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Abstract

Leber’s hereditary optic neuropathy (LHON) is a maternally inherited blinding disease due to mitochondrial DNA (mtDNA)
point mutations in complex I subunit genes, whose incomplete penetrance has been attributed to both genetic and
environmental factors. Indeed, the mtDNA background defined as haplogroup J is known to increase the penetrance of the
11778/ND4 and 14484/ND6 mutations. Recently it was also documented that the professional exposure to n-hexane might
act as an exogenous trigger for LHON. Therefore, we here investigate the effect of the n-hexane neurotoxic metabolite 2,5-
hexanedione (2,5-HD) on cell viability and mitochondrial function of different cell models (cybrids and fibroblasts) carrying
the LHON mutations on different mtDNA haplogroups. The viability of control and LHON cybrids and fibroblasts, whose
mtDNAs were completely sequenced, was assessed using the MTT assay. Mitochondrial ATP synthesis rate driven by
complex I substrates was determined with the luciferine/luciferase method. Incubation with 2,5-HD caused the maximal loss
of viability in control and LHON cells. The toxic effect of this compound was similar in control cells irrespective of the mtDNA
background. On the contrary, sensitivity to 2,5-HD induced cell death was greatly increased in LHON cells carrying the
11778/ND4 or the 14484/ND6 mutation on haplogroup J, whereas the 11778/ND4 mutation in association with haplogroups
U and H significantly improved cell survival. The 11778/ND4 mutation on haplogroup U was also more resistant to inhibition
of complex I dependent ATP synthesis by 2,5-HD. In conclusion, this study shows that mtDNA haplogroups modulate the
response of LHON cells to 2,5-HD. In particular, haplogroup J makes cells more sensitive to its toxic effect. This is the first
evidence that an mtDNA background plays a role by interacting with an environmental factor and that 2,5-HD may be a risk
element for visual loss in LHON. This proof of principle has broad implications for other neurodegenerative disorders such as
Parkinson’s disease.

Citation: Ghelli A, Porcelli AM, Zanna C, Vidoni S, Mattioli S, et al. (2009) The Background of Mitochondrial DNA Haplogroup J Increases the Sensitivity of Leber’s
Hereditary Optic Neuropathy Cells to 2,5-Hexanedione Toxicity. PLoS ONE 4(11): e7922. doi:10.1371/journal.pone.0007922

Editor: Paul Cobine, Auburn University, United States of America

Received July 10, 2009; Accepted October 28, 2009; Published November 19, 2009

Copyright: � 2009 Ghelli et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by Telethon grant GGP06233 (V.C). A.M.P and C.Z.were partially supported by Telethon funding (GGP06233). A.B. and S.M.
were partially supported by a project for the promotion of research and training activities in the field of occupational health and safety, funded by INAIL (Istituto
Nazionale per l’Assicurazione contro gli Infortuni sul Lavoro), ISPESL (Istituto Superiore Prevenzione e Sicurezza sul Lavoro), Regione Emilia-Romagna and the
University of Bologna. A.T. received support from Progetti Ricerca Interesse Nazionale 2007 (Italian Ministry of the University). The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: annamaria.ghelli@unibo.it

Introduction

Leber’s hereditary optic neuropathy (LHON) is a maternally

inherited blinding disease due to three most frequent mitochon-

drial DNA (mtDNA) point mutations (11778/ND4, 3460/ND1

and 14484/ND6), which affect complex I subunit genes [1]. In

most LHON pedigrees the causative mtDNA mutation is

homoplasmic (100% mtDNA copies are mutant) in all maternally

related individuals, but only a subset of them develops the optic

neuropathy, usually estimated as about 50% of the males and 10%

of females [2]. The incomplete penetrance is assumed to depend

on further genetic and/or environmental factors, which may play

a role in triggering the visual loss and optic atrophy [3].

Among the genetic factors, there is now a solidly established

evidence that a Western Eurasian mtDNA background, known as

haplogroup J, plays a modifying role increasing the pathogenic

potential and hence the penetrance of the 11778/ND4 and

14484/ND6 LHON mutations [4,5]. The modifying effect of

haplogroup J is thought to be due to specific arrays of complex I

and III non-synonymous polymorphisms characterizing sub-

haplogroup J1 for the 14484/ND6 mutation and sublineages J1c

and J2b for the 11778/ND4 mutation [4]. The functional

alteration underlying this modifying effect has not been clearly

elucidated, but based on accumulation of non-synonymous

variants in complexes I and III, instability of supercomplexes has

been originally hypothesized [4,6]. However, recent studies

indicated an alternative mechanism to explain the association of

haplogroup J variants and LHON penetrance [7]. Furthermore,

there is experimental evidence that different mtDNA haplogroups

may maintain similar efficiencies of the respiratory function [8],

thanks to different settings of reactive oxygen species (ROS)

production and control of mitochondrial biogenesis [9]. Tran-
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scription and replication of mtDNA have also been proposed to be

influenced by specific variants in the D-loop region, again

involving haplogroup J [10]. The mtDNA background effect

seems to be only one of the possible modifying genetic factors, in

fact recent linkage analysis data suggest that one or more genes on

chromosome X may also affect LHON penetrance, possibly

explaining the male prevalence as well [11,12].

