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Simple Summary: Taxonomic studies on a polymorphic species inhabiting a region with relatively
uniform environmental conditions (e.g., the Arctic) should involve an integrative approach. Ground
beetles such as the subgenus Cryobius of the genus Pterostichus are a successful group in expansion in
the tundra biome. The current taxonomy of Cryobius species is unclear and could be considered an
obstacle to ecological studies; knowledge of their distribution patterns in the Arctic is rather limited.
In this study, the first report on the phylogeography and phylogeny of the most abundant tundra
subspecies, P. (Cryobius) brevicornis brevicornis (Kirby, 1837), within its continuous range throughout
northern Eurasia and North America is presented. The results indicated that the male genitalia
morphology of P. b. brevicornis from Eurasian populations shared a higher geographic variability
compared with the pronotum shape and the mitochondrial DNA sequences.

Abstract: The geographic patterns of genetic and morphological variability in ground beetles were
examined throughout Northern Eurasia and North America using the most abundant circumpolar
tundra subspecies, Pterostichus (Cryobius) brevicornis brevicornis (Kirby, 1837), as a model. Phylogenetic
structure was assessed on the basis of a Bayesian approach using two DNA markers (partial sequences
of the COI and 28S rRNA genes), while phylogeographic patterns and population genetic diversity
were estimated using the COI gene only. Morphological patterns were analysed using elliptical
Fourier coefficients that were calculated based on the pronotum and male genitalia shape outlines. The
subspecies shares 23 COI haplotypes throughout its entire circumpolar range, while eight haplotypes
of 28S rRNA were detected in Northern Eurasia. Phylogenetic analysis did not reveal subdivided
species lineages with strict geographical imprint. The network, FST and uncorrected pairwise
divergence analyses showed that the genetic distances between populations increase by longitude
from Northeastern Asia to Europe. The genetic variability among the five studied geographical
population groups of P. b. brevicornis was relatively high. The MANOVA showed significant regional
divergence between local populations in Northern Eurasia based on both morphological markers,
but only male genitalia variability was geographically structured. Neither the pronotum shape nor
the male genitalia shape aligned with the phylogeographic patterns discovered on the basis of COI
sequences. The genetic (COI) marker had more variation within, rather than among, population
groups in addition to morphology of pronotum but not male genitalia.

Keywords: Cryobius; circumpolar range; phylogeny; phylogeography; genetic diversity; geometric
morphometric
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1. Introduction

In the Arctic there are approximately 44 species of the genus Pterostichus (Bonelli,
1810) of which 20 species (45%) refer to the subgenus Cryobius (Chaudoir, 1838) [1–3].
The subgenus Cryobius is more diverse in the Palearctic region with 154 species, and
23 species have been detected in the Nearctic region [4–6]. In the last updated review of
Carabidae, approximately 56 Cryobius species were detected in the Russian territory [7],
with 15 Cryobius species endemic to this zone or predominantly distributed in tundra
landscapes [3]. Danks also reported approximately 19 species of this subgenus in the
American Arctic [8].

One of the first revisions of the subgenus Cryobius was published in 1906 by Poppius [9].
Since then, no more than 20 taxonomic research papers of the subgenera (species and
supraspecies taxonomy) have been published. Three species groups within the subgenus
Cryobius were determined for North America: ventricosus, pinguedineus, and brevicornis [10].
According to a study of ground beetles in the subgenus Cryobius in Russia and adjacent
countries, five species groups and 17 species were defined outside such groups [11]. The
last revision of the “brevicornis” group included five species: Pterostichus brevicornis (Kirby,
1837), P. empetricola (Dejean, 1828), P. nivalis (R.F. Sahlberg, 1844), P. kolymensis Erjiomin,
1998, and P. mandibularoides Ball, 1966 [12]. Additionally, the species Pterostichus brevicornis
is divided into three subspecies: Pterostichus brevicornis brevicornis (Kirby, 1837), Pterostichus
brevicornis delicatus (Casey, 1918), and Pterostichus brevicornis yasudai (Morita, 2002) [1]. The
primary differences in morphology used to differentiate between species have focused
on two body structures: the pronotum and male genitalia [10,12]. The general taxonomic
problem of the subgenus Cryobius is the similar physiognomy of diagnostic features for
species in each group as well as in the “brevicornis” group. Thus, limitations in descriptive
taxonomy have resulted in biased estimates of ground beetle species compositions in the
Arctic where the subgenus Cryobius is predominantly distributed. A contemporary integra-
tive approach is required for clarification of these problems in taxonomy. Some research
has been facilitated by molecular tools such as 28S rRNA, COI, and COII sequencing for
the taxonomy of the subgenus Hypherpes (Chaudoir, 1838) of the genus Pterostichus, the
widespread Pterostichini of North America [13]. Research using genetic data of Cryobius has
focused on DNA barcoding of an arthropod community for environmental monitoring in
the Arctic [14–18], on the molecular phylogeny of closely related taxa [13,19] in the study of
the evolutionary trends of the genus Pterostichus [20], and on developing a comprehensive
DNA barcode library of the genus Pterostichus for Germany and Central Europe [21].

