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Abstract: Propolis is a natural resinous material produced by bees and has been used in folk medicines
since ancient times. Due to it possessing a broad spectrum of biological activities, it has gained
significant scientific and commercial interest over the last two decades. As a result of searching 122
publications reported up to the end of 2019, we assembled a unique compound database consisting
of 578 components isolated from both honey bee propolis and stingless bee propolis, and analyzed
the chemical space and chemical diversity of these compounds. The results demonstrated that
both honey bee propolis and stingless bee propolis are valuable sources for pharmaceutical and
nutraceutical development.

Keywords: honey bee propolis; stingless bee propolis; natural products; phenolics; terpenoids;
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1. Introduction

The emergence of new infectious and chronic diseases makes the need for new drugs paramount [1].
Although the search for new drugs can begin from different sources, natural products have proven to
be one of the richest sources of bioactive ingredients and molecules with privileged scaffolds for the
discovery and development of new and novel drugs [2–6]. They were historically the sources of all
folk medicines [7]. Having evolved over millions of years, structures of natural products have been
fine-tuned by nature for optimal bioactivity [5]. Modern studies revealed natural products possess an
advantageous structural foundation and cover a wide range of biologically relevant chemical space that
cannot be efficiently explored by synthetic compounds [8–10]. These features positively influence the
probability of the clinical success of natural product-based drug candidates [11]. A detailed analysis of
1394 new small molecule drugs approved by the US Food and Drug Administration (FDA) between
1981 and 2019 [6] revealed that 32% of those drugs were natural products or direct derivatives of
natural products.

Propolis, which is a product of bees, has been used in the folk medicine of many cultures to
treat microbial infections since the year 300 B.C. [12]. The name “propolis” originally came from the
Greek words meaning “defence of the city” (“pro” meaning “to defend” and “polis” meaning the
city) [13]. Historically, the Greeks and the Romans used propolis for treating bruises and suppurating
sores; the Egyptians applied propolis for embalming cadavers and preventing infections; the Arabians
utilised propolis as an antiseptic, a wound healing agent, and a mouth disinfectant; the Incas described
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propolis as an antipyretic agent [14]. Owing to its antibacterial characteristics, propolis was approved
as an official drug in the London pharmacopoeia in the 17th century and, since then, has become
more popular [15]. Propolis was also used to treat wounds during World War II (1939–1945) [14].
In 1969, propolis was approved as human and veterinary drugs with several applications, including
the treatment of tuberculosis in the Union of Soviet Socialist Republics [14].

Since the early 21st century, there has been a significant increase in scientific publications on propolis
(Figure 1). Studies validated the antimicrobial property of propolis extracts and discovered additional
therapeutic properties, including antioxidant, anti-inflammatory, antidiabetic, dermatoprotective,
antiallergic, laxative, immunomodulatory, and anticancer activities [16]. Nowadays, propolis is
used in pharmaceutical and cosmetic industries as a unique natural constituent in cough syrups,
dietary supplement tablets, antiacne creams, facial and body creams, ointments, lotions, toothpastes,
and mouthwash products [17]. It has also been used in some foods and beverages as an alternate
preservative agent or food supplement [13]. The first patent referring to propolis was described in
1904 with a claim of using propolis as one of the compositions to treat piano pins and strings [18].
Propolis-related patents numbered about 500 by the end of the 20th century and increased dramatically
by almost three-fold and nine-fold in the first and second decades of the 21st century, respectively.
The number of patents referring to propolis from 2011 to 2019 accounted for 50% of its total publications
in the same period (Figure 1). Medicinal and nutraceutical products were observed in high frequency
in these patent applications.
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Over the last two decades, the relationships between the pharmacological properties of propolis
and its components have attracted the attention of the scientific community. It is known that
raw propolis, in general, consists of about 50% resin, 30% wax, 10% essential oils, 5% pollen,
and 5% others (including amino acids, peptides, dead bees, and soil) [19]. By employing different
chromatography and spectroscopic techniques, such as thin layer chromatography, gas chromatography
(GC), high-performance liquid chromatography (HPLC), mass spectroscopy (MS), and nuclear magnetic
resonance spectroscopy (NMR), over 300 volatile and non-volatile components have been identified in
propolis [20]. Among them, phenolics and terpenoids have been confirmed to play important roles in
the biological activities of propolis [17,21–23].

