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Abstract 

Background:  A large number of evidences from biological experiments have con-
firmed that miRNAs play an important role in the progression and development of 
various human complex diseases. However, the traditional experiment methods are 
expensive and time-consuming. Therefore, it is a challenging task that how to develop 
more accurate and efficient methods for predicting potential associations between 
miRNA and disease.

Results:  In the study, we developed a computational model that combined heteroge-
neous graph convolutional network with enhanced layer for miRNA–disease associa-
tion prediction (HGCNELMDA). The major improvement of our method lies in through 
restarting the random walk optimized the original features of nodes and adding a 
reinforcement layer to the hidden layer of graph convolutional network retained similar 
information between nodes in the feature space. In addition, the proposed approach 
recalculated the influence of neighborhood nodes on target nodes by introducing the 
attention mechanism. The reliable performance of the HGCNELMDA was certified by 
the AUC of 93.47% in global leave-one-out cross-validation (LOOCV), and the average 
AUCs of 93.01% in fivefold cross-validation. Meanwhile, we compared the HGCNELMDA 
with the state‑of‑the‑art methods. Comparative results indicated that o the HGC-
NELMDA is very promising and may provide a cost‑effective alternative for miRNA–
disease association prediction. Moreover, we applied HGCNELMDA to 3 different 
case studies to predict potential miRNAs related to lung cancer, prostate cancer, and 
pancreatic cancer. Results showed that 48, 50, and 50 of the top 50 predicted miRNAs 
were supported by experimental association evidence. Therefore, the HGCNELMDA is a 
reliable method for predicting disease-related miRNAs.

Conclusions:  The results of the HGCNELMDA method in the LOOCV (leave-one-out 
cross validation, LOOCV) and 5-cross validations were 93.47% and 93.01%, respectively. 
Compared with other typical methods, the performance of HGCNELMDA is higher. 
Three cases of lung cancer, prostate cancer, and pancreatic cancer were studied. 
Among the predicted top 50 candidate miRNAs, 48, 50, and 50 were verified in the 
biological database HDMMV2.0. Therefore; this further confirms the feasibility and 

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Huang et al. BMC Bioinformatics          (2022) 23:299  
https://doi.org/10.1186/s12859-022-04843-3

BMC Bioinformatics

*Correspondence:   
ajy@cumt.edu.cn; 
zhanglei@cumt.edu.cn

School of Computer Science 
and Technology, China University 
of Mining and Technology, 
Xuzhou 21116, Jiangsu, China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-022-04843-3&domain=pdf


Page 2 of 19Huang et al. BMC Bioinformatics          (2022) 23:299 

effectiveness of our method. Therefore, this further confirms the feasibility and effec-
tiveness of our method. To facilitate extensive studies for future disease-related miRNAs 
research, we developed a freely available web server called HGCNELMDA is available at 
http://​124.​221.​62.​44:​8080/​HGCNE​LMDA.​jsp.

Keywords:  miRNA and disease interactions, Graph convolutional network

Background
As a kind of non-coding RNA with regulatory properties and highly conserved in the 
evolutionary process, miRNA is approximately 20–24 nucleotides in length. Research-
ers that have been studying miRNA [1] have found that it plays a vital role in biological 
processes such as cell growth, proliferation, metabolism, differentiation and apoptosis. 
Moreover, the abnormal expression of miRNA has also been proved to be closely related 
to some diseases, such as chronic lymphocytic leukemia, tumor, gastric cancer, cardio-
myopathy, etc. Therefore, identifying the correlation between miRNA and diseases has 
become a critical step in biological research recently [2]. However, the traditional biolog-
ical experiments take up a long time, cost much, and have some blindness, all of which 
would stall the research process. Therefore, many researchers are devoted to designing 
computational methods to discover the interaction between unidentified miRNAs and 
diseases to make up for the shortcomings of traditional experimental approaches [3].

Currently, researchers have established a series of effective calculation models for 
miRNA–disease association prediction, which can be roughly divided into two catego-
ries according to the methods used: similarity measurement-based and machine learn-
ing-based. For similarity measurement [4], the miRNA–disease association is predicted 
by measuring the degree of similarity between nodes using different statistical meth-
ods. The machine-learning approach trains other models by learning features and then 
predicting miRNA–disease associations based on the trained models. The above two 
methods have different theoretical bases and innovations, and thus making outstand-
ing contributions to future research. For example, Jiang et  al. [] determined the func-
tional correlation of two miRNAs by calculating the number of familiar neighbors and 
the shortest path length of two miRNAs and constructing two miRNAs’ functional cor-
relation information. For the first time, Jiang et al. combined disease phenotype infor-
mation with miRNA function information to predict miRNA–disease association [5], 
contributing significantly to the future research. Subsequently, for each predicted dis-
ease, they designed a hypergeometric distribution-based scoring system [6] to score 
the diseases and all of the miRNAs associated with them. However, this method comes 
with some limitations too. Because only the direct neighbors of the miRNA were con-
sidered as the criterion for miRNA functional similarity score, the prediction effect was 
limited. To increase the accuracy of miRNA–disease association prediction, Xuan et al. 
[7] proposed the weighted k-nearest neighbor method (HDMP). Chen et al. developed 
the computational framework of RWRMDA that performs random walk on the miRNA 
network to predict novel disease-related miRNAs. They first put the initial probability 
values on the pre-constructed miRNA functional similarity network (MFSN) to conduct 
random walk algorithm. In summary, this model integrated miRNA functional similarity 
and known miRNA–disease associations to infer novel disease-related miRNAs. They 
suggested that members of the same miRNA family may be involved in diseases with 
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related phenotypes. According to the association state of the nearest neighbor [8], mem-
bers of the miRNA family and miRNA cluster can obtain more weight, which improves 
the prediction performance of the model to some extent. However, it is difficult to 
manually select the optimal parameter K that classifies the number of members in each 
miRNA family and miRNA cluster [9], and this method cannot predict new diseases that 
do not have known miRNA associations. Pasquier et al. [10] formed a matrix with higher 
dimensions based on miRNA–disease association, miRNA target association, miRNA 
word association, miRNA family association and miRNA neighbor association state 
data. Using the singular value matrix decomposition method to decompose the matrix, 
Pasquier et al. successfully obtained miRNA vectors and disease vectors [11]. They took 
the cosine distance between the miRNA node vector and the disease node vector as the 
degree of association between the nodes. However, due to the false-positive rate and 
false-negative rate between miRNA and target, the model’s prediction performance is 
affected to a certain extent. In WBSMDA [12], authors integrated comprehensive simi-
larity score between the miRNA and disease based on Gaussian interaction profile ker-
nel. WBSMDA could be applicable to the new miRNAs without disease association and 
to diseases without miRNA association, thereby overcoming the previous limitation of 
the prediction model.

