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This study evaluates HIV antibody responses and their evolution during the course of HIV 

infection. A phage display system is used to characterize antibody binding to >3,300 HIV peptides 

in 57 adults with early- to late-stage infection. We find that the number of unique epitopes targeted 

(“antibody breadth”) increases early in infection and then stabilizes or declines. A decline in 

antibody breadth 9 months to 2 years after infection is associated with subsequent antiretroviral 

treatment (ART) initiation, and a faster decline in antibody breadth is associated with a shorter 

time to ART initiation. We identify 266 peptides with increasing antibody reactivity over time and 

43 peptides with decreasing reactivity over time. These data are used to design a prototype four-

peptide “serosignature” to predict duration of HIV infection. We also demonstrate that epitope 

engineering can be used to optimize peptide binding properties for applications such as cross-

sectional HIV incidence estimation.

Graphical Abstract

In Brief

Eshleman et al. quantify antibody binding to >3,300 HIV peptides from early- to late-stage 

infection using a phage display system (VirScan). Binding diversity (breadth) reaches individual-

specific set points; breadth decline is associated with CD4 cell loss. Time-dependent binding 

specificities are identified, optimized, and used to predict duration of HIV infection.
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INTRODUCTION

Antibodies to HIV appear shortly after infection. The titer and avidity of anti-HIV antibodies 

generally increase over time, but may be impacted by antiretroviral treatment (ART), CD4 T 

cell decline, and other factors (Koenig et al., 2013; Fiebig et al., 2003). The breadth and 

specificity of anti-HIV antibodies also evolve during the course of infection (Geiß and 

Dietrich, 2015). A detailed understanding of the serologic response to HIV infection is 

helpful for understanding HIV immune containment and for vaccine development. 

Multiplexed immunoassays have been used to analyze the specificity of anti-HIV antibodies. 

These include a microarray assay composed of 15 recombinant HIV env protein targets and 

five gp41 peptide targets (Dotsey et al., 2015), and an assay based on the Luminex platform 

that includes six recombinant HIV protein targets (Curtis et al., 2012). Phage display 

technology has also been used to screen HIV peptides for binding to immobilized antibodies 

(Delhalle et al., 2012).

In this report, we used a massively multiplexed antibody profiling system to analyze the fine 

specificity of the antibody response to HIV infection. This system is based on phage 

immunoprecipitation sequencing (PhIP-Seq) (Larman et al., 2011). Testing is performed by 

incubating samples with a bacteriophage library that expresses peptides encoded by 

oligonucleotides generated by high-throughput DNA synthesis. The abundance and 

specificity of antibodies in test samples are assessed by immunoprecipitating phage-antibody 

complexes, and then amplifying and sequencing the DNA in the captured phage particles. 

The “VirScan” phage library includes >96,000 peptides that span the genomes of >200 

viruses that infect humans (the human “virome”) (Xu et al., 2015). We performed PhIP-Seq 

using the VirScan library to analyze HIV antibodies from individuals with known duration 

of HIV infection, ranging from <1 month to 8.7 years. This allowed us to examine dynamic 

changes in antibody diversity and the fine specificity of HIV antibodies from individuals 

with early to late stage infection, including individuals on ART and individuals with 

advanced HIV disease.

HIV incidence is often determined by following cohorts of HIV-uninfected individuals and 

quantifying the rate of new HIV infections. HIV incidence can also be estimated using a 

cross-sectional study design, using laboratory assays to identify individuals who are likely to 

have recent HIV infection. Most serologic assays used for cross-sectional HIV incidence 

estimation measure general characteristics of the antibody response to HIV infection (e.g., 

antibody titer, antibody avidity) (Murphy and Parry, 2008; Guy et al., 2009; Busch et al., 

2010), which may be impacted by viral suppression, loss of CD4 T cells, and other factors 

(Laeyendecker et al., 2012b, 2012a; Kassanjee et al., 2014; Brookmeyer et al., 2013). We 

used the VirScan assay to identify peptide biomarkers associated with the duration of HIV 

infection, and demonstrated that peptide engineering can be used to enhance the properties 

of peptides for discriminating between early- and late-stage infection. This information 

could be used to develop improved methods for estimating HIV incidence from cross-

sectional surveys, for surveillance of the HIV/AIDS epidemic (Justman et al., 2018), and for 

evaluating the impact of interventions for HIV prevention in clinical trials (Coates et al., 

2014).
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RESULTS

Antibody Reactivity to HIV Peptides

We used the VirScan assay to characterize anti-HIV antibodies in 403 plasma samples from 

57 women with subtype C HIV infection (discovery sample set; Table S1). The time from 

seroconversion to sample collection ranged from 14 days to 8.7 years. The density of 

peptides in the library varied across the open reading frames for HIV proteins (the HIV 

proteome, Figures 1A and 1B). The level and frequency of antibody binding were highly 

variable (Figures 1C and 1D); the strongest and most frequent antibody binding was 

observed for peptides in the gag and env regions. Some peptides were consistently targeted 

over the course of the infection; in contrast, the level and frequency of antibody binding to 

other peptides changed over the course of HIV infection (Figure 1E). Samples are diluted 

prior to VirScan analysis to normalize the amount of immunoglobulin G (IgG) in each 

sample. We analyzed the IgG concentrations in our sample set to assess whether this 

normalization procedure might lead to bias (e.g., in participants with 

hypergammaglobulinemia). While we did observe differences in IgG concentration as a 

function of duration of infection for study participants who did versus did not initiate ART 

during study follow-up, further analysis suggested that diluting samples to adjust for 

differences in IgG concentration did not confound our data (Figure S1).

Breadth of Antibody Reactivity

We next analyzed the diversity of each individual’s antibody response to HIV over time. 