Several comprehensive reviews have reported the natural compositions found in
propolis [13,17,20,24–30] and their biological activities [13,14,16,22–24,31–35]. However, the chemical
space and the chemical diversity of propolis components have been underexplored. In this article,
we review all compounds isolated from both honey bee propolis (HBP) and stingless bee propolis (SBP),
which have been fully characterized and reported in the literature up to the end of 2019. Compounds
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identified from GC-MS and LC-MS were excluded in this study. As a result of the search, we assembled
a database with 578 unique compounds. The chemical space and chemical diversity of the propolis
components were characterized to assess their potential for future developments as pharmaceuticals
and nutraceuticals.

2. Propolis Components: Chemistry and Geographical Distributions

2.1. Propolis Classification

2.1.1. Honey Bee Propolis

The honey bee genus Apis is the only genus of the tribe Apini in the Apidae family [36]. This genus
consists of 11 species, including A. andreniformis, A. binghami, A. breviligula, A. cerana, A. dorsata, A. florea,
A. koschevnikovi, A. laboriosa, A. mellifera, A. nigrocincta, and A. nuluensis [36]. These bees are well known
for their production of honey, as well as being the pollinator of the majority of the worlds commercial
fruit crops [36]. Apis mellifera, which is the most common species of honey bee, is indigenous to Europe,
Africa, and the Middle East, but nowadays has been found in almost all regions of the world [28].
It has been known that A. mellifera produces a high yield of propolis, while other honey bee species
provide relatively small or no propolis [21,36].

Honey bee propolis (HBP) is produced mainly from the exudates of plant tissues, such as flower
buds, bark and fruit, mixed with saliva and beeswax by bees [24]. The bees gather plant exudates,
often referred to as resin, which contain substances involving chemical defense systems to protect
plants against their herbivores, bacteria, fungi, moulds and viruses, during the warm part of the
day when resin is soft [36]. The bees pack resins on their hind legs and transport them back to the
hive to fill hive cracks, reducing the size of the hive entrance to prevent the invasion of other insects
and to seal up the inside of the hive by mixing it with wax to maintain an antiseptic environment
for the colony and larvae [37,38]. Physically, propolis is soft, pliable, and very sticky when warm,
but becomes hard and brittle when cold. Its melting point is around 65 ◦C, but in some samples it is
as high as 100 ◦C [17]. It has a pleasant aromatic smell and varies in colour depending on its plant
sources and age [24]. On average, one bee can bring 10 mg propolis per flight to its hive, and one
colony collects about 50–150 g propolis annually [39]. With the application of specialised collection
procedures, the sub-species of the European honey bee, A. mellifera causasica, can produce 250–1000 g
of propolis annually, per hive [21,40].

2.1.2. Stingless Bee Propolis (Cerumen or Geopropolis)

Stingless bees belonging to the tribe Meliponini, in the Apidae family, are the largest group of eusocial
bees on Earth, and are closely related to the common honey bee, A. mellifera [41]. About 619 stingless
bee species in 61 genera have been found in tropical regions of America (South and Central Americas),
Africa, Southeast Asia, and Northern Oceania [41]. It is estimated that 40–90% of native or cultivated plant
species in the tropics are pollinated by stingless bees [33]. Compared to honey bees, stingless bees have
many different features, including colony size, nesting biology, brood comb composure, bee queen
production, stocking strategy, and bee recruitment mechanisms [41]. The most significant difference is
that they are ‘stingless’, which refers to the fact that their sting is highly reduced, and they do not use it
for defense. Instead, some stingless bees develop other methods to protect themselves, such as a strong
bite or increasing the pain of the bite by producing formic acid through their mandibular glands [29].

Both honey bees and stingless bees are able to produce propolis (Figure 2). While the honey bee’s
nests are structurally double-sided hexagonal combs built primarily from wax and their hives are
sealed by propolis resin, the nests of stingless bees are more complex with a great variety of forms and
size, and are made primarily from a propolis-based substance called cerumen [42]. The terms cerumen
and propolis are used interchangeably in the literature with respect to stingless bees. Propolis from



Int. J. Mol. Sci. 2020, 21, 4988 4 of 35

stingless bees is sometimes found as a mixture of resin and clay or soil. Therefore, this product is also
called geopropolis [29].
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2.2. Chemical Components of Propolis