Environmental factors may also modulate LHON penetrance.

Until recently, most of the data presented in literature are still

scattered anecdotal reports. Tobacco smoking and alcohol

consumption have been proposed as possible triggers for LHON

[13–15], particularly because their combination has been

associated with a form of optic neuropathy, i.e. tobacco-alcohol

amblyopia [16], which in some cases was shown to be

misdiagnosed LHON [17]. However, a recent epidemiologic

study of a large cohort of LHON families reached a well-supported

conclusion that tobacco smoking is indeed a triggering factor [18].

In a similar manner, exposures to agricultural pesticides, smoke,

toxic vapours from industrial solvents have been variously

mentioned as possible environmental triggers for LHON

[15,19]. Recently, we also documented one case, a subject

carrying the 11778/ND4 mutation [20], for whom the combined

exposure to n-hexane and other solvents apparently acted as the

trigger for the optic neuropathy.

The association between occupational exposure to solvents and

neurological complications involving the retina and the optic nerve

is well established [21,22]. In a cross-sectional study on 15 workers

exposed to n-hexane, 11 showed macular changes and 1 had

central retinopathy [23]. Glue sniffers may also suffer optic

neuropathy and/or hearing loss [24–26]. Exposure to (or sniffing

of) toluene has been implicated in acute disturbances of color

vision and retinal and optic nerve degeneration [27,28].

Moreover, animal models of n-hexane exposure identified 2,5-

hexanedione (2,5-HD) as a neurotoxic n-hexane metabolite [29],

inducing deterioration in visual function [30]. Studies on n-hexane

toxicity showed uncoupling of mitochondrial respiration [31].

Furthermore, co-exposure and possible interactions between

solvents and/or their metabolites may synergize the potential

neurotoxicity accumulating in different tissues [32,33].

In the present study we have investigated the toxic effect of 2,5-

HD in cybrids and fibroblasts bearing LHON mutations and

evaluated the involvement of complex I. We also assessed whether

toluene further increases the 2,5-HD toxicity. Our results were

evaluated in relation to the sequence variation and the haplogroup

affiliation of the mtDNA on which the LHON pathogenic

mutation was present.

Results

Genetic Characterization of the Cells
We employed the well established cell model for mtDNA

functional studies called cybrids (transmitochondrial cytoplasmic

hybrids), which has the advantage to maintain a constant nuclear

background and use different mtDNAs [34]. However, nuclear

genome variation may also have specific interactions with the

mtDNA, thus primary cell lines derived from LHON patients,

such as fibroblasts, containing both the original nuclear and

mitochondrial genomes were also used.

Control and LHON cybrids are the same already characterized

in previous investigations, with all LHON cybrids being homo-

plasmic mutant for one of the three primary mutations [7,8,35–38].

For some of the cybrid clones the complete mtDNA sequence was

already available [7], but for the others has been determined in the

current study (Table 1).

The LHON fibroblasts were also homoplasmic mutant for one

of the three primary mutations. The complete mtDNA sequence

was also determined for both control and LHON fibroblasts

(Table 1). For each LHON and control cell line (cybrids and

fibroblasts), the haplogroup affiliation and the full list of non-

synonymous mtDNA mutations are listed in Table 1.

Viability Experiments with 2,5-HD in Cybrids
The 2,5-HD toxicity was analyzed by determining the dose-

response relationship in control (Figure 1A) and LHON cybrids

(Figure 1B). The loss of viability induced by 24 hours incubation

with different concentrations of 2,5-HD was independent of the

mtDNA background in control cybrids (Figure 1A). On the

contrary, LHON cybrids showed a mtDNA haplogroup depen-

dent behaviour (Figure 1B). The LHON cybrid clone carrying the

11778/ND4 mutation on haplogroup U was the most resistant to

the toxic effect of 2,5-HD (70% of cells still viable with 12 mg/ml),

whereas the LHON cybrid clones on haplogroup J1 were the most

sensitive (only 15% of cells viable). In particular, the LHON cybrid

clones carrying the 14484/ND6 mutation on haplogroup J1 (J1c

and J1b) were as sensitive to 2,5-HD as the one carrying the

11778/ND4 mutation on a similar background (J1c). LHON

cybrid clones bearing the 3460/ND1 mutation on haplogroups T

and H were similar to controls. The time-dependent changes of

viability in control and LHON cybrids, preincubated with 12 mg/

ml of 2,5-HD reported in figures 1C and 1D, showed a similar

behaviour. Figure 1E summarizes the percentages of viable cells

after 24 hours incubation with 12 mg/ml of 2,5-HD, showing that

the 11778/ND4 and 14484/ND6 LHON mutations in combina-

tion with haplogroup J1 were significantly more sensitive to the

toxic effect relative to controls. On the contrary, the cybrid clone

harbouring the 11778/ND4 mutation on haplogroup U was

significantly associated with a marked resistance to 2,5-HD

toxicity.