Pterostichus b. brevicornis is one of the most widespread and numerous subspecies of
the subgenus Cryobius in the northern polar region, including the territory from the Arctic
tundra to the northern taiga subzones [7,10,11]. The subspecies’ range is almost circumpo-
lar from Newfoundland to the Kola Peninsula and reaches the islands of the Arctic Ocean
(Novaya Zemlya and Vaygach in Northern Europe, Wrangel in northeast Asia, Victoria in
Canada) [10,11]. Southward, the species reaches the Amursko–Sakhalinskaya Mountainous
Land in the east and the Buryatia Mountains in Siberia [11,22]. Pterostichus b. delicatus
has a range restricted to the islands of the Bering Sea of North America and North-
east Russia [1,10,11]. Specimens of Pterostichus b. yasudai were detected in the Daisetsu
Mountains of Hokkaido Island (Japan) [23]. Pterostichus brevicornis is a cold-adapted
species [24,25] with a two-year life cycle, and has a “summer breeding” period and winter
hibernation of imago and larvae [26]. Specimens of P. b. brevicornis from different parts
of the subspecies range have a high morphological diversity of diagnostic features [10].
It might be assumed that in the Holarctic range, specific environmental adaptations and
morphological diversity of P. b. brevicornis are caused by diversity at the genetic level. There-
fore, the main goal of this study was to assess the genetic and morphological structures of
Pterostichus b. brevicornis from Northern Eurasia and North America. The objectives were:
(i) to study phylogenetic and phylogeographic aspects of P. b. brevicornis; (ii) to study the
genetic diversity of P. b. brevicornis populations from different parts of the subspecies’ range;
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and (iii) to test the morphological differentiation of P. b. brevicornis within the Eurasian
range with correspondence between morphological and genetic population structures.

2. Materials and Methods
2.1. Data Collection, DNA Extraction, PCR, and Sequencing

Specimens of P. b. brevicornis were collected in various locations across North Eurasia
and North America using pitfall traps, leaf litter sifting, and an exhaustor (Figure 1).
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Carabid individuals for DNA analyses were preserved in 96% ethanol or dried after 
collection. The pinned dry specimens were deposited in the collection of the Russian Mu-
seum of Biodiversity Hotspots (RMBH), Federal Center for Integrated Arctic Research of 
the Russian Academy of Sciences and Northern (Arctic) Federal University named after 
M.V. Lomonosov, Arkhangelsk, Russian Federation. In this study, the cytochrome c oxi-

Figure 1. Map showing the location (dots) of Pterostichus brevicornis brevicornis samples (for details
see Supplementary Materials Tables S1 and S3) and the respective mtDNA haplotype distribution
(pie charts) per population: A—North Canada, B—Alaska, C—Northeast Asia, D—West and Central
Siberia, E—North Europe. A unique COI haplotype from Kamchatka (Hapl 23) is not shown. Yellow
dots—data from this study (genetic data and specimens for shape analysis); red dots—DNA sequences
from NCBI GenBank.

Carabid individuals for DNA analyses were preserved in 96% ethanol or dried after
collection. The pinned dry specimens were deposited in the collection of the Russian
Museum of Biodiversity Hotspots (RMBH), Federal Center for Integrated Arctic Research
of the Russian Academy of Sciences and Northern (Arctic) Federal University named
after M.V. Lomonosov, Arkhangelsk, Russian Federation. In this study, the cytochrome
c oxidase subunit I (COI) gene and large subunit ribosomal RNA 28S (28S rRNA) gene
sequences were obtained. The newly obtained sequences of P. b. brevicornis (77 for COI
and 33 for28S rRNA) were combined with published GenBank data (93 for COI). The
resulting dataset comprised a total of 170 sequences for COI and 33 sequences for 28S rRNA
(Supplementary Materials Table S1).

DNA was extracted from legs and dissected abdominal muscle tissue using a standard
phenol/chloroform procedure [27]. A fragment of the mitochondrial gene COI was am-
plified using two primer pairs: C1-J-1718 with C1-N-2329 (612 bp) [28] and LCO 1490 [29]
with LepR (660 bp) [30]. The primers D23F [31] and D2 [32] were used for the amplification
of the 28S rRNA gene (528 bp). The PCR mix contained approximately 200 ng of total DNA,