Chemical investigations of HBP have been undertaken since the mid-20th century. However, the
literature reports of the discovery of HBP compositions were relatively small prior to 1996, with a
significant increase since 2010 (Figure 3). Potentially, this increase in interest was stimulated by the
scientific validation of the pharmacological properties of HBP during the late 1990s and early 2000s [30].
Up to December 2019, there were 502 different natural products isolated and characterised from
materials collected in 40 countries (Figures 4 and 5C, and Supporting Information 2). In contrast,
propolis produced by stingless bees has only relatively recently been studied with the first isolation of
three diterpenes from the Brazilian Melipona quadrifasciata anthidioides SBP in 2000 [43]. In the early
2000s, most studies were dedicated to Brazilian SBP. However, more recently the number of publications
on SBP from Southeast Asia and Australia has grown significantly. A total of 100 compounds have
been identified from SBP from 2000 to 2019 (Figure 4, and Supporting Information 2). A total of 24 of
the 100 compounds have been previously identified in HBP.

America, particularly Central and South America, is a continent where the most HBP
compounds (352 compounds) have been identified and reported, followed by Asia (166 compounds),
Africa (100 compounds), Europe (72 compounds), and Oceania (68 compounds) (Figure 5A). Among
the 40 countries where compounds have been isolated and identified from HBP, Brazil is a leader with
158 compounds discovered, followed by Mexico (69 compounds), Nepal (37 compounds), Australia
(36 compounds), and Greece (35 compounds) (Figure 5C).
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In term of SBP, most compounds have been reported from Asian SBP (Figure 5B). Only seven
countries, including Brazil (Melipona interrupta [126], M. quadrifasciata anthidioides [43], M. seminigra [126],
M. scutellaris [139], M. subnitida [122], and Tetragonula (Trigona) spinipes [88] bees), Indonesia (Tetragonula
aff. biroi [42], T. sapiens [160], and T. incisa [136] bees), Malaysia (Heterotrigona itama [149] bee), Philippines
(Tetragonula biroi [137] bee), Thailand (Tetragonula laeviceps [138], T. pagdeni [151], and Tetrigona
melanoleuca [138] bees), Vietnam (Lisotrigona cacciae [157], L. furva [153], and Tetragonula minor [146,152]
bees), and Australia (Tetragonula carbonaria [131,140] bee) have published their SBP studies (Figure 5D).
Vietnam is leading the numbers of compounds isolated from SBP, with 34 compounds, followed
by Brazil (29 compounds) and Thailand (19 compounds). Australia is the only representative of
Oceania reporting eight compounds identified from SBP. Interestingly, there are no reports of isolated
compounds from African SBP, although the extracts of Kenyan SBP Dactylurina schimidti [163] and
Nigerian SBP Dactylurina studingeri [164] were reported to have an antimicrobial activity (Figure 5B).

Collation and analysis of the compounds isolated from HBP and SBP revealed that phenolics and
terpenoids were the two compound classes that were most often found in propolis. Figures 6A and 7A
highlighted that phenolic compounds were dominant, with 79.5% and 63.0% of compounds isolated
from HBP and SBP, respectively. Following the ways of the phenolic sub-class classification utilized
in previous propolis reviews [20,26,165], nearly 30 sub-classes of phenolics were found in HBP but
only half of them were identified in SBP (Figures 6B and 7B). Phenylpropanoids (20.1%) and flavanone
(12.5%) were commonly present in HBP (Figure 6B), while flavanone (20.6%) and xanthone (20.6%)
were often found in SBP (Figure 7B).
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The terpenoids accounted for 18.9% of all compounds found in HBP and 37.0% in SBP (Figures 6C
and 7C). They consisted of triterpenoids, diterpenoids, sesquiterpenoids, and monoterpenoids. The HBP
diterpenes and triterpenes were similarly represented, with 46.3% and 45.3%, respectively. However,
triterpenes occupied the highest proportion of compounds identified in SBP, with 86.5%. Approximately
6.0% of terpenoids identified in both types of propolis were sesquiterpenes. Only two monoterpenes,
tschimgin and tschimganin, have been reported so far [107]. These two compounds were isolated from
Iranian HBP of which a plant Ferula spp. is their botanical source [107]. Interestingly, only 5 out of 578
propolis compounds were identified as glycoside compounds including isorhamnetin-3-O-rutinoside
from Cretan (Greek) A. mellifera HBP [96], ent-8(17)-labden-15-O-α-l-rhamnopyranoside,
and ent-8(17)-labden-15-O-(3′-O-acetyl)-α-l-rhamnopyranoside from Salvadorian A. mellifera HBP [64],
and naringenin-4′-O-β-d-glucopyranoside and myricetin-3-O-β-d-glucopyranoside from Brazilian
Melipona interrupta and M. seminigra SBP [126].