In addition to similarity-based approaches, machine learning algorithms aiming at 
exploring potential miRNA disease interactions are also an essential academic approach 
in this field. Unlike the method of directly calculating the similarity between nodes in 
the network based on similarity itself, the machine learning approach [13] is devoted 
to extracting inherent features and designing practical classification algorithms to find 
miRNA and disease associations. As an early method based on machine learning, Jiang 
et  al. [14] first extracted feature vectors from disease similarity and miRNA function 
similarity. Then, they randomly selected 270 samples from unknown miRNA disease 
pairs as negative data, as missing negative instances in the actual data set [15]. Finally, 
they chose the SVM (support vector machine) as the classifier [16]. However, this artifi-
cial method randomly selected negative samples, impacting on the model’s accuracy. A 
different approach conducted by Chen et al. [17] constructed a semi-supervised classifier 
with regularized least squares. Although the model does not require negative samples, 
and the possibility of unknown associations is confirmed, this method also has some 
limitations: the predicted results of fusion miRNA and disease are strongly dependent 
on parameters [18], and thus it is difficult to choose the optimal parameters. Chen et al. 
[19] proposed the DRMDA method to use stacked autoencoders for feature extraction 
to obtain low-dimensional and high-resolution feature vectors and then used SVM to 
score candidate miRNAs. This method eliminated a lot of noise in similar unprocessed 
data and achieved good performance results. Graph neural network has attracted exten-
sive attention from researchers due to its high precision. Li et al. Presented a model of 
MCMDA that exploited known miRNA–disease associations to build binary adjacency 
matrix, and imple mented a singular value thresholding (SVT) algorithm to extract 
miRNA–disease associations [20]. Pasquier et al. [21] made the assumption that infor-
mation attached to miRNAs and diseases can be revealed by distributional semantics. 
The approach represented distributional information on miRNAs and diseases in a high-
dimensional vector space and defined associations between miRNAs and diseases in 
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terms of vector similarity. Chen et al. proposed a prediction model of ensemble of deci-
sion tree-based miRNA–disease association (EDTMDA). This model adopted dimen-
sionality reduction algorithm for principal component analysis (PCA) to apply ensemble 
learning to predict disease-related miRNAs [22]. Ha et al. [23] proposed it focuses on 
the problem of inferring miRNA and disease associations by exploiting distance metric 
learning on miRNA–disease bipartite graph, which is constructed based on the known 
miRNA–disease associations.

Also, biological information networks such as disease and miRNA have complex topo-
logical structures, so it is suitable for graphical modelling [24]. For graph data, graph 
convolutional networks (GCN) have better performance than inhomogeneous networks 
(such as classification). Therefore, researchers have been trying to apply GCN in het-
erogeneous networks to predict the association between miRNA and disease [25]. For 
example, Li et  al. [26] extracted node features from the protein–protein interaction 
network and put them into the graph convolutional network following the Node2VEC 
algorithm. Finally, each node was embedded in the graph convolutional layer, and the 
miRNA–disease association was obtained by multiplying the miRNA–gene adjacency 
matrix by the disease-gene adjacency matrix [27]. This method provides a new perspec-
tive for the field of miRNA–disease association prediction. Then, Li et al. [28] proposed 
the FCGCNMDA method based on a fully connected graph. They extracted the aggre-
gation of node features by using a two-layer graph convolution layer in miRNA func-
tional similarity network and disease semantic similarity network to make end-to-end 
prediction [29]. However, the GCN model considers all neighbors equally, and the simi-
larity information of nodes cannot be retained when learning node embedding. Li et al. 
presented [30] a model of MCMDA that exploited known miRNA–disease associations 
to build binary adjacency matrix, and implemented a singular value thresholding (SVT) 
algorithm to extract miRNA–disease associations. However, choosing the best param-
eters of the algorithm restricted to any further improvement in prediction accuracy. Ha 
et al. [31] proposed focuses on the problem of inferring miRNA and disease associations 
by exploiting distance metric learning on miRNA–disease bipartite graph, which is con-
structed based on the known miRNA–disease associations.

Although the existing methods have good performances in predicting miRNA–dis-
ease associations, we can still improve some aspects of them. On the one hand, some 
methods [32] produce inevitable data noise during feature extraction, affecting the pre-
diction effect. On the other hand, some graph [33] convolution methods fail to retain 
the similarity information of nodes so that similar nodes have similar feature represen-
tations in the feature space to enhance the spatial node features of the topology graph 
[34]. This paper is based on strengthening layer figure convolution heterogeneous net-
work model HGCNELMDA (heterogeneous graph convolutional network model with 
enhanced layer to predict miRNA–disease associations) to extract node features from 
the level of the graph. To reduce the data noise of the similarity matrix calculation, 
the random reboot walk is used to get the original features of nodes from the similar-
ity matrix. Graph convolution aggregates node information according to edge informa-
tion and represents new node features. Before the figure of convolution model, GCN 
(graph convolutional network) will consider all equal neighbors, and thus being unable 
to retain when learning node embedded nodes similarity information. The enhancement 
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layer added in the GCN hidden layer is used to strengthen the similar representation of 
similar nodes (miRNAs or diseases) in the feature space and enhance the eigenvector 
aggregation of similar nodes to retain similar information between nodes. First, we con-
structed an miRNA–disease heterogeneous network based on the proven miRNA–dis-
ease association, disease semantic similarity and miRNA functional similarity. Second, 
to reduce the data noise of extracting the original feature vectors of miRNA and disease 
nodes and better capture the structural relationship between different types of nodes in 
heterogeneous graphs, the method based on restart random walk is used for extracting 
node features from similarities. Third, the miRNA–disease heterogeneous graph and the 
miRNA–disease feature matrix are gathered through graph convolution to gather the 
information of neighbor nodes on the layer, and an attention-based reinforcement layer 
is added to the hidden layer. In the miRNA–disease heterogeneous graph, to strengthen 
similar nodes (miRNA or disease) for similar representations in the feature space, a 
reinforcement layer is added to the GCN hidden layer, enhancing the feature vectors of 
similar aggregate retain similar information between nodes. The attention mechanism 
is introduced in the reinforcement layer, and more critical topological neighborhood 
nodes are merged, and miRNA and disease node features are extracted from the spatial 
topological structure of heterogeneous graphs to predict associations. The results of the 
HGCNELMDA method in LOOCV (leave-one-out cross-validation) and fivefold cross-
validations were 93.47% and 93.01%, respectively. Compared with other typical methods, 
the HGGCNMA has a better performance. Four cases of lung cancer, prostate cancer 
and pancreatic cancer were used for research. Among the predicted top 50 candidate 
miRNAs, 48, 50, and 50 were verified in the biological database HDMI V2.0. Therefore, 
the result further confirms the feasibility and effectiveness of our method.