Insects 2022, 13, 204 4 of 17

10 pmol of each primer, 200 µmol of each dNTP, 2.5 µL of PCR buffer (with 10 × 2 mmol
MgCl2), 0.8 units of Taq DNA polymerase (SibEnzyme Ltd., Novosibirsk, Russia), and
H2O added for a final volume of 25 µL. Thermal cycling was as follows: 95 ◦C (4 min),
32–37 cycles of 95 ◦C (50 s) and 42 ◦C (50 s) for COI or 25 cycles of 95 ◦C (50 s), 60 ◦C (50 s)
for 28S, 72 ◦C (50 s), and a final extension at 72 ◦C (5 min). Forward and reverse sequencing
were run on an ABI PRISM® 3730 DNA (Thermo Fisher Scientific Inc., Waltham, MA,
USA) using the ABI PRISM® Big-Dye Terminator v. 3.1 reagent kit. Regarding the results,
85 new sequences (61 for COI and 24 for 28S rRNA) were deposited in GenBank (accession
numbers in Table S1). In addition, COI sequences of P. b. brevicornis were retrieved from
GenBank (NCBI) and the Barcode of Life Data (BOLD) System. All sequences were checked
manually using BioEdit v. 7.2.5 [33]. The alignment of the COI and 28S rRNA sequences
was performed using the Muscle algorithm in MEGA X [34]. For the phylogenetic analy-
ses, COI and 28S rRNA sequence alignments were trimmed, leaving 597 bp and 524 bp
fragments, respectively.

2.2. Phylogenetic and Phylogeographic Analyses

Both genes were analysed separately (Supplementary Materials Table S2, Figure S1)
and combined. The aligned sequences of COI and 28S rRNA were concatenated in a
single nucleotide sequence alignment (total length of 1121 bp). This combined dataset
was collapsed into 28 unique haplotypes (including two of the outgroup taxa—Pterostichus
nivalis (R.F. Sahlberg, 1844)) using an online FASTA sequence toolbox [35]. For 28S rRNA
alignment, the online GBlocks server v0.9b [36] was applied to eliminate poorly aligned
positions and divergent regions from the alignment. The best models of sequence evolution
for each partition, as suggested based on the corrected Akaike Information Criterion
(AICc) [37] of MEGA X [34], were as follows: (1) 1st codon position of COI: TN93+G
(G = 0.05), (2) 2nd codon position of COI: TN93, (3) 3rd codon position of COI: GTR+G
(G = 0.2), and (4) 28S rRNA:TN93+G+I (G = 0.05, I = 0.59). Phylogenetic relationships were
reconstructed based on Bayesian inference performed in MrBayes v. 3.2.6 [38] through
the CIPRES Science Gateway [39]. The following parameters for analyses were used:
ngen = 10,000,000, nchains = 4, nruns = 4, samplefreq = 1000, temp = 0.2. The first 15% of
trees were discarded as burn-in (preconvergence part), and the majority rule consensus tree
was calculated from the remaining trees. Convergence of the MCMC chains to a stationary
distribution was checked visually based on the plotted posterior estimates using Tracer v.
1.7 [40]. The effective sample size (ESS) value for each parameter sampled from the MCMC
analysis was recorded as >700. Trees were viewed using FigTree v. 1.4.2 [41].

The phylogeographic analysis was performed based on a median-joining network
approach using Network v. 5.0.0.1 software with default settings [42]. Additionally,
170 COI sequences of P. b. brevicornis from 26 localities of Northern Europe and North
America were used (Supplementary Materials Table S1). All sequences were trimmed
to the minimal sequence length (602 bp) due to different length of available sequences.
Additionally, pie charts of haplotype contributions (in percent of total abundance) per
geographical population were added to the map of sample locations of P. b. brevicornis
(Figure 1) created with QGIS software version 3.14.1 (https://qgis.org/ru/site/, accessed
on 27 July 2021).

2.3. Population Genetic Analysis

Population genetic diversity indices (haplotype and nucleotide diversity) were deter-
mined using Arlequin v.3.5.2 [43]. The total dataset of 168 COI sequences was subdivided
in accordance with geographic areas of North Canada: Nunavut, Manitoba, Yukon (n = 38),
Alaska: Toolik, Talkeetna, Fairbanks Borough, Denali Borough (n = 55), Northeast Asia:
Wrangel Island and Chukotka (n = 25), West and Central Siberia: Yamal Peninsula and
Polar Ural, Tazovskiy and Taymir Peninsulas (n = 20), Northern Europe: Pinega Reserve,
Kanin Peninsula, Yugorskiy Peninsula, Vaigach Island (n = 30). Pairwise FST values using
analysis of molecular variance (AMOVA) for comparisons of five population groups were

https://qgis.org/ru/site/


Insects 2022, 13, 204 5 of 17

calculated using Arlequin v.3.5.2. The mean uncorrected p-distance between population
groups (±standard error estimate) was calculated for COI using MEGA X.

