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Summary

Anatomical tracing studies in non-human primates have suggested that corticostriatal connectivity 

is topographically organized: nearby locations in striatum are connected with nearby locations in 

cortex. The topographic organization of corticostriatal connectivity is thought to underpin many 

goal-directed behaviours, but these topographies have not been completely characterised in 

humans and their relationship to uniquely human behaviours remains to be fully determined. 

Instead, the dominant approach employs parcellations that cannot model the continuous nature of 

the topography, nor accommodate overlapping cortical projections in the striatum. Here, we 

employ a different approach to studying human corticostriatal circuitry: we estimate smoothly-

varying and spatially overlapping ‘connection topographies’ from resting state fMRI. These 

correspond exceptionally well with and extend the topographies predicted from primate tracing 

studies. We show that striatal topography is preserved in regions not previously known to have 

topographic connections with the striatum and that many goal-directed behaviours can be mapped 

precisely onto individual variations in the spatial layout of striatal connectivity.
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A large body of work in experimental animals has shown that corticostriatal connectivity 

mediates a wide repertoire of goal-directed behaviors.1–10 This repertoire extends beyond 

the classical role of the striatum in planning and executing motor behaviour 4 and includes 

many other domains including reward processing,5,6 executive function,7 emotion8 and 

decision making. 7,9 This has contributed to an emerging view of the striatum as a crucial 

locus for functional integration 10,11 and as a key region implicated in many brain disorders 

including Parkinson’s disease, obsessive compulsive disorder, attention-deficit hyperactivity 

disorder and schizophrenia.12–14

The striatum has extensive connections with virtually the entire cerebral cortex15 and an 

early influential theory of corticostriatal circuitry suggested that the multiple behaviours it 

subserves can cleanly be segregated into parallel segregated circuits.3 However, anatomical 

tracing studies in non-human primates have suggested that this view is too simplistic.

1,2,4,10,16 These studies involve injecting anatomical tracers into predefined regions in the 

striatum or prefrontal cortex and mapping their terminal projection fields. On the basis of 

these results, it is thought that the projections from cortex are topographically organized in a 

ventral-to-dorsal and medial-to-lateral gradient across the striatum1,2,10,16 such that 

neighbouring locations in the striatum are connected to neighbouring locations in cortex.

1,2,4 This topography does not appear to respect anatomical boundaries; for example, there 

is no clear boundary between ventral and dorsal striatum11 and the distinction between the 

caudate and putamen is primarily anatomical, whereas the distribution of cortical projections 

varies smoothly across both structures.11,17 Moreover, the projection zones from different 

cortical regions overlap within the striatum10,16,18,19 such that only cortical areas 

separated by large distances have completely non-overlapping striatal projection zones.20 

The anatomical tracing approach has been invaluable in helping to understand corticostriatal 

circuitry because it can precisely localize the terminal fields of a given injection site. 

However, it cannot be applied to humans due to its invasive nature and it does not provide a 

quantitative map of the underlying connection topography; instead this must be inferred 

post-hoc from the distribution of terminal fields and – most importantly – it is fundamentally 

an anatomical measure and does not directly inform about function. This is particularly 

important in view of the broad relevance of corticostriatal circuitry to uniquely human 

behaviours and to brain function in health and disease.

Topographic representations are hallmark features of brain organization21 and while they 

have been well-studied in some brain systems (e.g. vision), their function outside sensory 

regions is poorly understood21 and few methods have been proposed to study them directly.

22 Instead, the predominant approach has been to estimate connectivity between hard 

parcellations that define regions of interest in the striatum, cortex, or both. Typically this is 

done either on the basis of diffusion tensor imaging (DTI),16,18,23–25 resting state 

fMRI26,27 or meta-analytic data.28 While this approach has provided qualitative evidence 
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for homology with the topography predicted by studies in experimental animals, it suffers 

from limitations: first, it does not provide quantitative measures of the overall topological 

organization that can be related to behaviour in individual subjects. Second, the parcellation 

approach assumes that activity is constant across relatively large brain areas and is not well 

suited to studying topographic representations, where the connectivity varies gradually 

across space. Third, parcellations cannot – by definition – accommodate overlapping 

representations within the striatum. These problems are particularly acute in the striatum in 

view of the gradual connectivity pattern suggested by tracing studies, the convergence of 

projections from widespread cortical regions and the sheer breadth of behaviours that this 

circuitry underpins.

In this work, we aimed to estimate quantitative representations of the functional topography 

of corticostriatal circuitry in humans and to determine the behaviours those representations 

map onto. First, we capitalize on a recent methodological development29,30 to accurately 

estimate smoothly-varying and overlapping topographic connection patterns (‘connection 

topographies’) in the striatum on the basis of connectivity of each striatal location with the 

rest of the brain. We estimate these connection topographies quantitatively in individual 

subjects from resting fMRI. We then re-map these topographies across the cortex to provide 

detailed topographic maps of human corticostriatal circuitry. Finally, we chart the 

behavioural determinants of individual variations in these topographic representations across 

a battery that spans behaviours that depend on striatal function, including reward, executive 

function and psychopathology. We aimed to address four key questions: (i) can connection 

topographies in the striatum be quantified in humans at the level of individual subjects? (ii) 

How does the connection topography in the striatum and its remapping across the cortex 

differ from the topography predicted from experimental animals? For example, there is 

evidence from non-human primates that the temporal and parietal cortices project 

topographically to the striatum,4,15 but tractography studies in humans have not provided 

evidence for these projections;18,23,25 (iii) which behaviours do individual variations in 

these connection topographies map onto? and finally, (iv) do they map behaviour more 

reliably than parcellation-based approaches?