Network graphs were used to determine antibody breadth at each time point; antibody 

breadth was defined as the number of non-overlapping peptides with high levels of antibody 

binding. Figure 2A shows the network graph for peptides that reacted with antibodies from a 

representative study sample (one immunoprecipitation reaction). This analysis identified 45 

non-overlapping peptides; these peptides were located in the gag, pol, env, vpu, and rev 

regions. We next analyzed the change in antibody breadth over the course of HIV infection. 

Since ART is known to influence HIV antibody production, we compared antibody breadth 

data from participants who did versus did not start ART during the genital shedding (GS) 

study (Figure 2B). ART also serves as a surrogate for disease progression; in the GS study, 

ART was recommended when the CD4 cell count fell below 250 cells/mm3. Overall, 32 

participants started ART during the GS study.

In both groups (with and without ART initiation), antibody breadth increased during the first 

6 months of infection. In the group that did not start ART, a relatively stable value for 

antibody breadth (termed “antibody breadth set point”) was established in most individuals 

approximately 9 months to 1 year after infection; the antibody breadth set point varied 

considerably among study participants. In contrast, in the group that ultimately started ART, 

a decline in antibody breadth was observed approximately 1 year after infection. In all cases, 

the fall in antibody breadth occurred at least a year before ART initiation (Figure 2B). To 

further explore the relationship between the drop in antibody breadth and disease 

progression, we compared the timing of the drop in antibody breadth in the ART group (~9 

months to 2 years after infection) to the temporal distribution of samples with CD4 cell 

counts of <350 cells/mm3 or viral loads of <1,000 copies/mL; there was no apparent 
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relationship between antibody breadth and the timing of these two factors (Figure S2). After 

participants started ART, HIV antibody breadth appeared to stabilize at levels similar to 

those seen in early HIV infection.

We next evaluated the relationship between HIV infection and the antibody response to a 

different, chronic infection that was expected to have a high prevalence in the study setting 

(Epstein-Barr virus [EBV]). Data used to calculate the breadth of the antibody response to 

EBV infection were obtained from the same VirScan datasets used for HIV analysis (Figure 

2C). In most participants, EBV antibody breadth was relatively stable in the first 6 months of 

HIV infection, and then declined. EBV antibody breadth then appeared to stabilize in 

participants who did not start ART for HIV infection. In contrast, in most participants who 

started ART, EBV antibody breadth increased after ART initiation; in 16 (66.7%) of these 

cases, EBV antibody breadth after ART initiation exceeded the highest level observed prior 

to ART.

In this study, antibody reactivity to rabies virus and Ebola virus was used to normalize data 

for HIV prior to analysis (to adjust for sample-to-sample differences in sequencing depth). 

Antibody reactivity to these viruses most likely reflected non-specific antibody binding, 

since participants in the GS study did not have these infections. In contrast to the high 

antibody breadth values observed for HIV and EBV, antibody breadth values for these 

“control” viruses were very low (maximum antibody breadth value: 5).

Factors Associated with Changes in Antibody Breadth over Time

To explore the relationship between the decline in HIV antibody breadth and subsequent 

ART initiation, we calculated the rate of change of antibody breadth over the period ~9 

months to ~2 years after HIV infection (based on sample availability); none of the 

participants included in the analysis was on ART during this time window. For this time-to-

event analysis (the outcome being time to ART initiation), participants were divided into two 

groups: those with declining breadth and those with stable or increasing breadth. We found 

that participants who had stable or increasing antibody breadth ~9 months to ~2 years after 

infection were less likely to start ART earlier in infection (log-rank test, p = 0.009; hazards 

ratio, 0.29; 95% confidence interval: 0.11, 0.78; p = 0.014; Figure 3). The average time 

between the study visits used to evaluate the change in antibody breadth (~9 months and ~2 

years after infection) was similar in the two groups (p = 0.28), so this was not likely to have 

biased the analysis.

We next evaluated the relationship between the rate of decline in antibody breadth and other 

factors, including age at infection, baseline CD4 cell count, rate of decline in CD4 cell 

count, and viral load set point (Figure 4). A faster decline in antibody breadth was strongly 

associated with lower baseline CD4 cell count (R = 0.42; 95% confidence interval: 

0.17,0.62; p = 0.002) and higher viral load set point (R = −0.43; 95% confidence interval: 

−0.62, −0.18; p = 0.001), and was also associated with earlier ART initiation (R = 0.28; 95% 

confidence interval: 0.01, 0.51; p = 0.043).
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Dynamic Changes in Antibody Binding

We next explored the relationship between HIV antibody specificity and the duration of HIV 

infection. First, we used a linear model to quantify the association between antibody binding 

and the duration of infection for the 3,384 HIV peptides in the VirScan library. This analysis 

was performed using all 403 samples in the discovery sample set. The model identified 309 

peptides that had a significant association between these two factors (p < 0.05 after adjusting 

for multiple comparisons using the Bonferroni method; Figure 5); 266 peptides had 

increasing antibody binding over time (positive association) and 43 peptides had decreasing 

antibody binding over time (negative association). The position of peaks representing 

increased versus decreased antibody binding were observed at different positions in the HIV 

genome. Peptides that had a strong positive association with duration of infection tended to 

cluster in the N-terminal gag region, the C-terminal pol region, and defined domains within 

the env region. In contrast, peptides that had a strong negative association with duration of 

infection clustered in the C-terminal gag region, and the middle of the pol region, with 

others scattered across the env region or located in non-structural (accessory) proteins, such 

as nef.

We then selected the four peptides that had the strongest independent association between 

antibody binding and the duration of HIV infection (Figure S3; Table S2). This included two 

peptides that had increased antibody binding over time (one in gp41; one in gp120) and two 

peptides that had decreased antibody binding over time (one in gag; one in pol). Antibody 

binding measures from each of the four peptides were combined in a simple linear model to 

generate a single, unweighted, four-peptide composite measure. The duration of infection 

predicted by this model was highly correlated with the observed (true) duration of infection 

(generalized estimating equations [GEE], p < 1 × 10−100; Figure 6A).