ATP Synthesis Rate in Cybrids Treated with 2,5-HD
We preliminarily attempted to measure the complex I activity in

cybrids to test if the toxic effect of 2,5-HD was mainly mediated

through this pathway, which is impaired by the LHON mutations.

However, we verified a low reproducibility of this assay, in

particular of the titration of 2,5-HD on complex I activity.

Alternatively, we decided to assess the ATP synthesis driven by

substrates of both complex I (pyruvate and malate) and complex II

(succinate) to investigate if and how the 2,5-HD toxic effect was

mediated by inhibition of the mitochondrial respiratory chain.

This analysis was restricted to the LHON cybrid clones that were

significantly different from controls in the viability assay as

reported in figure 1E.

Figures 2A and B show the 2,5-HD dose–response of ATP

synthesis driven by complex I and II substrates after addition of

2,5-HD to digitonized cybrids. 2,5-HD inhibited the rate of ATP

synthesis mediated by both the respiratory complexes, although its

effect was more relevant for complex I. In particular Figure 2A

illustrates that the inhibitory effect of 2,5-HD was maximal at the

concentration of 10 mg/ml for all cybrid clones, except for that

bearing the 11778/ND4 mutation on haplogroup U. The results

obtained at 10 mg/ml 2,5-HD are summarized in figures 2C and

D. The statistical analysis reveals that the ATP synthesis through

complex I in cybrids with the 11778/ND4 mutation on

haplogroup U only was significantly less sensitive to 2,5-HD

(Figure 2C). The same analysis carried out for complex II substrate

showed a similar inhibition of ATP synthesis in all cybrid clones

(Figure 2D), indicating that complex I might be seems specifically

affected by 2,5-HD.

mtDNA and 2,5-Hexanedione
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Table 1. Haplogroup affiliation and non-synonymous nucleotide changes of mtDNAs from LHON and control cybrid and fibroblast
cell lines used in this study.

Cell lines GenBank ID LHON mutation Haplogroup Non-synonymous polymorphisms relative to CRSa Amino acid change

Cybrids

HGA GQ304740 Control J1c T4216C (ND1) Tyr.His

A10398G (ND3) Thr.Ala

A13681G (ND5) Thr.Ala

G13708A (ND5) Ala.Thr

C14766T (CYTB) Thr.Ile

T14798C (CYTB) Phe.Leu

C15452A (CYTB) Leu.Ile

HPC EU915472 [7] Control H5 A7245G (COI) Thr.Ala

HPS GQ304741 Control T2 T4216C (ND1) Tyr.His

A4917G (ND2) Asn.Asp

C10750T (ND4L) Asn.Ser

C14766T (CYTB) Ile.Thr

C15452A (CYTB) Leu.Ile

HPE EU915476 [7] G11778A (ND4) J1c T4216C (ND1) Tyr.His

A10398G (ND3) Thr.Ala

T12083G (ND4) Ser.Ala

G13708A (ND5) Ala.Thr

C14766T (CYTB) Thr.Ile

T14798C (CYTB) Phe.Leu

C15452A (CYTB) Leu.Ile

HFF EU915477 [7] G11778A (ND4) U5a1 G9477A (COIII) Val.Ile

A9667G (COIII) Asn.Ser

C14766T (CYTB) Thr.Ile

A14793G (CYTB) His.Arg

RJ206 GQ304742 G3460A (ND1) T1a T4216C (ND1) Tyr.His

A4917G (ND2) Asn.Asp

C14766T (CYTB) Thr.Ile

C15452A (CYTB) Leu.Ile

HMM12 EU915475 [7] G3460A (ND1) H12 A14552G (ND6) Val.Ala

HL180 EU915479 [7] T14484C (ND6) J1c T4216C (ND1) Tyr.His

T7042C (COI) Val.Ala

A10398G (ND3) Thr.Ala

G13708A (ND5) Ala.Thr

G14279A (ND6) Ser.Leu

C14766T (CYTB) Thr.Ile

T14798C (CYTB) Phe.Leu

C15452A (CYTB) Leu.Ile

HBA2 EU915478 [7] T14484C (ND6) J1b T4216C (ND1) Tyr.His

G5460A (ND2) Ala.Thr

G8557A (ATP6) Ala.Thr

A10398G (ND3) Thr.Ala

G13708A/(ND5) Ala.Thr

T13879C/(ND5) Ser.Pro

C14766T (CYTB) Thr.Ile

C15452A (CYTB) Leu.Ile

Fibroblasts

C88/F03W GQ304743 Control J1c T4216C (ND1) Tyr.His

A10398G (ND3) Thr.Ala

mtDNA and 2,5-Hexanedione
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Viability Experiments with 2,5-HD in Fibroblasts
The cybrid cell model allows studying the effect of mtDNA

mutations in the context of the same nuclear background [34].