2.3. Characteristic Chemical Class of Propolis

According to the chemo-geographic data, Bankova [165] classified six main HBP types, consisting
of (a) Poplar propolis from Europe, North America, and the non-tropical regions of Asia, containing
flavones, flavanones, and phenylpropanoids; (b) Birch propolis from Russia containing flavones and
flavonols; (c) green propolis from Brazil containing prenylated phenylpropanoids; (d) red propolis from
Cuba and Venezuela containing polyprenylated acylphloroglucinols; (e) Pacific propolis from Okinawa
and Taiwan containing prenylated flavanones; and (f) Canarian propolis from Canary Islands containing
furofuran lignans. More recently, Salatino and his co-workers [26] suggested five HBP types based on
climate zones, including (a) temperate poplar propolis derived from Populus spp. with flavonoids,
esters of phenylpropanoids; (b) Brazilian tropical green propolis with prenylated phenylpropanoids and
caffeoylquinic acids; (c) Brazilian tropical brown propolis derived from Clusia spp. with polyprenylated
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acylphloroglucinols; (d) sub-tropical and tropical Pacific propolis derived from Macaranga spp.,
with geranyl flavonoids; and (e) Greek, Cretan, and Turkish propolis (Mediterranean region) with
either diterpenoids or anthraquinones. Several reviews of SBP reported the chemical compositions
and their biological activities [29,30,166]. However, most of the compounds reviewed were identified
by HPLC, GC-MS, and LC-MS. In this review, we only included fully characterized compounds from
HBP and SBP and categorized them based on their chemical classes (Figure 8).

Flavanone, flavone and phenylpropanoid, particularly phenylpropanoid esters, are often found
from temperate HBP in Africa, America, Asia, Europe, and Oceania (Figure 8A). These compounds
were likely foraged from Populus spp. (Algeria [124,154], Mexico [101], Uruguay [68], China [120],
Bulgaria [45], and the Netherlands [65]), Zuccagnia punctate (Argentina [98]), Liquidambar styraciflua
(Honduras [119]), Pinus halepensis (Jordan [113]), Styrax spp. (Thailand [123]), Betula verrucosa
(Russia [25]), or Xanthorrhoea spp. (Australia [44]) (Table 1). Pinocembrin, chrysin, and caffeic acid
phenyl ester (CAPE or phenethyl caffeate) are three common compounds present in these types
of propolis. They showed a wide range of biological activities such as antioxidation, anticancer,
antimicrobes, anti-inflammation, neuroprotection, and hepatoprotection (Table 2) [167–169].
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Table 1. Botanical sources of propolis categorized by chemical class.

Plant Species Plant Family Characteristic Chemical Class Bee Species Country

Acacia paradoxa Fabaceae Chalcone
Flavanonol A. mellifera Australia [121]

Anacardium occidentale Anacardiaceae Cycloartane-type triterpene A. mellifera Brazil [90]

Araucaria heterophylla Araucariaceae Labdane-type diterpene A. mellifera Brazil [48]

Azadirachta indica Meliaceae Prenylated flavanone A. mellifera Oman [125]

Baccharis spp. Asteraceae

Flavanone/Flavanonol
Flavone/Flavonol

Phenylpropanoid ester
Prenylated phenylpropanoid

Labdane-type diterpene

A. mellifera Brazil [53,59]

Betula verrucosa Betulaceae Flavone/Flavonol A. mellifera Russia [25]

Bursera simaruba Burseraceae Cycloartane-type triterpene A. mellifera Mexico [158]

Cistus spp. Cistaceae Labdane-type diterpene A. mellifera Algeria [124]

Clusia spp. Clusiaceae Polyprenylated
acylphloroglucinol A. mellifera Cuba [66] and Venezuela [77]

Corymbia torelliana Myrtaceae Flavanone/Flavanonol T. carbonaria Australia [131]
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Table 1. Cont.