Results
First, we present the experimental methods and evaluation indexes. The performance 
of the HGCNELMDA approach is then compared with the following four existing 
approaches. Finally, we used the HGCNELMDA method to determine the accuracy of 
the predictive association based on three cases of prostate tumor, lung tumor and pan-
creatic tumor.

Experimental approaches and evaluation criteria

We collected 5430 known miRNA–disease associations from HMDD V2.0 as the 
experimental data set. Based on experimentally verified associations between miRNAs 
and diseases, we implemented global LOOCV and fivefold CV to evaluate the predic-
tive accuracy of HGCNELMDA. In LOOCV evaluation, every confirmed association 
was regarded as a test sample in turn, while the rest associations were treated as train-
ing samples. In general, two types of LOOCV exists (global LOOCV, local LOOCV). 
Global LOOCV considers all the diseases at the same time while local LOOCV only take 
account of the miRNAs for a given disease of interest. Candidate samples included all 
of the miRNA–disease pairs that experimental studies had not verified. After executing 
HGCNELMDA, every miRNA–disease pair will obtain an association score. A higher 
score means a higher likelihood for a link to exist between a pair. In global LOOCV, 
we compared the score of the test sample with the scores of all the candidate samples. 
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Furthermore, we drew receiver operating characteristics (ROC) curve by plotting the 
actual positive rate (TPR, sensitivity) against the false positive rate (FPR, 1-specificity) at 
different thresholds. Sensitivity denotes the percentage of miRNA–disease test samples 
with ranks exceeded the given point, while specificity represents the percentage of nega-
tive miRNA–disease associations with ranks lower than the threshold. AUC was further 
calculated to demonstrate the prediction ability of HGCNELMDA. The model has per-
fect prediction performance when AUC reaches exactly 1. If AUC equals 0.5, it suggests 
that the model only has random prediction performance.

Moreover, we exploited fivefold CV to examine the predictive accuracy further. Five-
fold cross-validation was also implemented to further estimate the prediction accuracy 
of the HGCNELMDA model by randomly dividing the known associations equally into 
five groups and treating each one of them as test samples in turn by removing the asso-
ciations of the current test samples simultaneously. Afterwards, every test sample would 
be scored and compared with the candidate miRNA–disease pairs to obtaining the rank-
ings. We repeated this procedure 50 times to get a more accurate average AUC value.

Compare with other methods

In order to verify the accuracy of our method, the HGCNELMDA method was com-
pared with the following four existing methods, namely FCGCNMDA [35], CNMDA 
[36], EDTMDA [37], MCMDA [20], IMIPMF [38] and RKNNMDA [39], for fivefold 
cross-validation. As shown in Table 1, the AUC of FCGCNMDA, CNMDA, EDTMDA, 
MCMDA, IMIPMF and RKNNMDA were 92.85%, 85.33%, 91.92%, 86.47%, 89.32% and 
82.21%, respectively. Among them, the AUC of HGCNELMDA was the highest under 
fivefold cross-validation, with a value of 93.01% , the AUPR value of HGCNELMDA was 
85.37% and  the ACC  value  of HGCNELMDA was 84.36%. Therefore, HGCNELMDA 
was proved to be reliable in miRNA–disease association. As for global LOOCV, MLMD 
achieved a reliable AUC value of 0.8786, which was also superior to that in FCGCN-
MDA (0.8964), MCMDA (0.8629), IMIPMF (0.8857), and EDTMDA (0.8878), as shown 
in Fig.  1. As shown in Fig.  2, our model showed superior performance (AUC value 
0.8634) compared to FCGCNMDA (0.8596), MCMDA (0.8561), IMIPMF (0.8547), and 
EDTMDA (0.8512) in the framework of local LOOCV.

Comparison of results with or without reinforcement layer

Figures 3 and 4 respectively show the influence of HGCNELMDA on the model per-
formance with or without reinforcement layer under onefold cross-validation and 

Table 1  Comparison of HGCNELMDA and other models for fivefold cross-validation

Control group AUC (%) AUPR (%) ACC (%)

HGCNELMDA 93.01 85.37 84.36
FCGCNMDA 92.85 83.69 82.51

CNMDA 85.33 76.31 75.17

EDTMDA 91.92 83.92 83.25

RKNNMDA 82.21 73.83 72.92

MCMDA 86.47 75.62 73.72

IMIPMF 89.32 80.56 81.36
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Fig. 1  Comparison of HGCNELMDA and other models for Global LOOCV

Fig. 2  Comparison of HGCNELMDA and other models for Local LOOCV

Fig. 3  Comparison of left cross-validation with or without reinforcement layer
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fivefold cross-validation. In the experiment, the reinforcing layer is removed and 
replaced by the common hidden layer of GCN. The results showed that the AUC 
value with the reinforcement layer was higher than that without the hidden layer, 
because the similar miRNA (or disease) nodes in the reinforcement layer were 
similar in the feature space, and the attention mechanism was used to focus on the 
aggregation of similar important neighbor nodes in the reinforcement layer, and the 
similar information of nodes was retained.

Comparison of results with or without random walk with restart

Figures  5 and 6 respectively show the influence of HGCNELMDA on the results 
by using RWR to extract node features under onefold and fivefold cross validation. 
No experiments using RWR were used directly SM and SD a row or a column of is 
used as the eigenmatrix of nodes. As shown in the figure, it is better to use RWR as 
the initial feature of the node, because RWR can select adjacent nodes to travel or 
return to the initial node, thus reducing the influence of data noise in node feature 
extraction.

Comparison of parameter sensitivities

Layer node embedding dimension is the node embedding parameter in GCN hidden 
layer h , Different parameter values will affect the experimental results. As shown in 
Fig. 7, define h as [32, 64, 128, 256, 512], Compared with the AUC results, The valida-
tion methods of one-left cross-validation and fivefold cross-validation show that the 
AUC value presents an upward trend with the increase of node embedding dimension 
h . The performance of the HGCNELMDA approach is highest when the embedding 
dimension h is defined as 256.

Fig. 4  Comparison of fivefold cross validation with or without reinforcement layer
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Cases studies

The HGCNELMDA method was used to determine the accuracy of the predictive asso-
ciation based on three cases of prostate cancer, lung cancer and pancreatic cancer. We 
compared the predicted candidate miRNAs with DBDEMC and Phenomir, two public 
databases, to verify their accuracy.