However, it has been reported that the cybridization process

causes a substantial cellular stress and that genetic instability could

produce variability in gene expression [39]. Furthermore, specific

variability in the interaction of nuclear and mitochondrial

genomes has been also reported and the coevolution of the two

genomes debated [40,41]. We therefore decided to test the effect

of 2,5-HD also in a set of control and LHON fibroblasts stratifying

again the results according to the haplogroup affiliation of their

mtDNAs.

Figure 3A shows that 24 hours incubation with different

concentrations of 2,5-HD reduced the viability of control

fibroblasts independently from the mtDNA background. On the

contrary, LHON fibroblasts carrying the 11778/ND4 mutation

on haplogroup H were the most resistant to the toxic effect of 2,5-

HD (at 12 mg/ml approximately 70% of cells still viable), whereas

the LHON fibroblasts on haplogroup J1 were the most sensitive

(Figure 3B). The behaviour of fibroblasts with the 14484/ND6

mutation bearing haplogroup V and with the 3460/ND1 mutation

on haplogroup U was similar to controls. The time-dependent

changes of viability in control and LHON fibroblasts treated with

12 mg/ml of 2,5-HD (figure 3C and 3D) reveals that, consistently

with the other experiments, the 11778/ND4 and 14484/ND6

mutations associated with haplogroup J1 were the most sensitive.

Furthermore, the 11778/ND4 mutation with haplogroup H and

the 14484/ND6 with haplogroup V were similarly resistant up to

16 hours incubation, whereas at 24 hours the viability of this latter

cell line decreased to values similar to controls. Figure 3E

Cell lines GenBank ID LHON mutation Haplogroup Non-synonymous polymorphisms relative to CRSa Amino acid change

G13708A (ND5) Ala.Thr

C13934T (ND5) Thr.Met

C14766T (CYTB) Thr.Ile

T14798C (CYTB) Phe.Leu

C15452A (CYTB) Leu.Ile

KM/F08W GQ304744 Control T2b T4216C (ND1) Tyr.His

A4917G (ND2) Asn.Asp

G9948A (COIII) Val.Ile

T14766T (CYTB) Thr.Ile

C15452A (CYTB) Leu.Ile

VS/F07W GQ304745 Control H* none

FJ/F08L GQ304746 G11778A (ND4) J1c T4216C (ND1) Tyr.His

G9145A (ATP6) Ala.Thr

A10398G (ND3) Thr.Ala

G13708A (ND5) Ala.Thr

A13933G (ND5) Thr.Ala

C14766T (CYTB) Thr.Ile

T14798C (CYTB) Phe.Leu

C15452A (CYTB) Leu.Ile

RA/F07L GQ304747 G11778A (ND4) H* A7904G (COII) Thr.Ala

G14249A (ND6) Ala.Val

CC/F09L EF060364 [44] G3460A (ND1) U4a C14766T (CYTB) Thr.Ile

T15693C (CYTB) Met.Thr

G15773A (CYTB) Val.Met

WR/F30L GQ304748 T14484C (ND6) V none

HL/F29L b EU915479 [7] T14484C (ND6) J1c T4216C (ND1) Tyr.His

T7042C (COI) Val.Ala

A10398G (ND3) Thr.Ala

G13708A (ND5) Ala.Thr

G14279A (ND6) Ser.Leu

C14766T (CYTB) Thr.Ile

T14798C (CYTB) Phe.Leu

C15452A (CYTB) Leu.Ile

arCRS refers to the revised Cambridge reference sequence [58]. In addition, all mtDNAs differed from rCRS, which belongs to haplogroup H2a, for A8860G (ATP6) and
A15326G (CYTB).

bThis fibroblast cell line is from the same patient and harbours the same mtDNA as cybrid HL180.
doi:10.1371/journal.pone.0007922.t001

Table 1. Cont.

mtDNA and 2,5-Hexanedione
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summarizes the results obtained after 24 hours of incubation with

12 mg/ml of 2,5-HD, showing that a similar decrease in viable

cells (about 50%) was observed in control fibroblasts with

haplogroups J1, T, and H. Conversely, LHON fibroblasts carrying

the 11778/ND4 or 14484/ND6 mutations in association with

haplogroup J1 were again significantly more sensitive to the toxic

effect of 2,5-HD. Interestingly, LHON fibroblasts with the 11778/

ND4 mutation on a haplogroup H background were markedly

more resistant to the toxicity of this compound, whereas no

differences were observed with the other mutation/haplogroup

combinations relative to controls.