Most serologic assays developed for HIV incidence estimation measure general 

characteristics of the antibody response to HIV infection (e.g., antibody titer or avidity). 

Factors such as low viral load, low CD4 cell count, and ART can lead to misclassification of 

long-term infections as “recent” using those assays. Figure 6 shows the true and predicted 

duration of infection for samples with these characteristics. To evaluate the impact of these 

factors on “false-recent” misclassification by the four-peptide model, we calculated the 

proportion of long-term infections (defined here as >1-year duration) that were misclassified 

as recent infections (defined here as <6 months) in different groups. None of the “challenge” 

samples (on ART, viral load <400 copies/mL, or CD4 cell count <350 cells/mm3) was 

misclassified as “recent” by the four-peptide model (Table S3). We also compared data from 

the four-peptide model with data obtained using the limiting antigen avidity (LAg-avidity) 

assay, which is widely used for cross-sectional HIV incidence estimation (Figure S4) (Wei et 

al., 2010). That analysis shows that data from the four-peptide model is more strongly 

correlated with duration of HIV infection than data from the LAg-avidity assay.

We next evaluated the performance of the four-peptide model using an independent 

validation sample set (Table S1). This set consisted of samples from individuals in the GS 

study who were not included in the discovery set that was used to identify the model 

peptides. This sample set also included “challenge samples” that have characteristics known 

to complicate cross-sectional HIV incidence estimation using other serologic assays: 28 
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(38.9%) of the samples were HIV subtype D; 37 (51.4%) had CD4 cell counts <350 

cells/mm3; 16 (22.2%) had viral loads <1,000 copies/mL, and 12 (16.7%) were from 

individuals on ART. The duration of infection predicted by the four-peptide model was also 

correlated with the observed (true) duration of infection using this independent sample set 

(GEE, p < 3 × 10−36; Figure 6D). Figure 6D shows the true and predicted duration of 

infection for subtype D samples; the distribution of those data was similar to the distribution 

of data for subtype C samples, suggesting that the performance of the four-peptide model 

was similar in these two subtypes.

Epitope Engineering

Next, we explored whether peptide epitopes could be modified to improve the association 

between antibody binding and the duration of HIV infection. We first selected 11 non-

overlapping peptides that were targeted by the majority of HIV-infected individuals (“public 

epitope peptides”). We then generated variant peptides by substituting each set of three 

consecutive amino acids with alanine residues. Figure 7 shows the impact of alanine 

substitutions on antibody binding for 2 of the 11 parent peptides; these peptides were 

targeted by >98% of the study participants. In the first case (parent peptide A), antibody 

binding to the parent peptide and most of the variant peptides decreased with increasing 

duration of infection (Figure 7A). Alanine substitutions at amino acid positions 26–34 

appeared to disrupt antibody binding at all time points. In the second case (parent peptide 

B), antibody binding to the parent peptide and most of the variant peptides increased with 

increasing duration of infection (Figure 7B). In this case, alanine substitutions at amino acid 

positions 13–21 preferentially disrupted antibody binding early in infection. Figure 7C 

shows the level of antibody binding as a function of duration of infection for parent peptide 

B and variant peptides that had alanine substitutions in the region most impacted by 

mutagenesis (nine peptides, with substitutions at positions 13–21). Over the course of HIV 

infections assessed in our study, antibody binding to the parent peptide increased by 57%; in 

contrast, antibody binding to one of the variant peptides increased by approximately 479% 

over the same time period. These data provide proof-of-principle that epitope engineering 

can be used to improve the capacity of peptides to serve as quantitative biomarkers of 

disease processes, such as the duration of HIV infection.

DISCUSSION

This study provides the most comprehensive analysis of HIV antibody specificities to date, 

including their characterization from early- to late-stage infection. We found that changes in 

antibody diversity early in infection were associated with differences in clinical outcome 

(measured as time to ART initiation). This study also provides proof-of-principle that an 

“HIV serosignature,” reactivity to a panel of HIV peptides, may be useful for cross-sectional 

HIV incidence estimation.

We used the measure, “antibody breadth,” to quantify HIV antibody diversity and found that 

this measure reaches a plateau (“antibody breadth set point”) early in infection in individuals 

who do not start ART. In the GS study cohort, a decline in antibody breadth between 9 

months and 2 years after infection was associated with a shorter time to ART initiation, 
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which was prompted in the GS study cohort by a decline in CD4 cell count to <250 

cells/mm3. The decline in antibody breadth among those who subsequently started ART 

likely reflected declining B cell support due to loss of T helper cells. HIV antibody breadth 

appeared to stabilize at a low level after ART initiation. In contrast, the breadth of the EBV 

antibody response increased sharply after ART initiation, which may have reflected immune 

reconstitution (Sharma and Soneja, 2011). While these observations provide important 

insights into the immune response to HIV infection, antibody breadth measurements 

generated with the VirScan assay are unlikely to be useful for monitoring HIV infection in 

clinical settings. Use of CD4 cell counts to monitor HIV disease progression is well 

established, and CD4 cell count data were more strongly correlated with time to ART 

initiation than antibody breadth in this study.