In the first case study, the selected prostate tumors are used to test whether our 
approach is suitable for novel diseases with unsupported miRNAs or not. This case 
selected prostate tumors because this is the most common cancer happening on 

Fig. 5  Comparison of residual cross-validation with or without RWR​

Fig. 6  Comparison of fivefold cross validation with or without RWR​
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males worldwide. In 2018, more than 100,000 males died of prostate cancer in Europe 
alone [40]. This case study first set all miRNA–disease associations related to prostate 
neoplasms from HMDD 2.0 to zero. Then, M2GMDA was performed to identify the 
associated miRNAs for prostate neoplasms. Table  2 lists the top 50 candidate miR-
NAs for HGCNELMDA prediction associated with prostate tumors. The first 50 miR-
NAs were verified by DBDEMC and Phenomir databases. The results show that the 
above two databases could verify the first 50 miRNAs.

Researchers found that the second-ranked HAS-miR-96b was found to regulate 
apoptosis of prostate cancer cells by inhibiting the FoxO1 transcription factor, indi-
cating that the HGCNELM subsequently validates the predictive ability of HGC-
NELMDA in new diseases without any known linked miRNAs. To further investigate, 
we set up a special case study. In this case, we examined HGCNELMDA on Lung 
Neoplasms, a common human cancer with many experimentally verified related miR-
NAs. We utilized the experimentally verified miRNA–disease associations from the 
HMDD v2.0 database as the initial training set. However, we removed all the asso-
ciations, including lung neoplasms, from the training set this time. Hence, lung neo-
plasms could be regarded as a disease without any known related miRNAs. Lung 
tumors are devastating and fatal, causing many deaths in both males and females 
worldwide [41]. The survival rate of lung tumors is as low as five years, so early diag-
nosis is critical to save patients’ lives [43]. Therefore, lung tumors, in which miRNAs 
have become a promising tool in diagnosing and treating process, were selected in 
this case. HGCNELMDA is used to predict candidate miRNAs associated with lung 
tumors. The validations of the first 50 related miRNAs are listed in Table 3. Two data-
bases confirmed 49 miRNAs, and only one miRNA was not verified. In addition, the 
ectopic expression of miR-494-3p in A549 lung cancer cells promoted the tumor-ini-
tiating population and enhanced the motor ability of cancer cells and the expression 
of stem cell-related genes, suggesting that HGCNELMDA can help the diagnosis and 

Fig. 7  Comparison of different embedded dimensions
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treatment of lung tumors. HGCNELMDA method has good accuracy in predicting 
prostate tumor-associated miRNA.

For the third disease case we chose pancreatic tumor as the new disease case. When 
the known miRNA and disease association matrix is set to zero, the column of pancre-
atic tumor indicates that no related miRNA is associated with it, as a new disease [43]. 
HGCNELMDA is used to predict candidate miRNAs associated with pancreatic tumors, 
and the top 50 related miRNAs are listed in Table 4. The DBDEMC and Phenomir data-
bases validated the first 50 miRNAs. Studies have shown that increased serum miR-193b 
is a potential new biomarker for pancreatic neuroendocrine tumors (PNEN). The results 
indicate that HGCNELMDA plays an important role in predicting new diseases.

For the results of the four case studies, our method was effective when predicting 
unvalidated miRNA and disease interactions.

Discussion
Compared with five classic methods based on Global LOOCV and fivefold cross-val-
idation, the experimental results show that HGCNELMDA has better predictive per-
formance. In addition, three case studies also support the results of our method. First, 
we constructed a heterogeneous network of miRNA–disease based on the proven 
miRNA–disease association, disease semantic similarity and miRNA functional simi-
larity. Second, we used the restart random walk method to extract node features from 

Table 2  Top 50 miRNAs associated with prostate tumors

miRNA dbDEMC PhenomiR miRNA dbDEMC PhenomiR

hsa-mir-10a Confirmed Confirmed hsa-mir-297 Confirmed Confirmed

hsa-mir-96b Confirmed Confirmed hsa-mir-23a Confirmed Confirmed

hsa-mir-186 Confirmed Confirmed hsa-mir-27a Confirmed Confirmed

hsa-mir-194 Confirmed Confirmed hsa-mir-33b Confirmed Confirmed

hsa-mir-15a Confirmed Confirmed hsa-mir-19a Confirmed Confirmed

hsa-mir-26b Confirmed Confirmed hsa-mir-1 Confirmed Confirmed

hsa-let-7d Confirmed Confirmed hsa-mir-27b Confirmed Confirmed

hsa-mir-20a Confirmed Confirmed hsa-mir-218 Confirmed Confirmed

hsa-mir-301a Confirmed Confirmed hsa-let-7e Confirmed Confirmed

hsa-mir-363 Confirmed Not confirmed hsa-mir-373 Confirmed Confirmed

hsa-mir-23b Confirmed Confirmed hsa-mir-16 Confirmed Confirmed

hsa-mir-92 Confirmed Confirmed hsa-mir-197 Confirmed Confirmed

hsa-mir-302d Confirmed Confirmed hsa-mir-181b Confirmed Confirmed

hsa-mir-195 Confirmed Confirmed hsa-mir-23b Confirmed Confirmed

hsa-mir-130b Confirmed Confirmed hsa-mir-101 Confirmed Confirmed

hsa-let-7i Confirmed Confirmed hsa-mir-26a Confirmed Confirmed

hsa-let-7c Confirmed Confirmed hsa-mir-17 Confirmed Confirmed

hsa-mir-92a Confirmed Confirmed hsa-mir-146a Confirmed Confirmed

hsa-mir-184 Confirmed Confirmed hsa-mir-182 Confirmed Confirmed

hsa-mir-130a Confirmed Confirmed hsa-mir-122 Confirmed Confirmed

hsa-mir-155 Confirmed Confirmed hsa-mir-93 Confirmed Confirmed

hsa-mir-20b Confirmed Confirmed hsa-mir-10b Confirmed Confirmed

hsa-mir-29a Confirmed Confirmed hsa-mir-31 Confirmed Confirmed

hsa-mir-191 Confirmed Confirmed hsa-let-7g Confirmed Confirmed

hsa-mir-137 Confirmed Confirmed hsa-mir-181d Confirmed Confirmed
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similarity, aiming at reducing the data noise of extracting the original feature vectors 
of miRNA and disease nodes and better capturing the structural relationship between 
different types of nodes in the heterogeneous graph. In the miRNA–disease heteroge-
neous graph, to reinforce that similar nodes (miRNAs or diseases) have identical rep-
resentations in the feature space, a reinforcement layer was added to the GCN hidden 
layer, enhancing the eigenvector aggregation of similar nodes, to preserve similar infor-
mation between nodes. The attention mechanism was introduced in the reinforcement 
layer, more important topological neighborhood nodes were integrated, and miRNA and 
disease node features were extracted from the spatial topology of heterogeneous graphs 
to predict associations. In summary, the HGCNELMDA method makes full use of the 
complex structure and semantic information of the miRNA–disease heterogeneous net-
work to achieve good predictions.