First, we employed resting-state fMRI from 466 subjects from the Human Connectome 

Project (HCP)31 to reconstruct connection topographies that map the connectivity of each 

striatal location with the rest of the brain. For this, we used an analysis approach29,30 that 

provides reproducible and parsimonious representations of overlapping connection 

topographies at the level of individual subjects (see Methods and Figure 1). Here, we restrict 

our analysis to two overlapping topographies but the approach can in principle be extended 

to capture further overlapping representations. This analysis approach is summarised in 

Figure 4 and described in the methods. Briefly however, it involves three main steps: first, 

we derive a similarity matrix that describes the similarity of the connection pattern 

(‘fingerprint’) of each striatal voxel with the rest of the brain. For this we choose the η2 

coefficient.29 This step involves a lossless dimensionality reduction using singular value 

decomposition (SVD). Second, we feed this matrix into a manifold learning algorithm 

(Laplacian eigenmaps 32) to derive a set of connection topographies. Third, we fit a spatial 

statistical model (a ‘trend surface model’ 33) to each topography. This yields a set of 

coefficients for each subject providing a low dimensional representation of the connection 
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topography that can be used for statistical analysis. Finally, we re-map connection 

topographies to the cortex to determine how the topographic connectivity pattern within the 

striatum is preserved across connections with the cortex. In our data, the trend surface 

models summarising the topographies were very accurate, explaining a mean (std. dev.) of 

94.4% (2.2%) of the variance in the connection topographies across subjects and scanning 

sessions. These coefficients were also highly reproducible; we estimated separate models for 

each of the two repeated fMRI runs for each subject, which were highly correlated across 

runs (Left: mean (std. dev) ρ = 0.98 (0.05); Right ρ = 0.98 (0.04)). We illustrate both the 

variations across subjects and the reproducibility within subjects in Supplementary Figure 1.

The dominant connection topography corresponded strongly to the underlying anatomy both 

in a continuous sense (Supplementary Figure 2a) and after applying K-means clustering 

(Supplementary Figure 2b) such that the resulting group-level parcellation recapitulated the 

anatomical boundaries of the caudate, putamen and nucleus accumbens (Supplementary 

Figure 4). In contrast, the second overlapping topography exhibited a more gradual pattern 

of connectivity change corresponding with the dorsal-to-ventral, medial-to-lateral and 

anterior-to-posterior anatomical gradient of connectivity within the striatum predicted from 

tracing studies in non-human primates 1,2 (Supplementary Figure 2c). For both 

topographies, this correspondence was also evident in the individualized topographies 

(Supplementary Figure 1). Because of the prominence of this gradual connectivity pattern in 

the animal literature, and the overwhelming focus on parcellation in the human literature, we 

focus the remaining analysis on the second topography.

Next, we examined the connectivity profile of the second topography by remapping this 

representation from the striatum onto the cortex. We achieved this by color-coding each 

cortical vertex according to the striatal voxel that it correlates the most with.22,29 In 

experimental animals, a gradient of topographical connectivity in the striatum has been most 

frequently associated with reward, where the projections from many reward-related brain 

regions converge in the rostral striatum.5 Therefore, we examined the correspondence 

between the topographic representation in the striatum and these reward related areas. The 

connectivity profile between the ventral rostral striatum and medial prefrontal cortex and 

midbrain showed a striking similarity to the connection topography predicted from invasive 

tracing studies (Figure 2a).

Reward is a primary behaviour dependent on corticostriatal circuitry, through its connections 

with cortical areas involved in reward processing. However, the striatum has extensive 

connections with nearly all cortical areas. Therefore, we next investigated the broader 

topographic connectivity profile of the striatum. Again, the re-mapped topographic 

connectivity pattern shows an excellent correspondence with the pattern of projection targets 

that has been predicted from tracing studies in non-human primates (Figure 2b). Whilst this 

correspondence is reassuring, we emphasize that these re-mapped topographic 

representations were obtained from humans in vivo, extend across all cortical areas and in 

considerably more detail than is provided by the theoretical model. Most importantly, they 

are also quantitative and can therefore be related to human behaviours in a statistical manner.
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These results show that human corticostriatal connection topographies extend beyond the 

known pattern of topographical connectivity derived from studies of non-human primates 

and span multiple spatial scales. Studies of corticostriatal circuitry in experimental animals 

have mostly focused on prefrontal cortex11 although some studies have provided evidence 

that the striatum is topographically connected with the parietal and temporal lobes.15 The 