Previous studies have identified several factors associated with HIV disease progression, 

including virologic factors (e.g., HIV viral load [Touloumi et al., 2013], replication capacity 

[Ng et al., 2014], and subtype [Baeten et al., 2007]), immunologic factors (e.g., inversion of 

the CD4/CD8 ratio [Margolick et al., 2006], polyclonality of the anti-HIV T cell response 

[Pantaleo et al., 1997], and degree of early immune activation [Fahey et al., 1990]), and host 

factors (e.g., human leukocyte antigen [HLA] type B57 [Costello et al., 1999] and CCR5 

delta 32 mutations [Huang et al., 1996]). It is not clear whether the decline in antibody 

breadth that we observed caused disease progression leading to ART initiation, or whether it 

was a surrogate for other changes, such as a decline in T cell number or function. If the 

decline in antibody breadth has a causative role in disease progression, then use of 

therapeutic vaccines to boost antibody diversity may in theory provide clinical benefit.

Generalized antibody responses to HIV infection, such as antibody titer and avidity, tend to 

plateau approximately 1 year after HIV infection (Busch et al., 2010). These characteristics 

of the antibody response are impacted by a variety of factors, including natural and drug-

induced viral suppression (Koenig et al., 2013; Wendel et al., 2017; Kassanjee et al., 2014), 

disease progression (Laeyendecker et al., 2012b), and HIV subtype (Longosz et al., 2014, 

2015). Previous studies evaluating the banding pattern in western blots demonstrate that HIV 

antibody specificity evolves early in infection (Fiebig et al., 2003). Recent studies have 

explored whether assays that include a small number of protein or peptide targets could be 

used to identify recent HIV infections (Dotsey et al., 2015; Curtis et al., 2012). Using the 

VirScan assay to analyze 403 plasma samples, we were able to quantify antibody binding to 

>3,300 HIV peptides from early- to late-stage HIV infection. These data were used to 

generate a simple, unweighted, four-peptide model that predicted duration of HIV infection. 

Data from the prototype four-peptide model were more strongly correlated with duration 

than data from the LAg-avidity assay that is in wide use for cross-sectional HIV incidence 

estimation (Figure S4) (Wei et al., 2010).

The peptides included in this prototype model were from four different HIV proteins (gp41, 

gp120, gag, and pol). Two of these peptides had increasing antibody reactivity over time, 

and two had decreasing antibody reactivity over time. It is noteworthy that the gp41 peptide, 

which showed the strongest association with duration of infection, included a sequence 

shared by the HIV subtype B target peptide in the LAg assay. Our analysis also 
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demonstrated that epitope engineering can be used to enhance the capacity of individual 

peptides to discriminate between early and late HIV infection.

The VirScan assay has several advantages over alternative multiplex serological assays for 

peptide discovery. These advantages include quantitative assessment of antibody binding to 

peptides that span all open reading frames in the HIV genome, including both structural and 

regulatory proteins; representation of a wide range of HIV subtypes and strains, including 

groups M, N, and O, and HIV-2 (Table S4); and fine resolution for epitope identification, 

which can be further refined with alanine scanning mutagenesis. The assay also provides 

information about antibody binding to >200 other human viruses. In this report, data from 

other viral peptides were used to normalize peptide binding measures and allowed us to 

compare the impact of ART on the antibody response to a prevalent non-HIV viral infection 

(EBV). Data from the same assay runs could be used to examine the evolution and fine 

specificity of antibodies to other viruses, and the impact of viral co-infections on the anti-

HIV antibody response. Future studies could also explore use of the VirScan assay to 

identify serosignatures for estimating incidence of other viral infections, such as hepatitis C 

virus. Finally, future phage libraries composed of additional protein products, such as those 

from the gut microbiome, may be used to explore the impact of immune system pre-

conditioning on the response to HIV infection.

Data obtained in this study provide proof-of-principle that the VirScan assay can be used to 

identify peptides for applications such as cross-sectional HIV incidence estimation. 

Considerable work is needed to translate findings from this study into a laboratory test that 

can be used for improved cross-sectional HIV incidence testing. We are now evaluating 

antibody reactivity to peptides identified with the VirScan assay using a quantitative, multi-

peptide electrochemiluminescent assay that has a wide dynamic range for antibody 

reactivity. Our preliminary data indicate that this platform provides measures of antibody 

reactivity that are strongly correlated with antibody reactivity data from the VirScan assay. 

This system will facilitate analysis of large sample sets to obtain the additional data needed 

to identify optimal serosignatures for cross-sectional HIV incidence estimation and related 

applications. This simpler assay system could ultimately be used as the testing platform for a 

serosignature-based HIV incidence assay.

Further evaluation of serosignatures will be performed using sophisticated statistical and 

machine learning approaches that we used in previous studies to evaluate multi-assay 

algorithms for cross-sectional incidence estimation (e.g., algorithms included the LAg-

Avidity assay, other serologic assays, CD4 cell count and HIV viral load) (Konikoff et al., 

2013; Laeyendecker et al., 2018). Those studies used large datasets from individuals with 

HIV infection duration ranging from 1 month to >8 years (e.g., data from 2,442 samples 

from 278 adults with subtype C infection [Laeyendecker et al., 2018]; data from 1,782 

samples from 709 adults with subtype B infection [Laeyendecker et al., 2013]). We will use 

the electrochemiluminescent assay described above to obtain peptide-binding data for the 

same sample sets. We will use those data to compare serosignatures that include different 

sets of peptides, weighting for individual peptides, and different cutoffs for antibody binding 

to each peptide included in the models; the analyses will also determine key performance 

characteristics of different serosignatures (e.g., the mean window period for recent 
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infection). As a final step, performance of serosignatures will be validated by comparing 

cross-sectional HIV incidence estimates to HIV incidence observed in longitudinal trials and 

cohort studies.

This study has several limitations. One limitation of the VirScan assay is that it does not 

allow evaluation of discontinuous or highly conformational epitopes, or epitopes that include 

post-translational modification, such as glycosylation. In this study, we used protein A/G-

coated magnetic beads for immunoprecipitation of all IgG subclasses. Analyses of IgA or 

specific IgG subclasses may provide complementary information (Kadelka et al., 2018). 