Conclusion
This paper mainly describes the enhancement layer based heterogeneous graph convolu-
tional network model (HGCNELMDA) to predict miRNA–disease association method. 
First, by restarting the random walk between the miRNA and the disease phase.

The eigenvectors of miRNA and disease nodes were obtained from the similarity net-
work. Secondly, the heterogeneous graph of miRNA–disease was input into GCN, and 

Table 3  Top 50 miRNAs associated with lung tumors

miRNA dbDEMC PhenomiR miRNA dbDEMC PhenomiR

hsa-mir-320a Confirmed Confirmed hsa-mir-28 Confirmed Confirmed

hsa-mir-494 Confirmed Confirmed hsa-mir-141 Confirmed Confirmed

hsa-mir-23b Confirmed Confirmed hsa-mir-329 Confirmed Not confirmed

hsa-mir-15a Confirmed Confirmed hsa-mir-320e Confirmed Not confirmed

hsa-mir-107 Confirmed Confirmed hsa-mir-378 Confirmed Confirmed

hsa-mir-122 Confirmed Confirmed hsa-mir-15b Confirmed Confirmed

hsa-mir-422a Confirmed Confirmed hsa-mir-371 Confirmed Confirmed

hsa-mir-377 Confirmed Confirmed hsa-mir-153 Confirmed Confirmed

hsa-mir-383 Confirmed Confirmed hsa-mir-663 Not confirmed Confirmed

hsa-mir-141 Confirmed Confirmed hsa-mir-374b Confirmed Confirmed

hsa-mir-342 Confirmed Confirmed hsa-mir-584 Confirmed Confirmed

hsa-mir-425 Confirmed Confirmed hsa-mir-202 Confirmed Confirmed

hsa-mir-377 Confirmed Confirmed hsa-mir-10a Confirmed Confirmed

hsa-mir-423 Confirmed Confirmed hsa-mir-16 Confirmed Confirmed

hsa-mir-130b Confirmed Confirmed hsa-mir-181d Confirmed Confirmed

hsa-mir-328 Confirmed Confirmed hsa-mir-129 Confirmed Confirmed

hsa-mir-515 Not confirmed Not confirmed hsa-mir-147b Confirmed Confirmed

hsa-mir-320d Confirmed Confirmed hsa-mir-410 Not confirmed Confirmed

hsa-mir-323b Confirmed Not confirmed hsa-mir-421 Confirmed Confirmed

hsa-mir-92 Confirmed Confirmed hsa-mir-189 Confirmed Not confirmed

hsa-mir-105 Confirmed Confirmed hsa-mir-17 Confirmed Confirmed

hsa-mir-34c Confirmed Confirmed hsa-mir-99a Confirmed Confirmed

hsa-mir-187 Confirmed Confirmed hsa-mir-20b Confirmed Confirmed

hsa-mir-149 Confirmed Confirmed hsa-mir-92 Confirmed Confirmed

hsa-mir-124a Confirmed Confirmed hsa-mir-302d Confirmed Confirmed
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a reinforcement layer was added into the hidden layer of GCN to make similar nodes 
have similar feature representations in the feature space. The attention mechanism was 
used to update the influence of important adjacent nodes in the reinforcement layer on 
the target node. Thirdly, the association matrix between miRNA and disease was recon-
structed by bilinear encoder, and the cross-entropy loss function was used to train the 
model. Finally, HGCNELMDA performance was evaluated by four sets of experiments, 
which were left onefold cross-validation and fivefold cross-validation, compared with 
other methods, ablation test, parameter sensitivity test and three disease case studies. 
The results indicated that HGCNELMDA method had a good predictive effect in the 
prediction of miRNA–disease association.

Methods
In order to reduce the data noise of extracting original features, make similar nodes have 
similar feature representation in feature space, and enhance the spatial node feature 
aggregation of topology map, this paper constructs a heterogeneous graph convolutional 
network model based on reinforcement layer to predict miRNA–disease association. 
The model framework is shown in Fig. 8.
(1) Step 1: Build miRNA–disease isomerization map according to literature [44]. 
Through integrated disease semantic similarity network SD , The known miRNA–disease 

Table 4  Top 50 miRNAs associated with pancreatic tumors

miRNA dbDEMC PhenomiR miRNA dbDEMC PhenomiR

hsa-mir-18a Confirmed Confirmed hsa-mir-199a Confirmed Confirmed

hsa-let-7a Confirmed Confirmed hsa-mir-210 Confirmed Confirmed

hsa-mir-193b Confirmed Confirmed hsa-mir-34c Not confirmed Confirmed

hsa-mir-155 Confirmed Confirmed hsa-mir-15a Confirmed Confirmed

hsa-mir-143 Confirmed Confirmed hsa-let-7c Confirmed Not confirmed

hsa-mir-19a Confirmed Confirmed hsa-mir-29c Confirmed Confirmed

hsa-mir-29a Confirmed Confirmed hsa-mir-9 Confirmed Confirmed

hsa-mir-200c Confirmed Confirmed hsa-mir-200a Confirmed Confirmed

hsa-mir-200b Confirmed Confirmed hsa-mir-146b Confirmed Confirmed

hsa-mir-31 Confirmed Confirmed hsa-mir-182 Confirmed Confirmed

hsa-mir-21 Confirmed Confirmed hsa-mir-181b Confirmed Confirmed

hsa-mir-155 Confirmed Not confirmed hsa-let-7d Confirmed Confirmed

hsa-mir-146a Confirmed Confirmed hsa-mir-30a Confirmed Confirmed

hsa-mir-17 Confirmed Confirmed hsa-mir-142 Confirmed Confirmed

hsa-mir-145 Confirmed Confirmed hsa-mir-106b Confirmed Confirmed

hsa-mir-20a Confirmed Confirmed hsa-mir-218 Not confirmed Confirmed

hsa-mir-34a Confirmed Confirmed hsa-mir-223 Confirmed Confirmed

hsa-mir-125b Confirmed Confirmed hsa-let-7b Confirmed Confirmed

hsa-mir-126 Confirmed Confirmed hsa-let-7e Confirmed Confirmed

hsa-mir-221 Not confirmed Confirmed hsa-mir-34b Confirmed Confirmed

hsa-mir-92a Confirmed Confirmed hsa-mir-205 Confirmed Confirmed

hsa-mir-16 Confirmed Confirmed hsa-mir-7 Confirmed Confirmed

hsa-mir-222 Confirmed Confirmed hsa-mir-148a Confirmed Confirmed

hsa-mir-181a Confirmed Confirmed hsa-mir-195 Not confirmed Confirmed

hsa-mir-29b Confirmed Confirmed hsa-mir-133b Confirmed Confirmed



Page 14 of 19Huang et al. BMC Bioinformatics          (2022) 23:299 

association matrix is the same A and an integrated miRNA functional similarity network 
SM constructed into a miRNA–disease heterogeneous map AH , as shown in Formula 
(1):