remapping of the striatal connection topographies across the cortex shows that the 

topography in the striatum was recapitulated across many cortical regions (Figure 2b, 

arrows), which suggests that many cortical regions have topographically organized 

connections with the striatum. Some of these connections are expected from animal studies, 

for example: the amygdala, hippocampus and ventromedial prefrontal cortex showed a 

strong correspondence to ventromedial striatal regions, which in monkeys is the only area of 

the striatum that receives input from these structures11 Similarly, cortical regions associated 

with motor function (e.g. primary- and supplementary motor areas) showed the expected 

correspondence to the lateral putamen. On the other hand, other features have not been 

described in the animal literature. For example, the posterior cingulate cortex was strongly 

connected with the ventromedial striatum and lateral prefrontal cortex showed a strong 

correspondence to dorsal and posterior caudate. Also in contrast to the non-human primate 

literature, we also found that the gradient of connectivity within the striatum could be traced 

onto rostral-to-caudal gradients within connected brain regions. For example, we detected 

connectivity gradients within the anterior cingulate, posterior cingulate and temporal 

cortices (Figure 2b).

Finally, we were interested in determining the correlates of these connection topographies 

across a wide range of goal-directed behaviours.11 Therefore, we employed a unified 

multivariate analysis approach to find associations between the full set of trend surface 

model coefficients from each hemisphere and the extensive battery of behavioural measures 

derived from the HCP dataset. This battery includes measures of many aspects of cognition, 

reward, language, emotion, personality and clinical scales across multiple diagnostic 

categories.34 Specifically, we used canonical correlation analysis (CCA), a multivariate 

analysis technique that seeks patterns of covariation between datasets (see Methods). In both 

hemispheres, we detected a highly significant association between inter-individual variations 

in the second topography and the behavioural battery (left hemisphere: ρ = 0.74, p < 0.002 

(permutation test), Wilk’s Lambda = 0.0094, p < 0.005; right hemisphere: ρ = 0.73, p < 0.01, 

Wilk’s Lambda = 0.009, p < 0.002). Since we considered it to be unlikely that this 

association could be cleanly partitioned into orthogonal components (an inherent feature of 

the CCA decomposition), we mapped the behavioural domains underlying this association 

across the entire decomposition (Figures 3 and 4). These figures show structure coefficients 

corresponding to all of the 9 canonical components from the CCA decomposition (9 because 

the optimal statistical model was a polynomial of model order 3). These provide a measure 

of importance of each brain voxel (Figures 3a and 4a) or behavioural score (Figures 3c and 

4c) in maximizing the correlation between brain topography and behaviour. Successive 

components show additional contributions to maximizing the correlation orthogonal to the 

other components (see Methods for details). This showed that the association in the left 

hemisphere was driven principally by: (i) delay discounting, consistent with the known role 

of the striatum in reward and delay valuation7 (ii) relational processing34 which is relevant 
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because the task they were derived from was designed to precisely localize rostrolateral 

prefrontal cortex34,35 and (iii) psychological wellbeing, which is also plausibly related to 

corticostriatal function.34 In the right hemisphere, the association was driven by: (i) social 

cognition, derived from a task that elicits robust activations in brain areas associated with 

theory of mind34 (ii) sustained attention, which is known to depend on corticostriatal 

circuitry7 and is consistent with its role in the pathophysiology of attention deficit/

hyperactivity disorder12 and (iii) personality, which also depends on corticostriatal 

connectivity.24 To assess reproducibility, we repeated the entire pipeline on the second 

fMRI run. The pattern of results was largely consistent with that derived from the first fMRI 

run: associations were detected for both hemispheres (left: ρ = 0.74, p < 0.001, Wilk’s 

Lambda = 0.013 (not significant); right: ρ = 0.75 p < 0.001, Wilk’s Lambda = 0.009, p < 

0.004). Note that although the entire decomposition did not reach significance for the left 

hemisphere, individual predictive gradients did. The particular behavioural domains 

underlying these associations were also similar (Supplementary Figures 4 and 5), where 

again delay discounting and relational processing were strongly associated with the 

connection topography in the left hemisphere, and sustained attention was dominant in the 

right hemisphere. However, there were also some differences in the behavioural measures 

associated with the connection topographies; for example, emotional processing scores from 

the fMRI task were associated with the connectivity gradients in the second fMRI run but 

not the first (see below).

To determine whether these behavioural associations were better captured by a gradual 

connection topography relative to piece-wise constant parcels, we performed additional 

analyses, where we repeated the CCA analysis after applying K-means to generate an 

individualized parcellation for each subject (i.e. similarly to the group-level parcellation in 

Figures S3a and S4) then averaging the principal gradient across each parcel. In both cases, 

we detected some associations between behaviour and connectivity, but these were slightly 

less reproducible across fMRI runs. More specifically, significant associations were detected 

for both left and right hemisphere, but each in only one of the fMRI runs (first run, left 

hemisphere: ρ = 0.64, Wilk’s Lambda = 0.27, both not significant; first run, right 

hemisphere: ρ = 0.80, Wilk’s Lambda = 0.14, both p < 0.001; second run, left hemisphere: ρ 
= 0.70, p < 0.007, Wilk’s Lambda = 0.21, p < 0.002; second run, right hemisphere: ρ = 0.67, 

Wilk’s Lambda = 0.21, both not significant). Note that this approach provides an optimistic 

estimate of the association achievable through parcellation because the parcellation is 

applied after employing manifold learning which provides the advantage of separating the 

signal attributable to overlapping representations and is not typically done for parcellation 

approaches.