Plant Species Plant Family Characteristic Chemical Class Bee Species Country

Dalbergia spp. Fabaceae

Pterocarpan
Isoflavone
Isoflavane

Dalbergione

A. mellifera
Brazil [89], Cuba [81,129],

Mexico [103], Nepal [78,86,87],
and Nigeria [141,154]

Garcinia mangostana Guttiferae Xanthone
T. laeviceps
T. pagdeni
L. cacciae

Thai [138,151] and Vietnamese
[157]

Kielmeyera sp. Calophyllaceae Coumarin M. scutellaris Brazil [139]

Lepidosperma spp. Cyperaceae Stilbene A. mellifera Australia [121,145]

Liquidambar styraciflua Altingiaceae Flavanone
Phenylpropanoid ester A. mellifera Honduras [119]

Macaranga spp. Euphorbiaceae Prenylated flavanone A. mellifera

Japan [75,85], Taiwan [70,84],
Fiji [143], Solomon Island

[106,117,118], Egypt [92,100]
and Nigeria [141]

Mangifera indica Anacardiaceae Cycloartane-type triterpene
A. mellifera

Tetragonula sapiens
T. minor

Brazil [79], Indonesia [114,160],
Myanmar [93], Thailand [148],

Vietnam [146]

Pinus halepensis Pinaceae Flavanone/Flavanonol
Flavone/Flavonol A. mellifera Jordan [113]

Populus spp. Salicaceae Flavanone/Flavone
Phenylpropanoid ester A. mellifera

Algeria [124,154], Mexico [101],
Uruguay [68], China [120],

Bulgaria [45], Netherland [65]

Styrax spp. Styracaceae
Flavanone/Flavanonol

Flavone/Flavonol
Phenylpropanoid ester

A. mellifera Thailand [123]

Xanthorrhoea spp. Xanthorrhoeaceae Flavanone A. mellifera Australia [44]

Zuccagnia punctate Caesalpinieae Flavanone/Flavonol A. mellifera Argentina [98]
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Prenylated flavanone-type compounds, which were previously classified as a chemical marker
of Pacific HBP, have been found not only in Asia (Japan [75,85], Oman [125], and Taiwan [70,84]),
and Oceania (Fiji [143] and Solomon Island [106,117,118]), but also in Africa (Egypt [92,100] and
Nigeria [141]). These compounds originated from Macaranga spp. (predominantly M. tanarius) and
Azadirachta indica (Table 1). A representative of this compound class is propolin G, which has been
found to have strong antioxidant, neuroprotective, and hepatoprotective properties (Table 2) [37,170].

Two sub-classes of isoflavanoids, pterocarpan and isoflavane, have been found from HBP in America
(Brazil [89], Cuba [81,129], and Mexico [103]), Asia (Nepal [78,86,87]) and Africa (Nigeria [141,154]). Dalbergia
spp. has been known as a botanical source of these specific propolis (Table 1). Two compounds, medicarpin
and vestitol, that were frequently isolated in these HBP, both exhibited antibacterial activity [171,172].
Moreover, medicarpin was found as a potential anticancer and bone healing agent [173,174], while
vestitol showed potent antioxidant and anti-inflammatory properties [171,175,176] (Table 2).

Labdane-type diterpene compounds, which were previously classified as major chemical
components of Mediterranean HBP, have been found from HBP not only in the Mediterranean
area (Greece [96,105], Italy [73], Algeria [124], and Libya [133,161]) but also in America (Brazil [48,53]
and Colombia [95]). Botanical sources of these compounds were determined from Araucaria heterophylla
(Brazil [48]), Baccharis spp. (Brazil [53]) and Cistus spp (Algeria [124]) (Table 1). The labdane-type
diterpenes in propolis, particularly isocupressic acid, showed strong antibacterial and antitrypanosomal
activities (Table 2) [48,73,161].

Cycloartane-type triterpenes have been identified from African (Cameroon [130,132], Libya [161]
and Nigeria [147]), American (Brazil [67,79,90] and Mexico [158]) and Asian (Indonesia [114],
Myanmar [93], and Thailand [148]) HBP. Plant sources of these triterpenes were identified from
Anacardium occidentale (Brazil [90]), Bursera simaruba (Mexico [158]) and Mangifera indica (Brazil [79],
Indonesia [114], Myanmar [93], and Thailand [148]) (Table 1). Mangiferonic acid, which is a common
compound in these propolis, exhibited antidiabetic, antitrypanosomal, and antimalarial properties
(Table 2) [37,147,161].