Among them, AH ∈ R
(m+n)×(m+n) , m and n are respectively the number of miRNA 

and disease.
(2) Step 2: Node feature extraction based on restart random walk. In order to reduce the 
influence of data noise on the original features of nodes, restart the random walk is used 
to represent the original features of nodes.
(3) Step 3: Node embedding based on GCN. The information of neighbor nodes of each 
layer is aggregated through GCN to form an embedding of miRNA or disease node 
features.
(4) Step 4: Reinforcement layer based on attention mechanism. Since the previous GCN 
considered neighbor nodes equally, the text adds an attention-based reinforcement layer 
to the GCN hidden layer H .
(5) Step 5: Use the decoder to reconstruct the association matrix between miRNA and dis-
ease. The node feature embedding matrix is obtained by the reinforcement layer H , The 
Eigen matrix of miRNA is HR ∈ R

m×h , The characteristic matrix of disease is Hd ∈ R
n×h, h 

(1)AH = SM A

AT SD

Fig. 8  HGCNELMDA model



Page 15 of 19Huang et al. BMC Bioinformatics          (2022) 23:299 	

is layer embedding dimension, Since sigmod is often used as the activation function of 
dichotomy, It can be used to reconstruct miRNA–disease association matrix Y  , as shown 
in Eq. (2):

where the element in the row of the matrix Y  represents the correlation prediction score 
yij

′ between miRNA ri and disease dj , W ′ ∈ R
X×X is a trainable matrix.

(6) Step 6: In order to make the predicted results as close as possible to the actual results, 
cross entropy is used as the loss function to carry out end-to-end back propagation, as 
shown in Formula (3):

Among them, y represents an associated miRNA–disease positive sample, y− represents 
a negative sample with an unknown relationship.

Feature extraction based on random walk with restart

The M2GMDA and CEMDA methods assign each row or column in the SM (or SD ) simi-
larity matrix to represent an eigenvector of amiRNA (or disease). Literature [45] believes 
that the limitation of similarity calculation method may lead to some data noise in the direct 
extraction of original node features. Therefore, in order to optimize the original feature vec-
tors of miRNA and disease nodes and better capture the structural relationship between 
different types of nodes in heterogeneous graphs, the text reference uses a method based 
on R (random walk with restart, RWR) to extract node features from similarity. Restarting 
the random walk starts from a node, and each step can randomly select adjacent nodes or 
return to the starting node. Assume that there are n nodes, Right at the start node e , then 
the probability of appearing at any node i in the next move is r , as shown in Formula (4):

Here, W [i] represents the i row of the transition probability matrix W  , that is, the transi-
tion probability from all nodes to node i , in the next move, the probability of the node i is 
shown in formula (5):

After considering restarting, after k iterations, it still returns to node i with probability c . 
After the k + 1 iteration is stable, ri is the probability score of reaching node i , which is the 
similarity feature vector of node i , as shown in formula (6):

Here, c ∈ (0, 1) represents the restart probability, W [i, j] ∈ R
n×n represents the prob-

ability from i to j , and ei ∈ R
n×1 is the i-th node Initial probability vector. If i is equal 

to j , then eij is 1, otherwise it is 0. This paper replaces W  with SM or SD respectively, 
and obtains the probability distribution matrix of the node (miRNA or disease) based 

(2)Y = sigmod(HrW
′HT

d )

(3)Lcross = −
∑

i,j∈y∪y−
(yijlogyij

′ +
(
1− yij

)
log

(
1− yij

′))

(4)r0[i] = W [i] · e

(5)r1[i] = W [i] · r0

(6)rk+1
i = cWrki + (1− c)ei
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on the restart random walk, and normalizes the feature matrix as the miRNA fea-
ture matrix RM ∈ R

m×m and the characteristic matrix of the disease RD ∈ R
n×n . By 

restarting the random walk, the similarity between two points can be obtained, and 
the global structure of the graph can be better captured. According to RM and RD , 
the characteristic matrix of miRNA–disease AF∈ R

(m+n)×(m+n) is obtained, as shown 
in formula (7):

GCN‑based node cutting

Graph convolution aggregates node information according to edge information and 
represents new node features. The two feature extraction methods of graphs are spatial 
domain and Spectral domain. According to the explanation in Literature [44], the spatial 
method means that the neighbor nodes connected with the vertex are directly used to 
extract features. But the spectral method hopes to realize the convolution operation on 
the graph with the help of the graph theory, and studies the properties of the graph with 
the eigenvalues and eigenvectors of the Laplace matrix of the graph. Laplacian matrices 
are symmetric matrices, and GCN can perform feature decomposition. Common Lapla-
cian matrix is symmetric normalized Laplacian, each node is the purpose of the nor-
malized Laplacian matrix by foreign transfer the same amount of information, the more 
edge nodes exist, the less the amount of information transmitted each edge. The defini-
tion of the symmetric normalization Laplace matrix is shown in Eq. (8):

Here, D represents the degree matrix of the vertex, also called the diagonal matrix, and 
the definition of the elements of the L matrix is shown in formula (9):

According to the heterogeneous map AH of miRNA–disease, the normalized Lapla-
cian matrix is constructed as shown in formula (10):

Literature [45] indicates that Laplace matrix and Fourier transform are the two theo-
retical foundations of GCN. The Fourier transform of the graph expresses the arbitrary 
vector f  defined on the graph as a linear combination of the eigenvectors of the Lapla-
cian matrix, as shown in formula (11):

(u1,u2, · · ·un) is a set of orthogonal bases formed by n linearly independent vectors. The 
relationship between Fourier transform and Laplace matrix: The eigenvector of Laplace 

(7)AF =
[

0 RM
RD 0

]

(8)L̂ = D− 1
2 · L · D− 1

2

(9)Lij =






1 i = j and diag(vi) �= 0

− 1√
diag(vi)diag(vj)

i �= j and vi is adjacent to vj

0 otherwise

(10)ÂH= D− 1
2AHD

− 1
2

(11)f = f̂ (1)u1 + f̂ (2)u2 + . . . f̂ (n)un
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matrix is the base of Fourier transform, Get the graph convolution network, as shown in 
formula (12):

Here, X represents the feature matrix of the node, Â represents the normalized 
adjacency matrix, and W  is the weight matrix from the input layer to the hidden 
layer, which is equivalent to using a fully connected network to combine the feature 
connections.