To summarise these results: we estimated smoothly varying patterns of corticostriatal 

connectivity non-invasively from humans, which: (i) show that connection topographies can 

be reliably identified at the level of individual subjects; (ii) provide quantitative topographic 

maps of human corticostriatal circuitry that show an excellent correspondence to the 

topography predicted from animal tracing studies1,2,5,11 whilst also showing that striatal 

topography is preserved in brain regions that have not been shown to have topographic 

connections with the striatum either in humans (e.g. temporal and parietal lobes) or 

experimental animals (e.g. posterior cingulate cortex). They also allowed us to demonstrate 
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that: (iii) individual variations in these topographic connectivity patterns predict specific 

behaviours in a way that is (iv) more reproducible than a parcellation-based approach.

The unique feature of our approach is that we shift away from hard parcellation and instead 

perform inferences directly on the basis of spatial connection topographies. This is 

particularly well-suited to studying corticostriatal function because it provides inferences at 

the level of overlapping and spatially distributed connectivity patterns across the striatum, 

not at the level of piece-wise constant parcels. Our results challenge the dominance of the 

parcellation view of brain connectivity, and our approach overcomes several methodological 

problems it entails: our topographic approach accommodates multiple connectivity patterns 

that overlap in the same structure, it does not require defining the number of parcels or the 

parcellation strategy in advance, which is important because the parcel is the fundamental 

unit of most network-based approaches to connectivity, and therefore any errors in parcel 

definition are propagated through the entire analysis. This provides important advantages 

over existing methodology because: (i) the number of parcels is often not well-defined28 

and (ii) purely anatomical parcellations often do not map well onto function36 whereas (iii) 

there are wide range of data-driven parcellation strategies, which often show only a 

moderate correspondence with one another.27,28 These problems notwithstanding, our 

approach is complementary to parcellation strategies; in the striatum, parcellation is a useful 

approach for detecting segregated parallel circuits18 or identifying their projection zones16 

but do not lend themselves naturally to making inferences about convergent processing 

because they do not easily accommodate the overlapping representations that are 

fundamental to corticostriatal circuitry.1,5 In our data, we were also able to detect 

behavioural associations with an individualized parcellation of the striatum, but these were 

less reproducible than the continuous connection topographies. This suggests that the 

parcellation may coarsely approximate the underlying continuous topography.

Similar to other studies that have employed functional connectivity to investigate 

corticostriatal circuitry,26,27 our results should be interpreted in the context of the use of a 

functional connectivity method that is sensitive to both direct (i.e. monosynaptic) and 

indirect (polysynaptic) connections. This provides advantages and disadvantages relative to 

the predominant approach to studying structural corticostriatal connectivity in humans on 

the basis of DTI.16,18,23–25 The advantage of structural connectivity methods is that they 

provide a means to directly identify monosynaptic connections between brain regions, but 

there is no guarantee that the presence or absence of a given structural connection is 

functionally relevant. It is also well-known that DTI-based methods require myelinated 

connections and can have difficulties in following fibres through areas with extensively 

crossing fibre bundles. On the other hand, an advantage of the present approach is that it 

provides a means to identify functionally connected brain regions even if they are not 

connected monosynaptically or if tracts between them cannot be identified. In some settings, 

functional connectivity can be used to identify monosynaptic connections on the basis of 

partial correlations between brain regions. However, this requires that the relevant brain area 

first be subdivided into atomic units (e.g. via parcellation). This is a reasonable approach in 

many cases, but partial correlation is not directly applicable here because we assess the 

similarity of connectivity patterns at the level of individual voxels and data within the 
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striatum and within cortical areas are inherently smooth such that neighbouring voxels are 

highly correlated.

Our results that validate and extend the literature based on experimental animals in three 

ways: first, ventromedial striatal areas were strongly connected to networks that subserve 

reward (e.g. ventromedial and orbitofrontal cortex, dorsal anterior cingulate, amygdala and 

hippocampus). This is in line with studies that have shown that projections from reward-

related brain regions overlap most extensively in the rostral striatum5 and with studies in 

experimental animals that suggest that the amygdala and hippocampus are important nodes 

in the extended reward network.5,37 Behaviourally, this was reflected in an association 

between the connectivity patterns and delay discounting, which extends studies that have 

principally demonstrated a group-level association between delay discounting and mean 

activity in the ventral striatum.38 Second, dorsal and caudal striatal regions were strongly 

connected to lateral prefrontal regions, which is in line with evidence from non-human 

primates showing that terminals from the motor and premotor striatum do not extend into 

rostral striatum.11 In humans, this is also consistent with the involvement of the dorsal 