Whilst finding similar components in propolis is relatively common, propolis of different continents
also has their characteristic chemical classes. The Brazilian green propolis from Baccharis spp. is a source
of a prenylated phenylpropanoid, artepillin C, which exhibits a wide spectrum of biological activities
including antioxidation, anticancer, antibacteria, antifungi, antitrypanosome, and anti-inflammation
(Table 2) [177,178]. The South American brown propolis (mainly in Cuba and Venezuela) from Clusia spp.
is famous for its high content of polyprenylated acylphloroglucinols. Nemorosone in this propolis
showed potent antioxidant, anticancer, antileishmanial, antitrypanosomal, and antiviral properties
(Table 2) [66,179]. The Nepalese propolis from Dalbergia spp. is characterized by the presence of the
open-chain neoflavonoids dalbergione. The compound, 4-methoxydalbergione, and its analogues,
are known to contribute to the anticancer and anti-inflammatory activities of this propolis (Table 2) [180].
In Australia, HBP collected in Kangaroo Island, South Australia, is unique with a large number of
stilbenes accumulated from the exudates of the Australian native sedge plant Lepidosperma spp. [121,145].
The Kangaroo Island propolis displayed four times stronger antioxidant activity than the Brazilian
green propolis [116]. The compound, 5,4′-dihydroxy-3,3′-dimethoxy-2-prenyl-(E)-stilbene, present
in this propolis, inhibited the growth of cancer cell lines more potently than the anticancer agent
tamoxifen (Table 2) [145].

With regards to SBP components (Figure 8B), flavanone-rich propolis are common in Asia
(Indonesia [42] and Philippines [137]), America (Brazil [88,122]) and Oceania (Australia [131]). In addition
to flavanone, Thai [138,151], and Vietnamese [157] SBP are particularly rich in xanthones. Studies
indicated Garcinia mangostana, which is a common plant in both countries, is a botanical source of
these propolis [138,151,157]. A major xanthone component of Thai and Vietnamese SBP, α-mangostin,
has antioxidant, anticancer, anti-inflammatory, antibacterial, antimalarial, antiviral, anti-obesity,
and neuroprotective activities [181]. One type of Brazilian SBP originating from the plant Kielmeyera sp.
contained coumarin-type compounds as chemical markers [139]. Cinnamoyloxy-mammeisin present in
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this Brazilian SBP exhibited anti-inflammatory and antibacterial activities (Table 2) [182,183]. Similarly
to honey bees in Brazil [79], Myanmar [93], and Thailand [148], stingless bees in Indonesia [160]
and Vietnam [146] also collect resin from Mangifera indica to produce propolis containing mainly
cycloartane-type triterpenes.
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Table 2. Representative compounds in propolis with known biological activities.

Compound Chemical Class Phenotypic Activity Molecular Target Activity

Artepillin C Prenylated phenylpropanoids

Antibacteria (inhibition of B. cereus, B. Subtilis, M. lysodeikticus, P.
aeruginosa, E. aerogenes, M. smegmatis, S. faecalis, E. coli, C. equi,

and S. aureus [177])
Antifungi (inhibition of C. albicans, C. tropicalis, C. neoformans,

S. cerevisiae, A. fumigatus, A. flavus, A. niger, M.canis, M. gypseum,
E. floccosum, T. rubrum, and T. mentagrophytes [177])

Antitrypanosome (inhibition of trypomastigote forms of
T. cruzi [184])

Antioxidation (in vivo inhibition of lipid peroxidation [185])
Anticancer (inhibition of human cancer cell lines [186–188])

Anti-inflammation (in vitro and in vivo inhibition of NO through
NF-κB [178])

Caffeic acid phenyl ester—CAPE
(Phenethyl caffeate) Phenylpropanoid ester Antibacteria (inhibition of S. aureus, B. subtilis, and P. aeruginosa [189])

Antivirus (inhibition of AH1N1 [189] and hepatitis C virus [190])

Antioxidation (inhibition of 5-lipoxygenase [191])
Antivirus (inhibition of HIV-1 integrase [192])
Anti-inflammation (in vivo inhibition of COX-

2 [193], inhibition of NF-κB [194], in vitro and in vivo scavenging
of NO and modulation of iNOS expression [195])

Anticancer (inhibition of protein kinase C [196], in vitro and
in vivo inhibition of MMP-2, MMP-9 and VEGF [197])

Neuroprotection (scavenging ROS [198])
Hepatoprotection (in vivo inhibition of CYP2E1 [199])

Chrysin Flavone
Neuroprotection (in vitro and in vivo inhibition of

acrylamide-induced toxicity [200])
Antivirus (inhibition of enterovirus 71 [201])

Anticancer (in vitro and in vivo activation of Notch1 signalling
[202], regulating MMP-10 and epithelial-mesenchymal transition

[203], inhibition of HIF-1a [204])
Anti-inflammation (in vivo inhibition of COX-2 and iNOS [205])

Neuroprotection (inhibition of NF-κB and iNOS [206])
Antidiabetes (inhibition of AGE-RAGE mediated oxidative stress

and inflammation [207])