2.4. Morphological Studies

The morphological study for P. b. brevicornis mainly follows a redescription of Ball [10]
and Erjiomin [12]. The comparative analysis of the morphology variabilities in the longi-
tudinal range of North Eurasia of our collected materials was conducted with attention
to the shape of pronotum and male genitalia (aedeagus) (Table S3). Both morphological
structures were analysed using elliptical Fourier coefficients (EFs) [44–49], which were
calculated using the software package SHAPE v.1.3 [50]. The EF geometric morphomet-
ric (GM) approach is advantageous over the traditional method of measurement (linear
distances between predetermined points) and can compare curvilinear features with ob-
ject size inclusion [49,50]. The pronotum shape analysis was performed for a total of
116 individuals (49 males and 67 females) from 17 sampling sites (Table S3). Male genitalia
shape was investigated in 49 individuals from 10 populations (Table S3). The images of the
morphological details were taken with a stereomicroscope (AXIO Zoom V16, Carl Zeiss,
Germany) and digitized by ZEN 2.3 (blue edition) software [51]. The resulting images were
edited in Adobe Photoshop CC 2014 [52] to produce black and white bitmaps. Elliptic
Fourier descriptors (EFDs) based on the longest radius were calculated using the Chc2Nef
(number of harmonics—20) program [50]. A principal components analysis (PCA) was
implemented on the variance-covariance matrix from the EFD coefficients using the Prin-
Comp program [50]. The shape variations of the pronotum and aedeagus were explained
by principal component (PC) scores (±2 standard deviations). All significant PC scores
were used in subsequent analyses.

Correspondence between principal component scores (shape variables) as dependent
variables due to species populations, sex, or population × sex interaction was investi-
gated using multivariate analysis of variance (MANOVA). MANOVA was also used to
test the mean difference in shape markers between geographical populations. Discrim-
inant canonical analysis (DCA) was also performed with populations as the dependent
variable. The purpose was to illustrate the maximum differentiation of the multivariate
means (centroids) of morphological patterns for each local population sample in shape
space. The matrices of principal component scores for both morphological structures were
projected onto computed canonical variate axes. Data analysis was conducted using both
STATISTICA v. 10 [53] and PAST v. 3.06 [54].

The relationship between morphological, genetic, and geographical differentiation
was assessed by testing simple and partial Mantel tests between distance matrices. Morpho-
logical distances (shape distance) corresponding to Mahalanobis distances (DM) by DCA
were calculated in STATISTICA v. 10 [53]. Genetic distances were based on mean pairwise
population FST values using the Tamura model for the barcoding segment of COI and were
calculated in Arlequin v. 3.5.2 [43]. The geographical distance matrix was determined using
the great circle distance between collected samples in PAST v. 3.06. The only samples with
both genetic and shape datasets (16 for pronotum and 10 for male genitalia) were involved
in the Mantel tests of matrix correlation (Supplementary Materials Table S2). All tests in
PAST v. 3.06 were based on 10,000 permutations of the data to test the null hypothesis that
the matrices are independent.

3. Results
3.1. Phylogenetic Reconstruction, Phylogeography, and Population Genetics

The Bayesian phylogeny of P. b. brevicornis based on 23 COI and eight 28S rRNA
unique haplotypes comprised three subclades that were 0.7–0.9% divergent (Figure 2).
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Figure 2. The majority-rule consensus phylogenetic tree of Pterostichus brevicornis brevicornis recovered
from Bayesian inference analysis based on the combined mitochondrial and nuclear sequence dataset.
Haplotype codes are indicated in Supplementary Materials Table S1 (on tree plot haplotype numbers
according to COI marker). Numbers near branches indicate the Bayesian posterior probability (BPP).
Photo by Zubrii N.A (male specimen; Russia, Yugorskiy Peninsula, near Amderma settlement).

There were no intraspecific subclades of P. b. brevicornis by longitude range distribution.
Only one subclade combined four haplotypes from North America (Alaska and Canada
(Yukon)), while others contained haplotypes from different geographical localities. The COI
mean uncorrected pairwise p-distance between five geographical populations as a whole
was 0.44 ± 0.17%. Genetic distances increased from east to the west in Eurasia, and the
highest mean divergence value (p-distance: 1.24 ± 0.41%; FST = 0.83, p < 0.000) was found
between Northern European and Northeastern populations (Table 1). However, sequence
variation of 28S rRNA of Eurasian populations differed from mtDNA, with the highest
mean divergence value between Northeastern and both north European and Siberian
populations (p-distances: 1.20% to 1.30%), and the lowest between north European and
Siberian populations (p-distances: 0.16 ± 0.12%). The mean 28S rRNA p-distance between
the three Eurasian populations as a whole was 0.79 ± 0.19%.
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Table 1. Mean genetic divergences between population groups of Pterostichus brevicornis brevicornis
(COI uncorrected p-distance ± standard error estimations, %) on the lower diagonal and FST values
on the upper diagonal (significance of all measures p < 0.0001).