striatum in executive function and decision making7 and with observations that lesions in 

the dorsal caudate nucleus cause impairments in working memory.39 Third, lateral striatal 

regions (e.g. mid putamen) were strongly connected with motor regions, as would be 

expected based on the well-documented role of the putamen in motor circuitry.4

Our data also provide evidence for the existence of topographic connections that would not 

have been predicted on the basis of the existing literature, which has predominantly focused 

on projections that pass through prefrontal cortex.3 For example, the posterior cingulate 

cortex was topographically connected with ventral striatum. The posterior cingulate cortex 

has a well-documented role in brain’s default mode network (DMN) which shows reduced 

activity during many goal-directed behaviors.40 This is of particular relevance to the 

associations we detected with delay discounting and sustained attention because there is 

increasing evidence that the striatal dopamine system modulates the DMN37,41 and failures 

in suppression of DMN activity have been associated with momentary lapses in attention.42

Another key finding was evidence for a topographic gradient of connectivity within the 

temporal and parietal lobes. This is consistent with evidence of topographically organized 

patterns of connectivity between striatum and temporal and parietal cortices in experimental 

animals.19,43,44 However, these gradients have not, to date, been reported in studies that 

have studied human corticostriatal circuitry.18,23,25 This may be because these human 

studies all used structural connectivity methods (e.g. tractography). This is particularly 

relevant because fibres from parietal and temporal cortices need to pass through areas of 

complex fibre crossings to reach the striatum.25 In our data, connectivity with the temporal 

lobe may be related to some of the other behaviours associated with the striatal connection 

topographies (e.g. social functioning).

Our results are broadly consistent with other studies which have employed functional 

connectivity approaches to identify the connectivity of the striatum.26,27 Di Martino and 

colleagues used seed-based connectivity to identify cortical voxels correlated with each of a 

set of anatomically defined regions of interest.26 Choi and colleagues applied a parcellation 
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approach to divide the striatum into subregions by assigning each striatal voxel to its most 

strongly correlated cortical network.27 These studies provided evidence for the existence of 

a seed-location dependent functional difference in striatal organization. Our approach is 

complementary to these studies and enabled us to: (i) quantify the functional topography in 

the striatum directly and in a smoothly varying manner; (ii) provide a low-dimensional 

representation of this topography that can be related quantitatively to behaviour and (iii) 

disentangle overlapping representations within the striatum. Here, this was reflected as a 

gradient of functional connectivity superimposed on the underlying anatomy 

(Supplementary Figure 2). This latter property is particularly important in the striatum given 

the sheer number of behaviours that corticostriatal circuitry underpins in humans.

While our results suggest that the association with delay discounting was lateralized in that 

the association was most prominent in the left hemisphere, we are cautious of such an 

interpretation because there was weak evidence of an association between delay discounting 

and the dominant connection topography after parcellation that did not achieve statistical 

significance. An avenue for further study is to investigate the stability of the behavioural 

associations over repeated measurements. Although the most important behavioural 

associations were reproducible across runs (e.g. the association with delay discounting), 

there was also some run-to-run variability in the particular behavioural variables underlying 

the brain-behaviour correspondence. The most salient of these was that measures derived 

from the fMRI emotional processing task were associated with the connection topographies 

in both hemispheres from the second resting fMRI run but not the first. This may be because 

the emotional task was acquired in the same scanning session as the second fMRI run. 

According to the HCP protocol (https://www.humanconnectome.org/documentation/data-

release/Q1_Release_Appendix_I.pdf), three of the fMRI tasks were acquired after the first 

resting fMRI run and four were acquired after the second run (including the emotion 

processing task). Emotion processing is dependent on corticostriatal circuitry8 and 

emotional task performance is correlated with dopamine release in the striatum.45 

Therefore, we speculate that state-dependent effects related to corticostriatal circuitry were 

related to emotion processing. If correct, this hypothesis underscores the importance of 

considering multiple measurement timepoints to detect state-dependent effects. In future 

work we will also investigate methods to infer directionality of the connection topographies, 

which remains a challenging problem for most approaches to estimation of functional 

connectivity.46 Finally, another open question is determining the model order for 

overlapping connection topographies. Here we considered the first two overlapping 

topographies, but it is also likely that higher order topographies could provide information at 

finer levels of detail.

In summary, we mapped topographic connectivity between striatum and cortex in humans. 

Our results simultaneously correspond with and extend the connection topographies 

predicted from studies in experimental animals. We demonstrate that topographic 

connectivity with the striatum in humans extends more widely than previously thought and 

we precisely map the behaviours that these topographies predict across an extensive 

behavioural battery. Our results lend support to the notion that the striatum functions as a 

hub for integrating information from cortical networks subserving many human goal 

directed behaviours and our approach provides a means to estimate continuous connection 
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topographies at the level of individual subjects and to relate individual variations in these 

topographies quantitatively to behaviour.