Viability Experiments with Combined 2,5-HD and Toluene
We further evaluated whether cells were differently affected by

the simultaneous incubation with 2,5-HD and toluene, based on our

previous report on a LHON patient who developed the disease after

exposure to a combination of different organic solvents [20]. To this

end a preliminary experiment was carried out by the head-space/

Figure 1. Effect of 2,5-HD on viability of control and LHON cybrids with mtDNAs belonging to different haplogroups. Dose-responses
of viability of control (A) and LHON (B) cybrids, with the respective mtDNA haplogroups, incubated for 24 hours in DMEM containing the indicated
amounts of 2,5-HD. Time-courses of viability of control (C) and LHON (D) cybrids incubated with 12 mg/ml 2,5-HD. (E) Statistical analysis of the same
data obtained in control and LHON cybrids, incubated for 24 hours with 12 mg/ml 2,5-HD. Cell viability was determined and statistically analyzed as
described in the Methods section. Data are means6SD of at least 3 determinations. *denotes significantly different values (p,0.05) determined by
One Way ANOVA followed by the Holm-Sidak method.
doi:10.1371/journal.pone.0007922.g001

mtDNA and 2,5-Hexanedione
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SPME/GC-MS method to determine the greatest concentration of

toluene soluble in DMEM, with and without 2,5-HD. We

established that the maximum concentration of toluene soluble in

DMEM was 0.5 mg/ml, which increased to 0.6 mg/ml in the

presence of 2,5-HD (data not shown). Cell viability was than

evaluated after 24 hours incubation with both 2,5-HD (12 mg/ml)

and toluene (0.6 mg/ml). Figure 4A shows that the final mixture

caused a marked decrease of viability in all cybrids, except in those

bearing the 11778/ND4 or 14484/ND6 mutations with hap-

logroup J1c. For the control cybrid clone with haplogroup H and

the LHON 3460/ND1 cybrid clone on haplogroup T, only a non-

significant tendency was observed for the additive effect of toluene.

A similar additive effect was also observed in fibroblasts (Figure 4B),

except for the 3460/ND1 mutation on haplogroup U and again the

11778/ND4 or 14484/ND6 mutations with haplogroup J1c. It is

worth noting that exposure to toluene alone had no effect on cell

viability (data not shown).

Discussion

The current study shows that mtDNA genetic variation, defined

in terms of haplogroups, and environmental factors may interact

becoming relevant to the pathogenesis of a human disease. The

proof of principle of this interaction has broad implications on

disease predisposition. In the specific case we applied the paradigm

of a mitochondrial disorder dependent on mtDNA point mutations,

for which there was an established evidence that certain mtDNA

backgrounds play a role to modulate penetrance [4,5]. Our results

have a two-fold relevance for LHON patients. First, 2,5-HD has a

detrimental effect on cell viability. Second, the sensitivity to this

toxicant of cells carrying the 11778/ND4 and 14484/ND6 LHON

pathogenic mutations is modified by the mtDNA background, being

haplogroup J1 the most sensitive. Haplogroup J is also the same

mtDNA background previously associated with an increased

penetrance for these LHON mutations [4,5].

By studying cells under the assumption of a constant nuclear

background, in which different mtDNAs were introduced, we

observed that haplogroup J1 was the most sensitive to the toxicant,

when the LHON pathogenic mutations 11778/ND4 or 14484/

ND6 were present. Only the combination of these LHON

pathogenic mutations with haplogroup J1 background increased

the sensitivity to 2,5-HD, as shown by the direct comparison with

control cybrids carrying haplogroup J1 mtDNA without the LHON

mutations. Moreover, we observed that the single cybrid clone

carrying the 11778/ND4 mutation on haplogroup U behaved as

the most resistant to the toxicant effects. Unfortunately, we could

not mirror our results on haplogroup J1 for the LHON cell line

carrying haplogroup U, not having available a control cybrid cell

line with a haplogroup U mtDNA for direct comparison.

Figure 2. Effect of 2,5-HD on ATP synthesis of control and LHON cybrids with mtDNAs belonging to different haplogroups. Dose-
responses of ATP synthesis rate driven by complex I substrates (A) and complex II substrate (B) in digitonin-permeabilized cybrids after addition of the
indicated amounts of 2,5-HD. Data are expressed as percentage of the values obtained in untreated samples. Statistical analysis of the same data of
ATP synthesis rate obtained in control and LHON cybrids incubated with 10 mg/ml 2,5-HD in the presence of complex I substrates (C) or complex II
substrate (D). Data are means6SD of at least 3 determinations. *denotes significantly different values (p,0.05), determined by One Way ANOVA
followed by the Holm-Sidak method.
doi:10.1371/journal.pone.0007922.g002

mtDNA and 2,5-Hexanedione
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By direct assessment of the ATP synthesis rate, we also