Populations North
Europe

West and
Central Siberia

Northeast of
Asia Alaska North

Canada

North Europe 0 0.59 0.83 0.55 0.49
West and

Central Siberia 0.95 ± 0.31 0 0.27 0.35 0.19

Northeast of
Asia 1.24 ± 0.41 0.57 ± 0.20 0 0.57 0.47

Alaska 1.01 ± 0.33 0.98 ± 0.30 1.09 ± 0.33 0 0.28
North Canada 0.76 ± 0.27 0.72 ± 0.23 0.73 ± 0.25 0.82 ± 0.26 0

The COI sequences of P. b. brevicornis from Europe and Northeast Asia had more
genetic similarities with samples from North America than with each other (Table 1). It
is noteworthy that the Canadian population of P. b. brevicornis had lower genetic dis-
tances with subspecies population from West and Central Siberia (p-distance: 0.72 ± 0.23%;
FST = 0.19, p < 0.000) than with those from Alaska (p-distance: 0.82 ± 0.26%; FST = 0.28,
p < 0.000). The median-joining network analysis using the short COI sequence dataset corre-
sponded to the Bayesian phylogeny with closely related haplotypes among P. b. brevicornis
from different localities of the northern range (Figure 3).
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Figure 3. Phylogeography of Pterostichus brevicornis brevicornis. Median-joining network of COI
sequences (see Supplementary Materials Table S1 for details). Colours match locations in the legend
and mutations are shown as red numbers at the branches. The dashed ellipses correspond to subclades
of the phylogenetic tree (see Figure 2). The relationship between circle size and number of specimens
is shown in the upper right corner.
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Overall, 16 COI haplotypes of P. b. brevicornis were found in North America, with 12
unique haplotypes (75% of the total), and 11 COI haplotypes were determined for Eurasia,
with eight unique haplotypes (72.7%). Only three COI haplotypes were shared between
Nearctic and Palearctic populations of P. b. brevicornis: Hapl 6 in Canada and the Northeast
Asia, Hapl 10 in all studied territories except Canada, and Hapl 15 in Alaska and Siberia.
The most widespread haplotype (Hapl 10) was found in approximately half of the studied
locations (12 locations) within North America and Eurasia (Figures 1 and 3). Unique
haplotypes were found with high frequency in the most extreme extents of the eastern
and western territories of the northern longitudinal range of P. b. brevicornis in North
Canada (Hapl 4, 36.8%) and in northern Europe (Hapl 16, 33.3%; Hapl 17, 46.7%) (Figure 1).
The highest divergence of up to 10–11 mutational steps was detected within the Alaska
populations (Figure 3). In comparison, the subdivided Eurasian populations had lower
divergence (maximum seven steps) for each of the subgroups (Figure 3). Tests of genetic
structure using AMOVA were significant (FST = 0.48, df1 = 4, df2 = 163, p < 0.000), with
the highest variation found within population groups (51.99%) compared to the variation
among population groups (48.01%).

For the North Canadian population of P. b. brevicornis, the highest haplotype diversity
(h > 0.7) was detected, yet there was also low nucleotide diversity (π < 0.6%). The studied
samples of P. b. brevicornis from Siberia and Alaska were characterized by lower haplotype
diversity (h < 0.7) and the highest nucleotide diversity (π > 0.6%). Lower values of both
population parameters (h < 0.7, π < 0.5%) were detected for P. b. brevicornis from Northern
Europe and Northeast Asia (Table 2).

Table 2. Genetic diversity indices of Pterostichus brevicornis brevicornis samples based on COI sequences.

Parameters North Europe West and Central Siberia Northeast of Asia Alaska North Canada

Sample size, N 30 20 25 55 38
No. of haplotypes 5 4 5 9 8

Haplotype diversity
(h ± SD) 0.674 ± 0.055 0.658 ± 0.070 0.423 ± 0.119 0.634 ± 0.055 0.767 ± 0.042

Nucleotide diversity
(π ± SD), % 0.208 ± 0.15 0.640 ± 0.38 0.207 ± 0.15 0.638 ± 0.36 0.541 ± 0.32

3.2. Shape Variation

The total shape variation for both the pronotum and aedeagus of P. b. brevicornis
comprised 38 principal components, but only five were significant. The first five PCs
described 90.22% of the shape variation in the pronotum and 87.98% of the variation in
male genitalia (Supplementary Materials Table S4).

The MANOVA indicated no significant difference in the shape of pronotum male
and female species individuals or in the shape of pronotum between sexes by population
(Table 3).

Table 3. Multivariate analysis of variance (MANOVA) performed for shape variables of pronotum and
aedeagus of Pterostichus brevicornis brevicornis (df1—model degrees of freedom; df2—error degrees of
freedom). Differences statistically significant at p < 0.05.

Body Units Effect Wilks’s Lambda df1, df2 F p

Pronotum
Sex 0.916 5, 59 1.248 0.223
Population 0.110 45, 267 2.272 0.0000
Sex× Population 0.364 45, 267 1.502 0.056

Aedeagus Population 0.109 45, 155 2.207 0.0002

Highly significant differences in pronotum and aedeagus shapes of P. b. brevicornis
were found between local populations (Table 3) by all principal component axes. The
centroids of the PCs of both morphological structures for the studied populations were
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calculated using DCA. Five statistically significant canonical axes were established, and
the first two of them explained 74.8% of the variance for pronotum shape and 78.6% of the
variance for aedeagus shape (Table 4).