Cinnamoyloxy-mammeisin Coumarin
Antibacteria (inhibition of methicillin-resistant S. aureus adherence to

host cells and disruption of biofilm development [183])
Toxicity (low acute toxicity on Gallleria mellonella larvae model [183])

Anti-inflammation (in vivo reduction of neutrophil migration by
inhibiting the release of TNF-α and CXCL2/MIP-2 associated

with inhibition of ERK 1/2, JNK, and p38 MAPK phosphorylation,
AP-1, and NF-κB [182])

5,4′-Dihydroxy-3,3′-dimethoxy-
2-prenyl-(E)-stilbene Stilbene

Antioxidation (scavenging DPPH radical [116])
Anticancer (inhibiting the growth of NCI-60 cancer cell

lines growth [145])

Isocupressic acid Diterpene Antibacteria (inhibition of S. aureus [48,73])
Antitrypanosome (inhibition of T. brucei [161])

Mangiferonic acid Triterpene Antitrypanosome (inhibition of T. brucei [147,161])
Antimalaria (inhibition of P. falciparum [161]) Antidiabetes (in vitro inhibition of α-glucosidase [208])

α-Mangostin Xanthone

Antibacteria (inhibition of S. epidermidis [209], and S. aureus biofilm
formation [210])

Antimalaria (inhibition of P. falciparum [211])
Antivirus (inhibition of severe dengue virus [212])

Anticancer (inhibition of fatty acid synthase [213], PERK [214])
Anti-inflammation (inhibition of p65 acetylation, COX-2 and

iNOS [215])
Neuroprotection (inhibition of self-induced β-amyloid

aggregation [216])
Anti-obesity (inhibition of PPARγ [217])
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Table 2. Cont.

Compound Chemical Class Phenotypic Activity Molecular Target Activity

Medicarpin Pterocarpan Antibacteria (inhibition of P. aeruginosa and B. cereus [172])
Antifungi (inhibition of T. versicolor [218])

Bone healing (in vivo bone generation by activating Wnt and
notch signalling in pre-osteoblasts [174], in vitro downregulation

of GRP78 [219])
Anticancer (Sensitizing human myeloid leukemia cells to
TRAIL-induced apoptosis [220], enhancing cytotoxicity of

chemotherapy drugs by modulating P-gp-mediated efflux [221])

(S)-4-Methoxydalbergione Dalbergione (Neoflavonoid)

Anti-inflammation (inhibition of the release of β-glucuronidase
and superoxide formation induced by phorbol

myristate acetate [180])
Anticancer (in vitro and in vivo suppression of osteosarcoma
cells through downregulation of JAK2/STAT3 pathway [180])

Nemorosone Polyprenylated
acylphloroglucinol

Antioxidation (scavenging DPPH radical [66])
Anticancer (inhibition of cancer cell lines [66])

Antibacteria (inhibition of P. larvae, P. alvei and S. aureus [222,223])
Antimalaria (inhibition of P. falciparum [223])

Antitrypanosome (inhibition of T. brucei and T. cruzi [223])
Antileishmania (inhibition of L. amazonensis and L. infantum [223])

Anticancer (activation of p300 histone acetyltransferase [224])

Pinocembrin Flavanone Antibacteria (inhibition of S. aureus [225])
Antimalaria (inhibition of P. berghei [226])

Neuroprotection (inhibition of MAPK, IκB, NF-κB p65 [167])
Anti-inflammation (inhibition of Th2 cytokines, IL-4, IL-5, IL-13,

IκBα, NF-κB p65 phosphorylation, MMP-1, MMP-3,
and MMP-13 [167])

Hepatoprotection (inhibition of ROS, PI3K/Akt and SMAD [167])

Propolin G Prenylated flavanone Antioxidation (scavenging DPPH radical) [84]

Hepatoprotection (disruption of TGF-β-Smad2/3 signalling by
reducing Smad2/3 formation) [170]

Neuroprotection (prevention of neuronal death against oxidative
stress challenges) [84]

Vestitol Isoflavane
Antibacteria (inhibition of S. aureus, S. mutans, S. sobrinus and

A. naeslundii growth) [171,175]
Anti-inflammation (in vivo inhibition of neutrophil migration) [171]
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3. Physicochemical Property Profiles and Chemical Diversity Analysis of Propolis Components

The chemical space and diversity coverage of HBP and SBP components reviewed in this work
were analysed using well-established descriptors and chemoinformatic methods. In order to assess
the potential of compounds isolated from HBP and SBP for the development of pharmaceuticals and
nutraceuticals based on the chemical structure perspective, the HBP and SBP molecular databases were
compared to two public repositories including a large collection of food chemicals (FC) (http://foodb.ca/)
and FDA-approved small molecule drugs obtained from Drugbank (DB) [227] (https://www.drugbank.
ca/) (Table 3).