demonstrated that the neurotoxin 2,5-HD inhibited the oxidative

phosphorylation. Previous studies documented a direct effect of

the n-hexane metabolite 2,5-HD at the mitochondrial level. In

fact, inhibition of state 3 respiration was reported after 2,5-HD

addition to isolated brain mitochondria and also after chronic

treatment of rats [42]. Furthermore, 2,5-HD was shown to induce

apoptotic death in spermatogenic cells through a mitochondrial

pathway, involving loss of mitochondrial membrane potential

[43]. We report here that the 2,5-HD effect was more relevant in

the presence of the complex I substrates, having observed that the

LHON cybrid cell line carrying haplogroup U was still the most

resistant, whereas no difference between cybrid cell lines was

observed with the complex II substrate succinate. One conclusion

that we can draw from this first round of experiments is that only

the co-presence of the mtDNA pathogenic mutation for LHON

Figure 3. Effect of 2,5-HD on viability of control and LHON fibroblasts with mtDNAs belonging to different haplogroups. Dose-
responses of viability of control (A) and LHON (B) fibroblasts, with the respective mtDNA haplogroups, incubated for 24 hours in DMEM containing
the indicated amounts of 2,5-HD. Time-courses of viability of control (C) and LHON (D) fibroblasts incubated with 12 mg/ml 2,5-HD. (E) Statistical
analysis of the same data obtained in control and LHON fibroblasts, incubated for 24 hours with 12 mg/ml 2,5-HD. Cell viability was determined and
statistically analyzed as described in the Methods section. Data are means6SD of 3 determinations. *denotes significantly different values (p,0.05),
determined by One Way ANOVA followed by the Holm-Sidak method.
doi:10.1371/journal.pone.0007922.g003

mtDNA and 2,5-Hexanedione

PLoS ONE | www.plosone.org 7 November 2009 | Volume 4 | Issue 11 | e7922



with different mtDNA haplogroups leads to the emergence of their

modifying role. In other words, the co-occurrence of the primary

LHON mutations 11778/ND4 and 14484/ND6 with the

haplogroup J1 background further enhances cybrid sensitivity to

the neurotoxin 2,5-HD.

To confirm these results on the cybrid cell system, we run the

same experiments on fibroblasts obtained from controls and

LHON patients. Despite the variable nuclear background, we

observed the same specific hypersensitivity to 2,5-HD toxicity

with the LHON/haplogroup J1 fibroblasts (11778/ND4 and

14484/ND6 mutations). It is worthy of note that in this case the

direct comparison of two LHON cases carrying both the 14484/

ND6 mutation, one on haplogroup V and one on haplogroup J1,

showed that only the combination 14484/J is hypersensitive to the

toxicant. It is of further note that the fibroblasts with the 11778/

ND4 mutation on haplogroup H mtDNA showed high resistance

to the toxic effect of 2,5-HD. The fact that two unrelated cases

with the 11778/ND4 mutation (the cybrid with a haplogroup U

mtDNA and the fibroblasts with a haplogroup H mtDNA) were

both hyper-resistant to the toxicant prompts the speculation that

the 11778/ND4 mutation itself confers this resistance, whereas its

combination with haplogroup J1 confers hyper-sensitivity.

Further support to this hypothesis derives by the direct

comparison of the LHON fibroblasts carrying the 11778/ND4

mutation on a haplogroup H mtDNA with the companion control

fibroblasts with a mtDNA belonging to the same haplogroup, the

latter failing to show any resistance to 2,5-HD toxicity. On the

other hand also the 3460/ND1 mutation on haplogroups H

(cybrids) and U (fibroblasts) did not show differences in 2,5-

HD sensitivity relative to controls, thus supporting our hypoth-

esis of a direct role for the 11778/ND4 mutation in 2,5-HD

resistance.