Table 4. The structure matrix of shape variables (principal component scores—PC) of canonical
discriminant analysis explained by canonical axes (CA).

Shape Variables CA1 CA2 CA3 CA4 CA5

Pronotum
PC1 0.026 −0.701 0.458 0.052 0.544
PC2 −0.337 −0.063 −0.058 −0.933 0.091
PC3 0.041 −0.019 −0.708 0.081 0.700
PC4 −0.657 −0.334 −0.244 0.557 −0.295
PC5 −0.275 0.597 0.432 0.198 0.584

Cumulative proportion 0.584 0.748 0.882 0.958 1.000
Aedeagus

PC1 0.099 −0.011 −0.717 −0.674 −0.149
PC2 −0.087 0.794 −0.350 0.432 −0.231
PC3 −0.222 0.004 0.246 −0.277 −0.902
PC4 0.763 0.321 0.452 −0.214 −0.254
PC5 0.238 −0.414 −0.405 0.604 −0.493

Cumulative proportion 0.550 0.786 0.889 0.972 1.000
bold: maximum PC contribution.

The scatterplot of population mean scores for pronotum shape on the first two canoni-
cal axes showed three overlapping groups of populations (Figure 4A).

The nine local populations from Northern Europe, West and Central Siberia, and
Northeast Asia belong to the overall shape space (Figure 4A). The three groups of sub-
divided geographical populations of P. b. brevicornis had more variation in pronotum
shape within than among groups for all canonical axes (Wilk’s Lambda = 0.538, F = 0.798,
df1 = 10, df2 = 22, p = 0.632). Specimens from the Taymyr Peninsula (Maksimovka River)
and Vaygatch Island had similar population mean scores for pronotum PCs. The greatest
distances between PC centroids of pronotum shape were detected on the first axis for
populations from Chukotka (Pevek settlement) and Kanin Peninsula (Shoina settlement)
(Figure 4A). Reconstructed outlines of pronotum on the first axis showed side rounded,
almost to hind angle shapes for positive projections, sides that were not strongly rounded,
and feebly sinuate posterior shape for negative projections (Figure 5A).

For the second axis shape, changes of pronotum were not so obvious and slight asym-
metry of sides and hind angle shapes for negative projections were observed (Figure 5A).

For the aedeagus shape of P. b. brevicornis, the MANOVA including all five canonical
components (mean scores for PCs) revealed more variance within than among population
groups of Northern Europe and Siberia (Wilk’s Lambda = 0.517, F = 0.749, df1 = 5, df2 = 4,
p = 0.628). A significant difference in aedeagus shape among the population groups of the
studied territories resulted from a second canonical axis only (Mann–Whitney: U = 3.00,
p = 0.042, n = 10). The population mean scores of aedeagus shape on the scatterplot for the
second canonical axis were not completely separated in shape space between Northern
Europe and Siberia (Figure 4B). The aedeagus shapes of P. b. brevicornis from the Polar
Ural sample had more similarity with shapes of aedeagus samples from Vaygach Island
than with male genitalia samples from West and Central Siberia (Figure 4B). Reconstructed
aedeagus outlines of the left lateral aspect for the first axis showed that the aedeagus shape
for positive projections had a sharper bend for the median lobe and a more sloping obtuse-
angled bend near the base of the median lobe for negative projections (Figure 5B). For the
second axis, there was a thicker apical portion of the median lobe for positive projections
but a thinner apical portion of the median lobe for negative projections (Figure 5B). On the
scatterplot, the positions in the negative projections of the second axis gathered Northern
European populations, and the samples from West and Central Siberia were predominantly
placed in the positive projections (Figure 4B).
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The simple Mantel test supported a correlation between the genetic and geographical
distances (r = 0.301, p = 0.013, n = 16). The results of correlations between distance matrices
were different for the pronotum and aedeagus morphology of P. b. brevicornis (Table 5).

Table 5. Summary of simple (r) and partial (r′) Mantel tests for correspondence between morphologi-
cal distances (Shape) and genetic (Gen) or geographic distances (Geo).

Pronotum Aedeagus

r p r p

Simple Mantel Tests

Shape × Gen 0.089 0.287 0.199 0.288
Shape × Geo 0.218 0.147 0.600 0.033

Partial Mantel Tests

Shape × Gen (Geo) −0.147 0.789 0.332 0.091
Shape × Geo (Gen) 0.253 0.124 0.579 0.032
Geo × Gen (Shape) 0.347 0.006 0.332 0.093
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The pronotum shape-distance matrix was not significantly correlated with either
geographical or genetic distances. However, the correlation between geographical and
genetic distance when correcting for pronotum morphology was significant. For male
genitalia, the morphological and geographical distances were significantly correlated
(r = 0.600, p = 0.033, n = 10). However, there was no significant correlation between
morphological and genetic distance. The partial Mantel tests showed the same pattern
where genetic differentiation did not correspond with aedeagus morphology (Table 5).
Therefore, the male genitalia morphology of P. b. brevicornis among Eurasian populations
was more structured than the pronotum shape and mtDNA.