Another limitation of this report is that the sample cohort included only women. The 

samples in the discovery set all had subtype C HIV; the validation set included subtype C 

and D samples. Further studies are needed to compare these data to data from samples from 

other geographic regions where other HIV subtypes and strains circulate. The preliminary 

studies described in this report also did not include viremic controllers who naturally 

suppress HIV infection, or individuals who initiated ART early in infection. It would be 

worthwhile to evaluate the serologic responses to HIV infection in those populations, since 

viremic control and early suppression of viral replication can impact the production and 

evolution of HIV antibodies (Koenig et al., 2013).

This study provides detailed information on the humoral response to HIV infection over 

time and demonstrates the utility of the VirScan assay for identifying peptide biomarkers for 

applications such as cross-sectional HIV incidence estimation. This technology could also 

be used to evaluate serologic responses to other infectious diseases, as well as the impact of 

viral co-infections on immune responses. This may improve understanding of the complex 

relationships between viral infections and the immune responses that they elicit.

STAR★METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for reagents may be directed to, and will be fulfilled by the 

corresponding author H. Benjamin Larman (hlarman1@jhmi.edu). Use of the VirScan 

library is subject to MTA with Brigham & Women’s Hospital.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Ethics statement—This study was approved by the Institutional Review Board of the 

Johns Hopkins University. The study involved analysis of data and samples collected in the 

Hormonal Contraception and HIV Genital Shedding (GS) Study. The study was conducted 

according to the ethical standards set forth by the Institutional Review Board of Johns 

Hopkins University and the Helsinki Declaration of the World Medical Association. All 

participants were adults who provided written informed consent.

Samples used for analysis—Plasma samples (Table S1) were obtained from the GS 

Study (Uganda and Zimbabwe; 2001–2009), which evaluated the relationship between 

hormonal contraceptive use, genital shedding of HIV, and HIV disease progression among 

women with known dates of HIV seroconversion (Morrison et al., 2011). ART was 

recommended for study participants with CD4 cell counts below 250 cells/mm3, consistent 
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with local treatment guidelines at the time the GS Study was performed. Data for CD4 cell 

count and viral load were collected in the GS Study (Morrison et al., 2011); data on the 

timing of ART initiation was obtained by review of clinic records.

We analyzed samples from participants who acquired HIV infection, where the maximum 

time between collection of the last HIV-negative sample and the first HIV-positive sample 

was four months. For each individual, the estimated date of infection was defined as either 

the midpoint between visits with the last negative HIV antibody test and the first positive 

HIV antibody test, or fifteen days before documentation of acute infection (HIV RNA 

positive/HIV antibody negative status). HIV-1 LAg-Avidity EIA (SEDIA Biosciences 

Corporation Portland, OR) was performed on all samples according to the manufacturer’s 

instructions. Two sets of samples were analyzed in this report: a discovery sample set (403 

samples from 57 individuals; Table S1) and a validation sample set (72 samples from 32 

individuals; Table S1). The discovery sample set included participants who had at least one 

year of follow-up after seroconversion, with samples collected at three or more study visits 

during that period. The independent validation sample set included samples from 

participants from the GS Study who were not included in the discovery sample set. HIV 

subtype assignments were based on phylogenetic analysis of the HIV env C2V3 region 

(Morrison et al., 2010). All of the samples in the discovery sample set were HIV subtype C; 

the validation sample set also included “challenge” samples with HIV subtype D, which are 

often misclassified using currently available serologic HIV incidence assays (Longosz et al., 

2014, 2015).

Sample size estimation was not performed. All samples meeting study inclusion criteria 

were analyzed (Table S1). Only one group allocation was performed: individuals who did or 

did not initiate anti-retroviral therapy. These data were obtained from the original clinical 

study.

METHOD DETAILS

Phage library used for analysis—The VirScan library includes 3,384 HIV peptides 

spanning all HIV proteins (Xu et al., 2015). The protein sequences used to design peptide 

tiles were selected from the UniProtKB database, balancing sequence diversity and library 

size (Xu et al., 2015). The peptides are 56-amino acids long with 28-amino acid overlaps 

and represent diverse HIV subtypes and strains (Table S4). In this study, the VirScan library 

was augmented with a public epitope library that included peptides previously found to be 

targeted by a high proportion of HIV-infected individuals (Xu et al., 2015). Eleven “parent” 

peptides in the public epitope library were modified by introducing triple alanine 

substitutions centered at each amino acid position; the resulting public epitope library 

included 594 genetically-engineered variant HIV peptides. Silent nucleotide substitutions 

were encoded in the first 50 nucleotides of each DNA tile, so that variant peptides could be 

uniquely identified using 50-nucleotide single-end Illumina sequencing.

The VirScan library also includes 2,263 Epstein-Barr virus (EBV) peptides, 718 Ebola virus 

peptides, and 518 rabies virus peptides; the public epitope library includes an additional 227 

Ebola virus peptides. In this report, EBV data were used to evaluate the impact of 

antiretroviral therapy for HIV infection on the breadth of the anti-EBV antibody response. 
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Ebola and rabies virus data were used to normalize antibody binding data to account for 

differences in sequencing depth between samples.

Phage immunoprecipitation and DNA sequencing—Detailed procedures for the 

VirScan assay were described previously (Mohan et al., 2018; Xu et al., 2015). In this study, 

the concentration of IgG in plasma samples was determined using an in-house enzyme-

linked immunosorbent assay (capture and detection antibodies 2040–01 and 2042–05, 

respectively Southern Biotech, Birmingham, AL). Approximately 2 mg of IgG from each 

sample were added to the combined T7 bacteriophage VirScan and public epitope libraries 

(1 × 105 plaque forming units for each phage clone in each library), diluted in phosphate-

buffered saline to a final reaction volume of 1 mL in a deep 96-well plate, and incubated 

overnight at 4 °C. Eight mock immunoprecipitation reactions (no plasma) were included on 

each plate; these reactions served as negative controls for data normalization. After rotating 

the plates overnight at 4°C, 20 μL of protein A-coated magnetic beads and 20 μL of protein 

G-coated beads (catalog numbers 10002D and 10004D, Invitrogen, Carlsbad, CA) were 

added to each reaction; the plates were rotated for another 4 hours at 4°C. 