Methods

Neuroimaging data

Resting state fMRI data were derived from the Human Connectome Project (HCP), which 

aims to acquire exceptionally high-quality neuroimaging data from more than 1000 twins 

and non-twin siblings.31 Full details surrounding the sample, data acquisition, ethical and 

preprocessing procedures have been reported previously,31,34,47 but in brief, our sample 

(N=466, aged 22-26, 293 females) included all subjects from the ‘500 subjects’ release who 

completed all resting fMRI scanning runs and for whom sufficient data were available to 

determine familial relationships. This was necessary to avoid introducing bias in the non-

parametric statistical inference procedures we employ (below). We anticipated that this 

sample would be sufficient to identify salient multivariate brain-behaviour relationships 

based on previous results using a similar analysis approach.48 Participants were scanned on 

a customized 3 Tesla Siemens Skyra scanner (Siemens AG, Erlanger, Germany) using multi-

band accelerated fMRI four times over two days, with each run comprising 15 min. Resting 

fMRI data were preprocessed according to the HCP minimal processing pipeline47 then 

denoised using advanced artefact removal procedures based on independent component 

analysis49 before being smoothed with an 6mm kernel that respected the geometry of the 

brain. Specifically, subcortical structures were treated volumetrically, while cortical 

structures were projected onto the cortical surface according to the documented HCP 

procedures.47

Estimation of connection topographies

We estimated connection topographies from the HCP resting state fMRI data separately for 

each subject, hemisphere and fMRI scanning session. For this, we used an emerging 

approach that enables the dominant modes of functional connectivity change within the 

striatum to be traced on the basis of the connectivity between each striatal voxel and the rest 

of the brain. This procedure is described elsewhere29,30 and is summarized in Figure 1. 

Briefly, we rearranged the fMRI time series data from the both the striatum and all grey-

matter voxels outside the striatum into two time-by-voxels matrices. Since the latter is 

relatively large, we losslessly reduced its dimensionality using singular value decomposition 

(SVD). We then computed the correlation between the voxel-wise striatal time series data 

and the SVD-transformed data from outside the striatum, then used the η2 coefficient to 

quantify the similarities among the voxel-wise fingerprints (see 29). Then, we applied the 

Laplacian eigenmaps manifold learning algorithm32 to the resulting similarity matrix, 

resulting in a series of vectors that represent the dominant modes of functional connectivity 

change (i.e. connection topographies). Note that this can be done at the group-level by using 

the average of the individual similarity matrices (as in Supplementary Figure 3) or 

individually for each subject (as used for statistical analysis). In the latter case, the resulting 

connection topographies were highly consistent across fMRI runs (Supplementary Figure 2), 

in line with what we have demonstrated previously for other brain regions.29 Finally, to 

enable statistical analysis over these connection topographies we fit a spatial statistical 
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model that provides an accurate representation of the topography in a small number of 

coefficients. For this, we use a ‘trend surface modelling’ approach33 which involves fitting a 

set of polynomial basis functions defined by the coordinates of each striatal location to 

predict each individual subject’s connection topography. We fit these models using Bayesian 

linear regression,50 where we employed an empirical Bayes approach to set model 

hyperparameters. Full details are provided elsewhere50 but this essentially consists of 

finding the model hyperparameters (controlling the noise- and the data variance) by 

maximizing the model evidence or marginal likelihood. This was achieved using conjugate 

gradient optimization. For fixed hyperparameters, the posterior distribution over the trend 

coefficients can be computed in closed form which, in turn, enables predictions for unseen 

data points to be computed. We used the maximum a posteriori estimate of the weight 

distribution as an indication of the importance of each trend coefficient in further analyses. 

To select the degree of the interpolating polynomial basis set, we fit these models across 

polynomials of degree 2-5 then compared the different model orders using the Bayesian 

information criterion. This criterion strongly favoured a polynomial of degree 3, which was 

taken forward for further analysis. Note that this decision was not strongly dependent on the 

choice of criterion because the Akaike information criterion resulted in identical 

conclusions.

To determine the preservation of each striatal topography across its connections with other 

brain regions we performed a simple approach whereby we color-coded each cortical vertex 

or subcortical voxel according to the striatal voxel that it correlates the most with.22 This is 

ideal for our purposes because it is constrained to directly estimating corticostriatal 

interactions.

Behavioural data

We evaluate the behavioural correlates of the connection topographies across an extensive 

battery of behavioural measures. This battery has been described elsewhere31,34 and 

includes demographic data (e.g. age, sex), psychometric data across multiple domains of 

functioning (e.g. cognition, emotion, personality, sensory processing and life functioning) 

plus clinical assessments spanning multiple psychiatric domains and diagnostic categories 

(e.g. substance use, impulse control, mood, anxiety and eating disorders).34 We also include 

behavioural measures from a set of fMRI tasks measuring working memory, incentive 

processing, motor function, language processing, relational processing, social cognition and 

emotion processing.34 In our analysis, we aimed to include the most extensive set of 

measures possible and therefore select variables using a similar strategy to a prior report 

using these data.48 Specifically, from the complete HCP battery34 (https://

wiki.humanconnectome.org/display/PublicData/HCP+Data+Dictionary+Public-

+500+Subject+Release) we included all psychometric data, clinical assessments and 

behavioural measures derived from the fMRI tasks but excluded basic demographic 

information, fields related to the data acquisition, and fields containing cortical thickness 

estimates derived from structural MRI. We also excluded physical motor variables (e.g. 

endurance and grip strength) and sensory processing variables (e.g. audition and olfaction), 

which we did not expect to be associated meaningfully with striatal function. We then 

removed data items with > 50% missing data or with a severe imbalance such that >95% of 
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the subjects had the same value and used median imputation for the remaining missing data. 