According to the miRNA–disease heterogeneous map AH and the miRNA–dis-
ease feature matrix AF  , the initial embedding of miRNA and disease nodes is formed 
through GCN. Make GCN directly connect and gather the information of neighbor 
nodes on each layer through the graph, as the input of the next layer, as shown in for-
mula (13):

Here, W (0)∈ R
(m+n)×h , h embeds dimensions for layers.

Reinforcement layer based on attention mechanism

In order to make similar miRNA (or disease) nodes similar in the feature space, this 
paper added an attentional strengthening layer H  into the GCN hiding layer. The ini-
tial reinforcement layer H  was defined as F  , and an attention mechanism was intro-
duced to consider all neighbor nodes. The attention mechanism is used to measure 
the influence of the feature vector H  of adjacent nodes in the reinforcement layer on 
the feature vector H  of nodes. aij represents the attention coefficient between nodes, 
as shown in Formula (14), (15) and (16):

where Ni is the set of neighborhood nodes of node i . ReLU is the activation function 
and W∈ R

(m+n)×X is a trainable matrix.
Next, define the Loss function LH of the reinforcement layer. In order to make the 

feature vector of node Hi on the reinforcement layer H  focus on the feature vector Hj 
of important similar neighbor nodes, so that the feature vector of node i can be better 
iterated and updated, Loss function is defined as follows, as shown in Eq. (17)

Among them, m and n represent the number of miRNAs and diseases.

(12)f (X ,A) = ReLU(ÂXW )

(13)F = f (AF ,AH ) = ReLU(ÂHAFW
(0))

(14)eij = ReLU
(
Whi,Whj

)

(15)aij =
exp(eij)∑
j∈Ni

exp(eix)

(16)Hi =
∑

j∈Ni

aijhi

(17)Loss(Hi) =
m+n∑

i=1

∑
j∈Ni

aij|Hi −Hj|2
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miRNAs		�  Micro ribonucleic acids
AUC​		�  Area under the curve

Acknowledgements
We thank the editor and the anonymous reviewers for their comments and suggestions.

Author contributions
HD and AJY conceived the algorithm, carried out analyses, prepared the data sets, carried out experiments, and wrote 
the manuscript; ZL and LBL designed, performed and analyzed experiments and wrote the manuscript. All authors read 
and approved the final manuscript.

Funding
This work was supported by ‘the Fundamental Research Funds for the Central Universities, No. 2019XKQYMS88.” The 
funder had no role in study design, data collection and preparation of the manuscript.

Availability of data and materials
The datasets that support the findings of this study are available in https://​github.​com/​liuba​ilong/​HGCNE​LMDA.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no potential conflicts of interest with respect to the research, authorship, and publication of this 
article.

Received: 21 July 2021   Accepted: 11 July 2022

References
	1.	 Huang HY, Lin YCD, Li J, Huang KY, Shrestha S, Hong HC, et al. miRTarBase 2020: updates to the experimentally valid-ted 

microRNA–target interaction database. Nucleic Acids Res. 2020;2020:145–8.
	2.	 Leland H. Genetics: from gene to genomes. New York: McGraw-Hill Higher Education; 2021.
	3.	 Cantile M, Di BM, Tracey DBM, et al. Functional interaction among lncRNA HOTAIR and microRNAs in cancer and other 

human diseases. Cancers. 2021;13(3):570.
	4.	 Shefa U, Jung JY. Comparative study of microarray and experimental data on Schwann cells in peripheral nerve degen-

eration and regeneration: big data analysis. Neural Regen Res. 2019;14(6):1099.
	5.	 Zhang H, Liang Y, Han SY, Peng C, Li Y. Long noncoding RNA and protein interactions: from experimental results to 

computational models based on network methods. Int J Mol Sci. 2019;20(6):1284.
	6.	 Blanca OQ. Extracellular microRNAs as intercellular mediators and noninvasive biomarkers of cancer. Cancers. 

2020;12(11):3455.
	7.	 Wang X, Chai YB, Li H, et al. Link prediction in heterogeneous information networks: an improved deep graph convolu-

tion approach. Decis Support Syst. 2021;141:113448.
	8.	 Chen M, Liao B, Li ZJ. Global similarity method based on a two-tier random walk for the prediction of microRNA–disease 

association. Sci Rep. 2018;8(1):1–16.
	9.	 Zhang W, Li ZS, Guo WZ, et al. A fast linear neighborhood similarity-based network link inference method to predict 

microRNA–disease associations. IEEE/ACM Trans Comput Biol Bioinform. 2021;18:1.
	10.	 Zhao HC, Kuang LN, Wang L, et al. Prediction of microRNA–disease associations based on distance correlation set. BMC 

Bioinform. 2018;19:141. https://​doi.​org/​10.​1186/​s12859-​018-​2146-x.
	11.	 Chen X, Wang L, Qu J, Guan NN, Li JQ. Predicting miRNA–disease association based on inductive matrix completion. 

Bioinformatics. 2018;34(24):4256–65.
	12.	 Chen X, Wang CC, Yin J, You ZH. Novel human miRNA–disease association inference based on random forest. Mol Ther 

Nucleic Acids. 2018;13:568–79.
	13.	 Jiang YT, Liu BT, Yu LH, Yan CG, Bian HJ. Predict miRNA–disease association with collaborative filtering. Neuroinformatics. 

2018;16(3–4):363–72.
	14.	 Jiang Q, Wang Y, Hao Y, Juan L, Teng M, Zhang X, Li M, Wang G, Liu Y. MiR2Disease: A manually curated database for  

microRNA deregulation in human disease. Nucl Acids Res. 2009;37:D98–104.
	15.	 Chen ZH, Wang XK, Gao P, Liu HJ, Song BS. Predicting disease related microRNA based on similarity and topology. Cells. 

2019;8(11):1405.

https://github.com/liubailong/HGCNELMDA
https://doi.org/10.1186/s12859-018-2146-x


Page 19 of 19Huang et al. BMC Bioinformatics          (2022) 23:299 	

	16.	 Zeng XX, Wang W, Deng GS, Bing JX, Zou Q. Prediction of potential disease-associated microRNAs by using neural 
networks. Mol Ther Nucleic Acids. 2019;16:566–75.

	17.	 Gong YC, Niu YQ, Zhang W, Li XH. A network embedding-based multiple information integration method for the 
miRNA–disease association prediction. BMC Bioinform. 2019;20(1):468.