Immunoprecipitation reactions were processed using the Agilent Bravo liquid handling 

system (Agilent Technologies, Santa Clara, CA). Beads were washed twice with Tris-

buffered saline (50 mM Tris-HCl with 150 mM NaCl, pH 7.5) containing 0.1% NP-40 and 

then resuspended in 20 μL of a polymerase chain reaction (PCR) mix containing Herculase 

II Polymerase (catalog number 600679, Agilent Technologies). After 20 cycles of PCR, 2 μL 

of the PCR products was added to a second 20-cycle PCR reaction, which added sample-

specific barcodes and P5/P7 Illumina sequencing adapters to the amplified DNA. DNA 

sequencing of the pooled PCR products was performed using an Illumina HiSeq 2500 

instrument (Illumina, San Diego, CA) in rapid mode (50 cycles, single end reads).

QUANTIFICATION AND STATISTICAL ANALYSIS

Each plasma sample was profiled using VirScan without technical replication (“n=1”).

Analysis of DNA sequencing data—Fastq files from DNA sequencing were 

demultiplexed using exact matching of 8-nucleotide sample-specific i5 and i7 DNA barcodes 

(Illumina). For each sample, a read count (the number of times each sequence was detected) 

was obtained for each peptide using Bowtie alignment (Langmead et al., 2009), without 

allowing any mismatches. The level of antibody-dependent enrichment of each peptide in 

each sample was determined by comparing the read count for the sample to the read counts 

obtained for 40 mock immunoprecipitation reactions (8 mock reactions per plate). Two 

different measures were used to quantify the degree of antibody binding: “z-scores” were 

used to reduce false positivity in cases of low sequencing depth (this approach was used to 

generate data for Figure 1 and for calculation of antibody breath); “relative fold-change” was 

used to normalize data for highly-enriched peptides (this approach was used to generate data 

for Figures 5, 6, 7, and S2). Z-scores were calculated by subtracting the expected normalized 

read count (determined by regression against the mock immunoprecipitation reactions) from 

the observed normalized read count; the resulting value was then divided by an estimate of 

the standard deviation of the normalized read counts, based on the mock 

immunoprecipitation reactions (Yuan et al., 2018). Relative fold change values were 
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quantified as peptide logarithmic relative fold changes. Since effects and errors for 

proteomic data and technologies such as RNA-seq data are typically believed to be on a 

multiplicative scale, we log10 transformed the read counts after adding one read count for 

each peptide in each sample, as is customary in these settings. This results in effects and 

errors acting on an additive scale, which for example is required in the linear models 

employed. In order to normalize the read count data, peptides from Ebola virus and rabies 

virus (under the assumption the participants had not been infected with these viruses) were 

used after trimming by removal of outlier values (the lowest 5% and highest 5%). The log10 

transformed read count for each HIV peptide (after adding one read count) was then 

normalized to the average read count for all Ebola virus and rabies virus peptides of the 

respective sample. To generate a fold change value for each HIV peptide, while accounting 

for biased peptide representation in the library, the normalized value of the peptide was 

divided by the average of the normalized values for the same peptide observed across the 

mock immunoprecipitation reactions that were run on the same plate (a subtraction on the 

logarithmic scale).

Determination of antibody breadth—The term, “antibody breadth,” was used to 

indicate the number of unique non-overlapping epitopes that had high levels of antibody 

binding (z-scores > 10). Antibody breadth was determined for HIV and EBV peptides using 

network graphs as follows. The amino acid sequences of all peptides in the VirScan library 

(HIV or EBV) were first analyzed to identify sequence overlaps (linkages, defined as two 

peptides sharing an identical sequence at least 7 amino acids long). The linkages were used 

to construct an undirected network graph, where each node represented a peptide with high-

level antibody binding, and each linkage between two nodes represented a sequence overlap 

between the two peptides. The number of linkages for each peptide defined its degree of 

connectivity. Peptides were then removed from the graph one at a time using the following 

approach. At each iteration, the peptide(s) with maximum connectivity was removed, and 

the degree of connectivity was recalculated for each of the remaining peptides. If multiple 

linked peptides had equivalent connectivity, the peptide with the lowest z-score was removed 

first. This process was repeated until the only remaining structures in the network were 

simple paths and cycles. For cycles (simple paths without end peptides), the peptide with the 

lowest z-score was removed first; this resulted in a simple path. Peptides were iteratively 

removed from simple paths in order to retain the greatest number of unlinked peptides. The 

number of remaining unlinked peptides was defined as the antibody breadth (Monaco et al., 

2018).

Rate of change in antibody breadth—For each participant, we estimated the rate of 

change in antibody breadth over the time period from 9 months to 2 years after HIV 

infection. This was calculated by determining the difference in antibody breadth for samples 

collected closest to time points 9 months and 2 years after HIV infection, and dividing this 

value by the length of time between the two visits. The rate of change in CD4 cell count was 

derived in the same way, using samples that had associated CD4 cell count data. Since study 

participants were recommended to start ART when CD4 counts fell below 250 cells/mm3, 

time to ART initiation was used as a surrogate for disease progression. As described in the 

text, we examined differences in time to ART initiation between two groups: individuals 
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with increasing or stable antibody breadth and individuals with decreasing antibody breadth. 