The functional consequences of the non-synonymous variants

clustered on haplogroup J, involving both complex I ND subunit

genes and cytochrome b (cyt b), the only mtDNA-encoded subunit of

complex III, remain poorly understood. Haplogroups J and T

share a common root characterized by the 4216/ND1 and 15452/

cyt b ancient polymorphisms [4,44]. Haplogroups J and T then

diverged by acquiring the 13708/ND5+10398/ND3 and the

4917/ND2 polymorphisms, respectively [4,44]. Therefore, the

13708/ND5 as well as the 10398/ND3 variants are still ancient

root mutations, predating the divergence of haplogroup J into

subclades. Some of these clades, J1c and J2b in particular, which

have accumulated additional and more recent non-synonymous

nucleotide changes (14798/cyt b for J1c and 15257/cyt b+15812/cy

tb for J2b), have been associated with an increased penetrance of

the 11778/ND4 and 14484/ND6 mutations [4,5,7]. The specific

role played by all these different ND+cyt b variants clustered in J1c

and J2b subclades of haplogroup J needs to be properly

investigated [4,7]. However, there is also a deeper level of

molecular complexity that needs to be considered. This is

constituted by other non-synonymous changes, often defined as

‘‘private’’ or ‘‘almost private’’ mutations, which because of their

very low population frequencies are not (yet) reported in any of the

currently available databases for mtDNA variation, and for which

a functional role in some cases is not unlikely. The sequencing of

the entire mitochondrial genome allowed us to identify all non-

synonymous changes in our cell lines (Table 1). We found out, for

instance, that the HL/F29L fibroblasts and the relate cybrid

HL180 carry the 7042T.C/COI and the 14279G.A/ND6

mutations together with the 14484/ND6 canonical LHON

mutation [7]. Similarly the 9145G.A/ATP6 non-synonymous

change is present in the FJ/F08L fibroblasts and the combination

of 7904A.G/COII+14249G.A/ND6 changes characterizes the

RA/F07L fibroblasts. At the moment, it is not possible to predict

the effect, if any, for these non-synonymous variants, especially

taking into account that their specific effects could be modulated

by the mtDNA background. However, one noticeable feature that

is evident from Table 1 is that all cells carrying a haplogroup J

mtDNA harbor an extensive accumulation of non-synonymous

variants. This finding may explain the special behaviour of

haplogroup J in modulating the 2,5-HD toxicity, as shown by the

current study, and in influencing LHON penetrance as previously

reported [4,5].

In both cell systems, cybrids and fibroblasts, we also tested the

combined effect of two toxicants, adding toluene to 2,5-HD, as we

recently documented that humans may suffer exposure to a

mixture of solvents [20]. In this case the synergic action of the two

toxicants was demonstrated in most cell lines (cybrids and

fibroblasts), but doing so we minimized most of the differences

due to the mtDNA background. In particular, it must be noticed

that all the LHON cell lines on the haplogroup J1c were already

Figure 4. Viability of control and LHON cells after incubation
with 2,5-HD and toluene. Cybrids (A) and fibroblasts (B) were
incubated for 24 hours in DMEM containing 12 mg/ml 2,5-HD alone or
in the presence of 5 mg/ml toluene. Cell viability was determined as
described in figure 1. Data are means6SD of 5 determinations.
*denotes significantly different values (p,0.05) between cells treated
with 2,5-HD alone or in the presence of toluene, using the Student’s t
test.
doi:10.1371/journal.pone.0007922.g004
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hypersensitive to 2,5-HD, and the addition of toluene did not

change their viability, whereas all control cells with haplogroup

J1c did show a further, significant depression of their viability. By

experimenting different conditions, we have noted that the

interaction of toluene with 2,5-HD was essentially based on the

fact that 2,5-HD increases the solubility of toluene in the medium

compared to the addition of toluene alone. The synergic effect of

the co-exposure to both toxicants becomes particularly relevant

when we consider those cells carrying the 11778/ND4 mutation

on haplogroups U or H, which were resistant to 2,5-HD alone, but

decreased their viability as those with haplogroup J1c after adding

toluene (Figure 4). This applies directly to the LHON patient we

previously reported, which carried the 11778/ND4 mutation on a

haplogroup H and was exposed at least to both n-hexane and

toluene [20].

The results of the present in vitro study, which was designed only

for a ‘‘proof of principle’’ demonstration, not necessarily can be

directly translated into the effects of real-life exposure to 2,5-HD in

human subjects genetically predisposed to LHON (or to other

mitochondrial diseases). The absence of an animal model for

LHON greatly limits more extensive investigations. However, it

should be noticed that the concentrations of 2,5-HD used in the

present study were much higher than would be encountered in

real-world situations, such as those where occupational exposure

to n-hexane metabolite (of which the 2,5-HD is the toxic

metabolite) can lead to neuropathy [45]. However, it is also

unknown how these toxicants may be absorbed, transported and

accumulated both in cultured cells(cybrids and fibroblasts) or in vivo

tissues and in particular, the concentrations achieved in mito-

chondria of retinal ganglion cells in the retina. Moreover, the limit

values proposed for the occupational oxposure to n-hexane are

calculated on the basis of is capability to produce, through 2,5-

HD, axonal damages but nothing is known about the exposure

level can lead to death of fibroblasts or other cells.

The proof of principle provided by the present study,

demonstrating that mtDNA haplogroups may interact with

environmental factors, has broad implications. For example,

exposure to environmental factors, either toxic as tobacco smoke

or the complex I inhibitor rotenone widely used as pesticide, or

even just variations in diet, have all been variously implicated in

predisposition to cancer or late onset neurodegenerative diseases

such as Parkinson (PD) and Alzheimer (AD) diseases [46]. In the

case of PD there are multiple analogies with LHON. For PD there

is converging evidence that defective complex I underlies part of

the pathogenic mechanism. In fact, it has been experimentally

shown that 1-methyl 4-phenyl 1,2,3,6-tetrahydropyridine (MPTP)

and rotenone exposure, both complex I inhibitors, may induce a

disorder closely mimicking PD in humans and animals [47–50].