Finally, we collected these variables into a matrix and ensured that this matrix was not rank 

deficient using Gaussian elimination. This procedure finds a basis for the range of the matrix 

by excluding a small number of variables (5-7 items in our data). This matrix was then used 

as input to the multivariate analysis described below. The final list of measures we employed 

is reproduced in the supplementary Methods. To assist interpretation, after analysis we 

grouped these into 14 categories, eight derived from established behavioural instruments 

(clinical, executive function, delay discounting, spatial orientation processing, sustained 

attention, emotion regulation, psychological wellbeing and personality), and six derived 

from behavioural measures recorded during the fMRI tasks (emotional processing, incentive 

processing, language, relational processing, social processing, working memory). See 

supplementary Methods for details.

To group the resulting scores for these variables (i.e. CCA structure coefficients – see below) 

into these categories, we used a simple Bayesian averaging approach that accommodates 

differences in the number of variables included in each category. This was desirable because 

the size of the categories was highly variable and some of the categories were very small. 

For a given random variable Z, this average is computed simply as 

 where n is the total number of data points, m is the prior mean 

and C is a constant equal to the average dataset size. Here, the mean was taken to be 

relatively non-informative and was set to 1/n. Although this yielded similar results to the 

ordinary arithmetic mean, it provides a more robust estimate of the contribution of the 

category as a whole because it reduces the chance that a category with a small number of 

variables scores highly because it contains (for example) a single informative variable.

Statistical analysis

To test for an association between the behavioural battery and the connection topographies, 

we performed a single unified statistical analysis using canonical correlation analysis 

(CCA). CCA is a standard multivariate statistical approach that aims to learn a set of 

projection weights for each dataset that maximize the correlation between datasets. More 

concretely, given two data matrices, Xn×p and Yn×q that have the same number of samples 

(n) but possibly different numbers of variables (p and q), CCA seeks canonical vectors a and 

b such that the projections a′X and b′Y are maximally correlated. These projections are 

referred to as the first pair of canonical variables. After this, CCA seeks each additional pair 

of canonical vectors which maximize the correlation between canonical variables, subject to 

the constraint that they are uncorrelated with the other pairs of canonical variables. Prior to 

analysis, we standardized the data in both datasets separately, which also ensured that the 

polynomial coefficients derived from the trend surface analysis were orthogonal. In contrast, 

the behavioural data exhibited strong multicollinearity which is known to cause problems 

with the interpretation of coefficients in linear models. Therefore, we inferred the 

association of each behavioural measure with the connection topography using structure 

coefficients. These are widely used in multivariate statistics to solve this problem51 and are 

defined as the univariate Pearson correlation between each measure and the predictions 

made by the CCA model. To infer the association of the connection topography with the 
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behavioural scores, we compute forward maps52 for the canonical vectors. If the data are 

standardized as they are here, these are equivalent to structure coefficients.

To test the significance of the canonical correlation, we employed a permutation testing 

procedure that accounts for correlations induced by the familial relationships between 

subjects in the HCP sample.53 Specifically, we permuted the rows (i.e. subjects) of one of 

the data matrices 1000 times in a way that accommodates their familial relationships, 

computing the canonical correlation for each permutation. We then tested for significance by 

computing the centile of the non-permuted canonical correlation against an empirical null 

distribution derived from fitting a Gauss-Gamma mixture distribution to the permuted 

correlations54 This was necessary because in preliminary testing we found evidence that the 

reported familial structure did not fully account for the nuisance covariation structure 

between subjects. For each CCA decomposition, we used this procedure to test both the 

principal correlation coefficient and Wilk’s Lambda statistic. These statistics provide 

complementary information about the underlying CCA distribution: the principal correlation 

coefficient tests the magnitude of the dominant (or successive) mode(s) of canonical 

correlation, while Wilk’s Lambda tests the significance of the whole distribution.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Summary of the analysis pipeline. The fMRI time-series data from a pre-defined region-of-

interest (ROI) are rearranged into a time-by-voxels matrix A, as are the time-series from all 

vertices/voxels outside the ROI (matrix B). For reasons of computational tractability, the 

dimensionality of B is losslessly reduced using singular value decomposition (SVD), 

yielding B̃. For every voxel within the ROI, its connectivity fingerprint is computed as the 

Pearson correlation between the voxel-wise time-series and the SVD-transformed data, 

yielding matrix C. Then similarity between voxels is computed using the η2 coefficient. 