Inspection of scaled Schoenfeld residual plots across time and tests for independence 

between the Schoenfeld residuals and time indicated no significant violation of the 

proportional hazards assumption of the model. The relationship between the rate of change 

in antibody breadth (and other factors) with time to ART initiation was determined using 

Cox proportional hazards models. The following factors were included in the analysis: age at 

seroconversion, CD4 cell count at the first visit after seroconversion, viral load set point, the 

rate of change in CD4 cell count, and time between HIV seroconversion and ART initiation. 

Viral load set point was defined as the median log10 viral load, excluding viral load results 

from the first HIV-positive visit, the visit prior to ART initiation, and any visits after ART 

initiation. Pearson correlation coefficients and their respective p values and 95% confidence 

intervals were used to describe the relationships between the factors analyzed. We also 

compared the time to ART initiation among individuals who experienced a decline in 

antibody breath between 9 months and 2 years, and those who had stable or increasing 

antibody breadth in this period. Statistical significance between the breadth measures and 

time to ART initiation was assessed using a non-parametric log-rank test and the semi-

parametric Cox proportional-hazards model with a dichotomized variable for change in 

breadth rate (decreasing versus stable/increasing). Individuals who did not initiate ART were 

treated as right-censored. Survival curves were plotted based on the resulting hazard 

functions for the two groups.

Identification of peptides for estimating duration of HIV infection—The observed 

duration of infection (log10 transformed) was regressed on each of the normalized read count 

for each peptide, and the peptide with the strongest association was selected. To select 

additional peptides with independent information about duration of infection, we correlated 

the “residuals” (i.e., the differences between the observed and fitted values) from the above 

linear model against each of the remaining peptides, selected the peptide with the strongest 

association, and repeated this step twice more to generate a list of four peptides. Two of the 

four peptides had increased antibody binding over time since infection (positively associated 

with duration of infection), and two had decreasing antibody binding over time (negatively 

associated with duration of infection). Since the absolute values of the four peptide 

parameter estimates were almost identical, a simpler prediction model for duration of 

infection was calculated, using the sum of the normalized read counts for the positively-

associated peptides, minus the sum of the normalized read counts for the negatively-

associated peptides, as independent variable (reducing the number of linear model 

parameters from five to two). For the analysis of predicted duration of infection, generalized 

estimating equations (GEE) were used to account for auto-regressive correlation structure of 

samples from the same individual. No substantial model violations were detected by 

inspecting residual errors by histograms and quantile-quantile plots when investigating the 

linear models used to predict observed duration of infection. The validity and usefulness of 

the final model was corroborated using a completely independent validation dataset (72 

samples from 32 participants in the GS Study; Table S1).
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Reactivity to >3,300 HIV peptides is quantified using a phage display system

• Antibody diversity (breadth) is associated with CD4 decline and HIV 

treatment

• Defined sets of peptides have increasing or decreasing reactivity over time

• A prototype four-peptide “serosignature” predicts duration of HIV infection
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Figure 1. Antibody Reactivity to Peptides Spanning the HIV Proteome
(A) The size and position of open reading frames (ORFs) in the HIV genome.

(B–D) Plotted relative to genomic coordinates for HIV (HXB2, NCBI #NC_001802), shown 

at the bottom of the figure.

(B) The plot shows the number of peptide tiles encoded by the VirScan library at each 

position across the HIV genome.

(C) The plot shows the average level of antibody binding (average z-score) for each peptide 

for the 403 samples in the discovery sample set; each dot represents antibody binding for a 

single peptide in the VirScan library.

Eshleman et al. Page 19

Cell Rep. Author manuscript; available in PMC 2019 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(D) The plot shows the percentage of study participants who had a high level of antibody 

binding for each peptide (z-score > 10).

(E) A heatmap of the level of antibody binding for peptides in the VirScan library as a 

function of duration of HIV infection. The position of peptides is shown on the x axis; the 

duration of infection is shown on the y axis. z-scores are noted according to the color bar on 

the right; lighter colors (higher z-scores) indicate a higher level of antibody binding. For 

each sample, data are plotted in order of increasing z-scores, since many points were 

overlapping. ORF, open reading frame; mo, months; yr, years; kb, kilobases.
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Figure 2. Breadth of Antibody Reactivity
(A) The relationships between peptides that were highly enriched (z-score > 10) are 

displayed as a network graph; data are from a single representative sample. Peptides (nodes) 

are indicated by circles. Darker red indicates peptides with higher z-scores. Overlapping 

peptides that share amino acid sequences form clusters in the graph; the position of the 

peptides in HIV proteins is noted for each cluster (the HIV protein is listed first, followed by 

numbers that represent the range of amino acid positions of the N termini of peptides in the 

cluster). Peptides are linked (connected by lines) if they share an identical sequence of at 

least seven consecutive amino acids. In this case, network graph analysis of 573 reactive 
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peptides identified 45 unique peptide specificities (circles outlined in black), corresponding 

to an antibody breadth value of 45.

(B and C) Antibody breadth is plotted as a function of duration of HIV infection. The top 

two graphs (B) show breadth data for HIV peptides; the bottom two graphs (C) show breadth 

data for EBV peptides. Each line represents results from a single study participant. The two 

graphs on the left show data for participants who did not start anti-retroviral treatment in the 

GS study (no ART; N = 33); the two graphs on the right show data for participants who 

reported starting antiretroviral treatment (ART; N = 24). Data from samples collected after 

treatment initiation are shown in red (on ART). Dark blue lines indicate the locally weighted 

regression (lowess) curves for all participants in each graph. Additional analyses of these 

data are shown in Figure S1.