	18.	 Zhang C, Chao H, Lu Y, et al. Camel: content-aware and meta-path augmented metric learning for author identification. WWW. 2018.
	19.	 Wang Y, Zheng FS, Wang ZB, Lu JB, Zhang HY. Circular RNA circ-SLC7A6 acts as a tumor suppressor in non-small cell lung 

cancer through abundantly sponging miR-21. Cell Cycle. 2020;19(17):2235–46.
	20.	 Li Y, Qiu C, Tu J, Geng B, Yang J, Jiang T, Cui Q. HMDD V2.0: A database for experimentally supported human microRNA 

and disease associations. Nucl Acids Res. 2014;42(D1):D1070–4.
	21.	 Zhao Y, Chen X, Yin J. Adaptive boosting-based computational model for predicting potential miRNA–disease associa-

tions. Bioinformatics. 2019;35(22):4730–8.
	22.	 Chen X, Zhu CC, Yin J. Ensemble of decision tree reveals potential miRNA–disease associations. PLoS Comput Biol. 

2019;15(7):e1007209. https://​doi.​org/​10.​1371/​journ​al.​pcbi.​10072​09.
	23.	 Ha J, Park C, Park C, Park S. Improved prediction of miRNA-disease associations based on matrix completion with net-

work regularization. Cells. 2020;9(4):881.
	24.	 Zhang XJ, Li YL, Qi PF, Ma ZL. Biology of MiR-17-92 cluster and its progress in lung cancer. Int J Med Sci. 

2018;15(13):1443–8.
	25.	 Fu X, Zhang J, Meng Z, et al. MAGNN: meta path aggregated graph neural network for heterogeneous graph embed-

ding. In: The web conference 2020; p. 2331–2341.
	26.	 Song XY, Liu T, Qiu ZY, et al. Prediction of lncRNA–disease associations from heterogeneous information network based 

on deepwalk embedding model. In: Intelligent computing methodologies 2020; p. 291–300.
	27.	 Minh NT, Wu Y-H. Integrating meta-path similarity with user preference for top-N recommendation. In: International 

conference on technologies and applications of artificial intelligence (TAAI). 2019; p. 1–6.
	28.	 Li J-Q, Rong Z-H, Chen X, Yan G-Y, You Z-H. MCMDA: Matrix completion for MiRNA-disease association prediction. Onco-

target. 2017;8(13):21187–99.
	29.	 Li SR, Xie MZ, Liu XQ. A novel approach based on bipartite network recommendation and KATZ model to predict poten-

tial micro-disease associations. Front Genet. 2019;10:1147.
	30.	 Yue X, Wang Z, Huang J, et al. Graph embedding on biomedical networks: methods, applications and evaluations. 

Bioinformatics. 2020;36(4):1241–51.
	31.	 Chen X, Sun LG, Zhao Y. NCMCMDA: miRNA–disease association prediction through neighborhood constraint matrix 

completion. Brief Bioinform. 2020;22(1):485–96.
	32.	 Liang C, Yu SP, Luo JW. Adaptive multi-view multi-label learning for identifying disease-associated candidate miRNAs. 

PLoS Comput Biol. 2019;15(4):e1006931.
	33.	 Chen X, Sun LG, Zhao Y. NCMCMDA: miRNA–disease association prediction through neighborhood constraint matrix 

completion. Brief Bioinform. 2020;22:485–96.
	34.	 Li YX, Cui XM, Li YD, Zhang TT, Li SY. Upregulated expression of miR-421 is associated with poor prognosis in non-small-

cell lung cancer. Cancer Manag Res. 2018;10:2627–33.
	35.	 Li ZW, Li JS, Nie R, et al. A graph auto-encoder model for miRNA–disease associations prediction. Brief Bioinform. 

2020;1:1–13.
	36.	 Ding Y, Tian LP, Lei X, et al. Variational graph auto-encoders for miRNA–disease association prediction [J/OL]. Methods. 

2020. https://​doi.​org/​10.​1016/j.​ymeth.​2020.​08.​004.
	37.	 Li JS, Li ZW, Nie R, et al. FCGCNMDA: predicting miRNA–disease associations by applying fully connected graph convo-

lutional networks. Mol Genet Genomics. 2020;295(5):1197–209.
	38.	 Ha J, Park C, Park C, Park S. IMIPMF: inferring miRNA–disease interactions using probabilistic matrix factorization. J 

Biomed Inform. 2020;102:103358. https://​doi.​org/​10.​1016/j.​jbi.​2019.​103358.
	39.	 Xiao WD, Zhong YC, Wu LL, Yang DX, Ye SQ, Zhang M. Prognostic value of microRNAs in lung cancer: a systematic review 

and meta-analysis. Mol Clin Oncol. 2019;10(1):67–77.
	40.	 Mansoori B, Mohammadi A, Ghasabi M, Shirjang S, Dehghan R, Montazeri V, et al. MiR-142-3p as tumor suppres-

sormiRNA in the regulation of tumorigenicity, invasion and migration of human breast cancer by targeting Bach-1 
expression. J Cell Physiol. 2019;234(6):9816–25.

	41.	 He YJ, Deng F, Zhao SJ, Zhong SL, Zhao JH, Wang DD, et al. Analysis of miRNA–mRNA network reveals miR-140-5p as a 
suppressor of breast cancer glycolysis via targeting GLUT1. Epigenomics. 2019;11(9):1021–36.

	43.	 Voss G, Haflidadóttir BS, Järemo H, Persson M, Ivkovic CT, Wikström P, Ceder Y. Regulation of cell–cell adhesion in pros-
tate cancer cells by microRNA-96 through upregulation of E-Cadherin and EpCAM. Carcinogenesis. 2019;41(7):865–74.

	43.	 Huang Z, Shi JC, Gao YX, Cui CM, Zhang S, Li JW, et al. HMDD v3.0: a database for experimentally supported human 
microRNA–disease associations. Nucleic Acids Res. 2018;47(D1):D1013-D1017:47(D1).

	44.	 Zhang L, Liu BL, Li ZW, Zhu XY, Liang ZZ, An JY. Predicting miRNA–disease associations by multiple meta-paths fusion 
graph embedding model. BMC Bioinform. 2020;21:470.

	45.	 Pasquier C, Gardès J. Prediction of miRNA–disease associations with a vector space model. Sci Rep. 2016;6:27036.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1371/journal.pcbi.1007209
https://doi.org/10.1016/j.ymeth.2020.08.004
https://doi.org/10.1016/j.jbi.2019.103358

	Computational method using heterogeneous graph convolutional network model combined with reinforcement layer for MiRNA–disease association prediction
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Results
	Experimental approaches and evaluation criteria
	Compare with other methods
	Comparison of results with or without reinforcement layer
	Comparison of results with or without random walk with restart
	Comparison of parameter sensitivities
	Cases studies

	Discussion
	Conclusion
	Methods
	Feature extraction based on random walk with restart
	GCN-based node cutting
	Reinforcement layer based on attention mechanism

	Acknowledgements
	References


