the tumor. These results were in
contrast to gradual models of tumor progression, which stated that tumor growth takes
place as punctuated clonal expansions with very few enduring intermediates [62].
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9. Limitations and Challenges

scRNA seq has become a powerful technique that empowers the study of complex
tumor biology, its heterogeneity, TME architecture, clonal dynamics, and de novo cell
types mapping. Due to its sensitivity, a small change in gene expression can drastically
influence biological data interpretation. scRNA-seq has emerged as a rapidly evolving
technique but still is not applicable for pseudotime analysis [36]. The main challenge
faced in scRNA-seq is the complex experimental design. The HCC sample specimens
collected cannot be used immediately; they have to be preserved. This is one of the main
drawbacks, as the tissue should be preserved intact or dissociated as single-cell suspension
(single cell or single nucleus), fixed by methanol or formaldehyde, cryopreserved or live
cells, tissue dissociated using trypsin, cold-active protease or a traditional method of
digestion at 37 ◦C. The approaches have been shown to cause artifacts and specific biases
which alter the transcriptional profiles of the cell types. Denisenko and his coworkers
have done a systematic assessment on kidney tissue dissociation and optimal storage
conditions necessary for sc-RNA seq [63,64]. Their data confirmed that digestion on ice
avoided stress-related artifacts, cryopreservation resulted in greater loss of epithelial cell
types, methanol fixation caused ambient RNA leakage and finally adopting single cell
or single nucleus RNA-seq workflows, and the cell type compositions in the specific
libraries were not similar [63]. The methods and experimental conditions influenced the
cell yield and state of the transcriptomes [64]. Thus, the systematic comparison is extremely
necessary to get highly sensitive accurate results. However, systematic assessment for
liver sample preservation and tissue processing has not been analyzed yet; in addition,
the experimental design performed under different conditions has not been compared
with the results of the conventional method. Recently, Michal Slyper’s team studied
eight tumor types (including metastatic liver biopsies specimens) to address the above
challenges. A systematic toolbox was developed which comprised experimental workflow
and methods, computational pipelines, and evaluation metrics. This toolbox will be
beneficial for researchers to profile tumors systematically, which will improve precision in
both cancer diagnosis and treatment [65].

10. Conclusions and Future Perspectives

HCC is a liver cancer characterized by cells exhibiting a unique gene expression
profile. Early non-invasive detection is of paramount importance to clinically monitor
HCC. Even though the SCT has been proved to be an effective method in cancer diagnosis
with the single-cell portal being updated frequently for public reference, it has certain
limitations which are overcome by the development of novel computation methods. Single-
cell analysis, or transcriptomics, has recently emerged as a powerful tool to detect cancer
stem cells or circulating tumor cells at the cellular and genomic scale with respect to
ITH. ITH is useful for revealing and investigating tumor metastasis mechanisms and
epigenetic alterations, respectively. The result of SCT is a method to help physicians
design individual treatment strategies. In other words, SCT helps determine the prognosis
of a cancer patient more accurately than ever before. Thus, at the single-cell level, the
integration of functional and genomic data analysis uncovers cancer evolution in HCC
patients, critical pathophysiological changes, and the development of therapeutic resistance.
In the near future, SCT will become a promising novel platform for this liver cancer’s
(fatal malignancy) diagnosis and treatment at the individual level, advancing the idea of
translational medicine.
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