Env, envelope; Pol, polymerase; Gag, group-specific antigen; Rev, HIV regulatory protein; 

Vpu, viral protein U; ART, antiretroviral treatment; mo, months; yr, years; EBV, Epstein-

Barr virus.
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Figure 3. Relationship between Changes in Antibody Breadth and Time to ART
Time-to-event (survival) analysis is shown for the outcome of time from HIV infection to 

antiretroviral treatment initiation (time to ART), comparing participants with declining 

versus stable or increasing antibody breadth (shown in red and blue, respectively). The 

change in antibody breadth was calculated for the time period between 9 months and 2 years 

after HIV infection, using samples collected closest to these dates. The median sample 

collection times were 0.8 years for the visit 9 months after infection (range, 0.55–0.98 years) 

and 1.5 years for the visit 2 years after infection (range, 1.26–3.12 years); the median time to 

ART initiation was 3.34 years (range, 1.16–6.35 years). Data from two participants were 

removed for this analysis (one did not have viral load data and one started ART <2 years 

after HIV infection). The survival curves are based on estimated hazard ratios (lines) with 

95% confidence intervals (shaded areas). The number of participants at risk (number at risk; 

not yet on ART) at each time point is shown below the graph for each participant group.

Ab, antibody; ART, antiretroviral therapy; Decr, decreasing antibody breadth; Non-Decr, 

stable or increasing antibody breadth.
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Figure 4. Association of Changes in Antibody Breadth and Other Factors
We evaluated the relationship between the changes in antibody breadth between 9 months 

and 2 years after infection, time to initiation of antiretroviral therapy (ART), and other 

factors.

(A) This plot shows univariate (pairwise) associations, reported as estimated Pearson 

correlation coefficients and respective p values, between pairs of factors. Solid lines indicate 

correlations that were statistically significant after correction for multiple comparisons (p < 

0.05/ 15 = 0.0033).

(B) The array shows histograms of data for factors evaluated for their association with time 

to ART initiation (diagonal). The array also shows scatterplots of the data (upper right) and 
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summary statistics (lower left) for all pairwise comparisons. Summary statistics include the 

estimated Pearson correlations with 95% confidence intervals and the respective p values. 

Units for variables are as follows: age (years); viral load set point (log10 copies/mL); 

baseline CD4 cell count (baseline CD4; cells/mm3); change in the antibody breadth between 

9 months and 2 years after HIV infection; change in CD4 cell count between 9 months and 2 

years after HIV infection (cells/mm3); time to ART (years).
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Figure 5. Association of Antibody Binding and the Duration of HIV Infection
(A) The plot shows data evaluating the association of antibody binding (normalized read 

counts) and the duration of HIV infection for 3,327 peptides in the VirScan library that had 

well-defined positions in the HIV genome. p values were calculated using generalized 

estimation equations to account for the dependency between measurements over time from 

the same individual, and were adjusted using the Bonferroni correction based on all 3,384 

identified HIV peptides. The x axis shows the position of each peptide, and the y axis shows 

the corresponding Bonferroni adjusted p value. Black dots represent peptides where 

antibody binding was positively associated with the duration of infection (266 peptides with 

adjusted p < 0.05); red dots represent peptides where antibody binding was negatively 

associated with the duration of infection (43 peptides with adjusted p < 0.05).

(B) The figure shows the position of open reading frames (ORFs) in the HIV genome 

(reproduced from Figure 1A).
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Figure 6. Use of a Four-Peptide Model to Predict Duration of HIV Infection
Four peptides were selected from the VirScan library that had the strongest independent 

association between antibody binding and the duration of HIV infection. This included two 

peptides that had increasing antibody binding over time, and two peptides that had 

decreasing antibody binding over time (Figure S3).

(A–C) Data from these four peptides (normalized read counts) were summed to generate a 

composite antibody binding score for each of the 403 samples in the discovery sample set 

that was used to identify the four peptides (Table S1). The plots show the observed duration 

of HIV infection (y-axes) and the duration of HIV infection that was predicted using a 
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simple linear regression model based on the composite antibody binding score for the four 

peptides (x-axes). In the graphs, each dot represents data from a single sample. The same 

data are plotted in (A)–(C). Red dots represent data obtained for samples collected after 

antiretroviral treatment (ART) initiation (A), for samples with viral load <1,000 copies/mL 

(B), and for samples with CD4 cell counts <350 cells/mm3 (C).

(D) The four-peptide model described above was used to predict the duration of HIV 

infection in an independent sample set that included 72 samples from 32 participants in the 

GS study (validation sample set; Table S1).

Data were analyzed and plotted using the same methods used for (A)–(C). Red dots 

represent data obtained for samples with subtype D HIV. Correlation values are r = 0.79 and 

r = 0.64 for (A)–(C) and (D), respectively, under the assumption that data points are 

independent.
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Figure 7. Peptide Engineering
Antibody data are shown for two representative parent peptides and their respective variant 

peptides generated by alanine scanning mutagenesis. High levels of antibody binding (z-

scores > 10) were observed in samples for all but one of the 57 participants for parent 

peptide A (98.2%) and for all 57 participants for parent peptide B.

(A and B) These panels show heatmaps of antibody binding for each set of peptides (the 

parent peptide and 54 variant peptides with triple alanine substitutions at different positions 

within the peptide); the position of the alanine substitution in each variant peptide is shown 

on the y-axes. These parent peptides were selected due to their decreasing reactivity (A) or 
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increasing reactivity (B) over time. Antibody binding data are shown as a function of 

duration of HIV infection (x-axes).

(C) The blue line shows antibody binding data (normalized read counts) for the parent 

peptide included in the analysis in (B) (parent peptide B) and selected variant peptides. 

Black lines show data for variant peptides with triple alanine substitutions at amino acids 

12–17 and 19–21; the red line shows data for the variant peptide with the triple alanine 

substitution at amino acid 18.

nrc, normalized read count; mo, months; yr, years.
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