4. Discussion

For P. b. brevicornis, 23 unique COI haplotypes throughout the circumpolar
range and eight unique haplotypes of 28S rRNA in North Eurasia were detected
(Supplementary Materials Table S1). A higher number of COI haplotypes were detected
in North American samples (16 haplotypes) than in the Eurasian populations (11 haplo-
types). Among the studied COI dataset, a high proportion of unique haplotypes (up to
75%) and only three common haplotypes were revealed for both continents. The value
of mtDNA uncorrected pairwise divergence within a subspecies across the circumpolar
range was approximately 0.5%, and pairwise divergence 28S rRNA was approximately
0.8% for the North Eurasian part of the range. Although P. b. brevicornis had a broad
range in the Polar region with insular populations, the analysis of genetic structure did not
reveal divided subspecies lineages with strict geographical patterns. The phylogenetic tree
based on concatenated COI and 28S rRNA sequences and the network of mtDNA showed
subclades and haplotypes that combined sequences from different locations within the
Polar region. Despite subdivided population groups of P. b. brevicornis having a high per-
centage of unique COI haplotypes, both the tests of genetic structure and phylogeography
analysis detected higher genetic similarities among rather than within groups (11 mutation
steps between haplotypes of the mountain population of southern Alaska). However, the
mtDNA network, FST and uncorrected pairwise divergence analysis revealed an increase
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in genetic distances by longitude from Northeast Asia to North European populations.
The haplotype network configuration had new haplotypes that were derived from low
divergent haplotypes by one or two mutation steps that indicated a common population
history with relatively recent mutation events [55]. The COI haplotype (Hapl 10, 14.7% of
the studied sequences) with the highest frequency in tundra populations of Chukotka and
Wrangel Island was shared with Northern Europe (Yugorsky Peninsula), Siberia (Tazovsky
Peninsula and Taymyr Peninsula) and Alaska (Denali Borough, Toolik). The insular popula-
tions of P. b. brevicornis of the Arctic islands shared COI haplotypes with adjacent mainland
populations (Wrangel and Chukotka populations, Vaygach and Yugorsky Peninsula popu-
lations). Similar results were detected for other insect taxa with continuous ranges in the
Arctic, such as the tiger moth Arctia tundrana (Tshistjakov, 1990), which has low genetic
divergence among populations from Kolguev Island to Chukotka [56]. The bumblebee
Bombus pyrrhopygus Friese, 1902 from Novaya Zemlya, had a single COI haplotype with
populations from Norway and Kamchatka [57]. The Arctic bumblebee Bombus glacialis
Friese, 1902 from Wrangel shared three unique COI haplotypes and was closely related to
those inferred from samples from Novaya Zemlya [58]. The observed patterns indicated
complicated processes of colonization of insect faunas in the Arctic after the Last Glacial
Period (LGP) with postglacial invasions from dispersed southward populations and from
montane refugia [59].

Analysis of mtDNA haplotypes showed overall high genetic variability within the stud-
ied geographical populations of P. b. brevicornis: four to nine haplotypes and 0.42–0.77 gene
diversity. Lower genetic diversity was detected for the Northeastern (h < 0.5, π < 0.3%) and
European populations (h < 0.7, π < 0.3%) of P. b. brevicornis. Higher genetic diversity was
revealed for populations from West and Central Siberia, Alaska (h > 0.6, π > 0.6% for both),
and North Canada (h > 0.7, π < 0.6%), which were likely associated with the ecological
plasticity of these populations of P. b. brevicornis [60].