Based on this evidence, it has been proposed that the wide use of

rotenone as pesticide and its environmental presence may underlie

a subset of the sporadic PD cases in the US [50]. Furthermore,

certain single nucleotide polymorphisms or a haplogroup have

been suggested to play a modifying role [51,52]. These

considerations put Parkinson disease on the spot for being another

candidate disease to investigate the possible interaction of

environmental exposure to toxics and mtDNA haplogroups in

modulating protection or predisposition to develop the disease.

Similar scenarios may be envisaged for mtDNA haplogroup/diet

interactions in high impact diseases such as hypertension, obesity,

diabetes and cancer [53]. Careful evaluations performed by

combining large scale epidemiological investigation with in vitro cell

studies may prove a powerful tool to highlight specific genetic/

environmental interactions relevant for the pathogenic or

protective mechanisms in these very frequent disorders.

Materials and Methods

Materials
3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide

(MTT), oligomycin, rotenone, pyruvate, malate, succinate, ATP

monitoring kit, toluene and 2,5HD were purchased from Sigma-

Aldrich (Milan, Italy).

Sequence Variation of mtDNAs and Haplogroup
Affiliation

The three LHON mtDNA pathogenic mutations (11778/ND4,

3460/ND1 and 14484/ND6) were screened in LHON cybrids

and fibroblasts by standard PCR amplification of convenient

mtDNA fragments followed by digestion with appropriate

restriction enzymes [44].

The mtDNA sequence variation and haplogroup affiliation of

cybrids and fibroblasts, except those already characterized [7,54],

was determined by sequencing their entire mitochondrial genome

as previously reported [4].

Cells and Culture Condition
Transmitochondrial cytoplasmic hybrids (cybrids) were gener-

ated as previously reported from control donor and LHON

fibroblasts [34]. Cybrids were grown in Dulbecco’s modified

Eagle’s medium (DMEM) supplemented with 10% fetal calf serum

(South America source from Gibco, Invitrogen, Italy), 2 mM L-

glutamine, 100 U/ml penicillin, 100 mg/ml streptomycin and

0.1 mg/ml bromodeoxyuridine, in an incubator with a humidified

atmosphere of 5% CO2 at 37uC. Skin fibroblasts were derived,

following informed consent, from three healthy donors and six

LHON patients from unrelated families bearing the 11778/ND4,

3460/ND1 and 14484/ND6 mutations. Fibroblasts were grown in

DMEM supplemented with 10% fetal bovine serum, 2 mM L-

glutamine and antibiotics. For the experiments, 46104 cells were

seeded in 24-well dishes and incubated for 24 hours with 2,5-HD

alone, or after toluene addition.

Cell Viability Measurement
The percentage of viable cells was measured with the

colorimetric 3-(4,5-dimethyl thiazol-2yl)-2,5-diphenyl tetrazolium

bromide (MTT) assay, as previously described [35]. Briefly, after

24 hours incubation with different amount of 2,5-HD, 0.5 mg/ml

MTT was added to the medium and after 3 hours, 5% SDS and

5 mM HCl were added to solubilize the formazan salt crystals.

Absorbance was measured using a VICTOR3 Multilabel Plate

Counter (PerkinElmer Life and Analytical Sciences, Zaventem

Belgium) with a 570 nm filter.

ATP Synthesis Assay and Inhibition by 2,5-HD
The assay of mitochondrial ATP synthesis was performed

according to Manfredi et al. [55], with minor modifications.

Briefly, after trypsinization, cells (106106/ml) were resuspended in

buffer A (10 mM KCl, 25 mM Tris-HCl, 2 mM EDTA, 0.1%

BSA, 10 mM potassium-phosphate, 0.1 mM MgCl2, pH 7.4), kept

for 15 min at room temperature, and then incubated with 50 mg/

ml digitonin for 1 min. After centrifugation, the cell pellet was

resuspended in buffer A and aliquots were taken to measure ATP

synthesis, protein content [56] and citrate synthase activity [57].

Aliquots of cells (0.1–0.2 mg protein) were incubated with 5 mM

malate plus 5 mM glutamate (complex I substrates) or with

10 mM succinate plus 2 mg/ml rotenone (complex II substrate) in

the presence or absence of 10 mg/ml 2,5-HD. The reaction was

started by addition of 0.2 mM ADP in the presence of luciferine/

mtDNA and 2,5-Hexanedione
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luciferase, as detailed by the manufacturer’s instructions, and

chemiluminescence was determined as a function of time with a

luminometer. After addition of 10 mM oligomycin, the chemilu-

minescence signal was calibrated with an internal ATP standard.

The residual activity of ATP synthesis after addition of 2,5-HD

was expressed as percentage of the activity of untreated cells.

Statistical Analysis
Data, expressed as means of at least three determinations6SD,

were analyzed using One Way ANOVA followed by the Holm-

Sidak method. Values for each LHON cybrid cell line were

analysed versus grouped values of all control cybrids using the

Student’s t test. P values,0.05 were considered significant.
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