Manifold learning using Laplacian eigenmaps is then applied to this matrix, yielding a set of 

connection topographies, which can remapped to other regions by taking the maximum 

correlation. Then, trend surface modelling is applied to summarize these connection 

topographies by fitting a set of trend coefficients (β) that optimally combine a set of spatial 

polynomial basis functions. Finally, canonical correlation analysis (CCA) is used to find 

associations with these behavioural measures. See Methods for further details
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Figure 2. 
Panel a: The striatal connection topography estimated here from resting state fMRI in 

humans (Left) shows an excellent correspondence with the theoretical pattern of 

connectivity between reward-related brain areas and the striatum based on invasive tracing 

studies in animals (Right, reproduced from 5). Panel b: The pattern of connectivity between 

the connection topography in the striatum (centre) and the cerebral cortex. Arrows indicate 

examples of cortical regions for which topographic connectivity with the striatum is 

preserved. The inset shows the theoretical connectivity pattern derived from invasive tracing 

Marquand et al. Page 18

Nat Hum Behav. Author manuscript; available in PMC 2018 January 24.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



studies in non-human primates (modified from 1). Note that the colour scheme in panel b 

has been changed relative to panel a to match the existing non-human primate literature1, 2, 

11

Abbreviations: dPFC: dorsal prefrontal cortex; DL-PFC = dorsolateral prefrontal cortex; 

vmPFC = ventromedial prefrontal cortex; OFC = orbitofrontal cortex; SN/VTA = substantia 

nigra/ventral tegmental area; Hipp = hippocampus; Amy = amygdale; STN = subthalamic 

nucleus; OMPFC = orbitomedial prefrontal cortex; Raphe = Raphe nucleus; PPT = 

penduclo-pontine tegmentum; Hypo = hypothalamus; Thal Midline MD = mediodorsal 

thalamus; VP = ventral pallidum; LHb = lateral habenula.
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Figure 3. 
Relative importance of different variables in driving the multivariate correspondence 

between the topography from the left striatum and the behavioural battery (derived from all 

466 subjects used in the analysis). Panel a: Importance of connectivity gradients in 

predicting the behavioural scores. The top left panel (G1) shows structure coefficients 

corresponding to the principal predictive gradient estimated by CCA. These are rescaled 

such that the maximum in the image is equal to one and can therefore be considered to be in 

arbitrary units (a.u.). The remaining panels show differences between the rescaled principal 

CCA gradient and each successive rescaled predictive gradient (a.u. delta). For example, G2-

G1 is the difference between the second gradient and the first. This helps to highlight the 

differences between the predictive gradients. Panel b: Predictive pattern of measures 

contributing to the CCA predictions. These are the structure coefficients aggregated across 

behavioural domains (see Methods) and are also rescaled such that the maximum 

behavioural domain has a value of 1, here represented by a point on the outermost circle. 

The top three domains are indicated by red, yellow and blue bars. Panel c: Structure 

coefficients for all of the 174 individual behavioural items. Behavioural domains are 

indicated by the bar at the bottom and a full list of individual items is provided in the 

supplementary Methods. Coloured bars indicate the top three domains (see panel b).
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Abbreviations: CCA = canonical correlation analysis; DD = Delay discounting; EF = 

executive function; fEP = emotion processing (fMRI); fIP = incentive processing (fMRI); fL 

= Language (fMRI) fRP = relational processing (fMRI); fSP = social processing; fWM = 

working memory (fMRI); ER = emotion regulation; PW= psychological wellbeing; SA = 

sustained attention; P = personality.
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Figure 4. 
Relative importance of different variables in driving the multivariate correspondence 

between the topography from the right striatum and the behavioural battery (derived from all 

466 subjects used in the analysis). Panel a: Importance of connectivity gradients in 

predicting the behavioural scores. The top left panel (G1) shows structure coefficients 

corresponding to the principal predictive gradient estimated by CCA. These are rescaled 

such that the maximum in the image is equal to one and can therefore be considered to be in 

arbitrary units (a.u.). The remaining panels show differences between the rescaled principal 

CCA gradient and each successive rescaled predictive gradient (a.u. delta). For example, G2-

G1 is the difference between the second gradient and the first. This helps to highlight the 

differences between the predictive gradients. Panel b: Predictive pattern of measures 

contributing to the CCA predictions. These are the structure coefficients aggregated across 

behavioural domains (see Methods) and are also rescaled such that the maximum 

behavioural domain has a value of 1, here represented by a point on the outermost circle. 

The top three domains are indicated by red, yellow and blue bars. Panel c: Structure 

coefficients for all of the 174 individual behavioural items. Behavioural domains are 

indicated by the bar at the bottom and a full list of individual items is provided in the 

supplementary Methods. Coloured bars indicate the top three domains (see panel b).
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Abbreviations: CCA = canonical correlation analysis; DD = Delay discounting; EF = 

executive function; fEP = emotion processing (fMRI); fIP = incentive processing (fMRI); fL 

= Language (fMRI) fRP = relational processing (fMRI); fSP = social processing; fWM = 

working memory (fMRI); ER = emotion regulation; PW= psychological wellbeing; SA = 

sustained attention; P = personality.
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