The pronotum and male genitalia morphologies of Northern Eurasian populations
of P. b. brevicornis did not correspond with patterns of mtDNA variation. Both morpho-
logical structures had significant shape differences between local populations in Northern
Eurasia, but only significant divergences were detected for the aedeagus shape between
subdivided geographical populations of Northern Europe and Siberia. Correspondence
between morphological distance and geographical distance was significant for the aedea-
gus but not associated for the pronotum. Genitalia are the fastest evolving characters in
insects and have phylogenetic implications for Pterostichus species [20]. For Ohomopterus
ground beetles, mechanical agents of reproductive isolation (body size and genital mor-
phology) provide fast species radiation without substantial ecological differentiation on
the Japanese Islands [61]. Additionally, research into the evolutionary history of genital
diversification and speciation by reconstructing phylogenetic relationships among three
pairs of parapatric species of Carabus (Ohomopterus) beetles demonstrated that species
diversification can follow the coevolution of genitalia between the sexes [62]. In this case,
the geographical structure of genitalia morphology would be established before the genetic
structure of a rapidly evolving neutral marker [46]. For P. b. brevicornis, the geographic
structure of male genitalia can indicate such a pattern. However, to test this hypothesis,
data samples from larger numbers of populations by circumpolar range were required.
For both genetic markers, sequence divergences between North European and Siberian
populations were not above any of the thresholds. Sexual dimorphism of the pronotum
shape was not found for North Eurasian populations. According to Ball [10], the pronotum
shape of P. b. brevicornis was divided into four classes by measures of side rounding (from
not strongly rounded to strongly rounded) and sinuate hind angles (from feebly sinuate
to markedly sinuate). The studied samples revealed pronotum shapes from the 1st to 4th
classes with a predominating position of the samples at the gradient centre. In a previ-
ous revision, it was mentioned that there were a majority of second and third classes of
pronotum shape within Northern Eurasia for specimens from Chukotka (Pitlekai Cape,
Uelen settlement (Whalen Island)), Central Siberia (Yenisey Basin), and Northern Europe
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(Vaygach Island and Novaya Zemlya) [10]. The result was close to previous conclusions of
Ball about the pattern of distribution of pronotum shape of P. b. brevicornis in Eurasia, and
the marked variability of this morphological marker was confirmed statistically. Therefore,
aedeagus shape was a stronger morphological structure for P. b. brevicornis taxonomy, and
pronotum shape can hardly be used as a marker for distinguishing P. brevicornis subspecies.

Previous research of one species or sister species populations of insects also confirmed
that morphological markers were not more structured than genetic patterns and did not
always correlate [44,46,63]. Analysis of sister mosquito species of the subgenus Culex
revealed wing shape differences between populations, but genetic markers (COI, NADH5,
CAD, Hunchback) did not corroborate the morphological variables [64]. A similar result
was detected for sister species in the butterfly genus Lycaeides (Hübner, 1819), where
strong habitat and male genitalia structure partitions were detected but not by using
mtDNA data [65]. The pronotum and aedeagus shape variabilities of the ground beetle
Carabus solieri (Deuve, 1994) among populations in the southern Alps of France and the
Ligurian Alps of Italy were less structured than genetic data (mtDNA), but the markers
were congruent [44]. In the scarab beetle Phyllophaga hirticula (Knoch, 1801) from the
eastern USA, female genitalia were more geographically structured than mtDNA and male
genitalia [46].

However, current research has shown the limitation of using DNA sequences for
species identification if species pairs have very recent origins or hybridize [66]. Such
patterns were shown for two pairs of closely related Pterostichus species: no signifi-
cant sequence divergence within three nuclear markers and mtDNA for P. nigrita and
P. rhaeticus were revealed [66], and similarly a lack of mitochondrial divergence between
P. oblongopunctatus and northern populations of P. adstrictus was detected [67]. In this case,
next-generation sequencing (NGS) methods were more informative [68], and the restriction
site-associated DNA sequencing method (RAD-seq) was more informative [62,68–71]. How-
ever, for the fly genus Chiastocheta (Pokorny, 1889), RAD-seq-based phylogenies showed
limitations for reconstructing interspecific relationships among recently diverged lineages
(less than 1.6 Mya) [71]. For the Holarctic subspecies complex of P. brevicornis with a rela-
tively recent history of populations in the Arctic after LGP within Northern Europe and
Western Siberia [59,72], nuclear sequence data is probably less informative in explaining
the observed patterns in morphology but may be more informative for Northeastern and
North American subspecies populations. Ball suggested more subspecies of P. brevicornis
within North America mainland but did not divide them due to high morphological vari-
ability within populations rather between them [10]. This again confirms the necessity of
an integrative approach in insect taxonomy and geometric morphometric analyses as a
useful tool in obtaining intraspecific phenotypic variability within taxa and especially for
taxonomic, phylogenetic, or ecological issues [73].

5. Conclusions

Pterostichus b. brevicornis is a polymorphic subspecies with high genetic variability
throughout the circumpolar range of North Eurasia and North America. The COI marker
had more variation within, rather than among, population groups in addition to the
morphology of the pronotum but not male genitalia.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/insects13020204/s1 Table S1: List of sequenced specimens of Pterostichus b. brevicornis and
Pterostichus nivalis, including the location wiht BOLD and NCBI’s GenBank accession numbers,
Table S2: Pterostichus brevicornis brevicornis 28S rRNA polymorphism*, Table S3: Sampling sites
and sample size: total number of pronotum (males and females) and male genitalia (aedeagus)
of Pterostichus b. brevicornis, Table S4: Contribution of significant principal components to shape
variation of pronotum and aedeagus of Pterostichus b. brevicornis, Figure S1: Phylogenetic tree
of Pterostichus brevicornis brevicornis recovered from Bayesian inference analysis based on the COI
sequence dataset. Haplotype codes are indicated in Table S1. The dashed rectangles corresponded to
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subclades of the majority-rule consensus phylogenetic tree (see Figure 2).Numbers near branches
indicate the Bayesian posterior probability (BPP).
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