Table 3. Summary of the datasets used for comparison.

Dataset Initial Compounds Unique Compounds b Source

HBP 502 a 471 This review
SBP 100 a 94 This review
FC 28,771 18,556 http://foodb.ca/
DB 2413 2077 https://www.drugbank.ca/

a Overlapped compounds were removed. b Compounds were obtained after being filtered with criteria defined in
Supporting Information 1.

Chemoinformatic analysis of the four databases (Figure 9A) indicated that 77% of HBP and 48%
of SBP compounds were unique, with 21% of HBP compounds and 40% of SBP compounds being
present in the FC database. Of the 24 compounds that were found in both HBP and SBP, 13 compounds
were also in the FC database. Four HBP compounds were found in the DB database whereas none
of SBP compounds were identified in DB. The four compounds shared between HBP, FC, and DB
included a fungistatic agent—benzoic acid [228]; an anaesthetic and antimicrobial agent—benzyl
alcohol [228]; a support agent in the diagnosis of allergic contact dermatitis—cinnamyl alcohol [228];
and an antineoplastic agent—nordihydroguaiaretic acid (masoprocol) [228] (Figure 9B).
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3.1. Physicochemical Property Profiles

From the analysis of approximately 2,500 drugs and candidate drugs reaching phase II clinical
trials, Lipinski and his co-workers [229] defined four simple physicochemical parameter ranges
(molecular weight ≤ 500, logP ≤ 5, hydrogen bond donor (HBD) ≤ 5, and hydrogen bond acceptor
(HBA) ≤ 10) as an empirical rule or guide to assess the potential cellular permeability of the molecule.
According to Lipinski’s rule, there is a high probability that bioactivity of the molecule via the oral
route of administration will be low if it has more than one violation of the four criteria. However,
meeting Lipinski’s rule (often referred to as the Rule of Five) is no guarantee that a compound is
drug-like [230,231]. By measuring the oral bioavailability of 1100 drug candidates in rats, Veber and
co-workers [230] found that the number of rotatable bonds (RB) and topological polar surface area
(tPSA) of a molecule link with its oral bioavailability. An RB of 10 or fewer and a tPSA of 140 Å2 or less
support the oral bioavailability. These two parameters became additional features to assess the oral
bioavailability property of potential drug-like molecules [230]. Therefore, the chemical space of the
HBP and SBP and two reference databases (FC and DB) was analysed based on the six physicochemical
properties (molecular weight, logP, HBD, HBA, rotatable bond, and tPSA) (Figure 10).

The molecular weight profile (Figure 10A) shows both HBP and SBP compounds are in a range
from 100 Da up to 700 Da (108.14 Da–709.20 Da for HBP compounds, and 256.26 Da–552.62 Da for SBP
compounds). Approximately 94% of HBP and SBP compounds have molecular weights below 500 Da,
while 60% of compounds in the FC and 83% in the DB are in this range. Most HBP compounds distribute
between 300 Da and 400 Da, while SBP compounds distribute relatively higher from 400 Da to 500 Da.
The logP histogram (Figure 10B) shows a logP distribution of HBP compounds ranging from 3 to 5,
which is similar to compounds in the FC and DB databases, whereas SBP compounds have logP mainly
distributing higher than 5. This result indicates that compounds identified from SBP are less polar than
those from HBP. This is consistent with the fact that a relatively large proportion of SBP compounds
(37.0%) are terpenoids, as compared to HBP (18.9%). It was found that an increasing number of HBD
and HBA hinders the permeability of a compound across a lipid bilayer membrane resulting in the
decrease in its oral bioavailability [229]. The distribution of the calculated HBD (Figure 10C) is similar
for both HBP and SBP compounds, with HBD being 5 or less. Of the HBP and SBP compounds, 98% are
Lipinski-compliant and most of the compounds possess 1–2 HBD. The HBA of HBP compounds range
from 3 to 5, while the HBA of SBP compounds reach a maximum at 6 (Figure 10D). Generally, the HBA
profile of HBP is relatively close to the HBA profile of the DB compounds but is different to that of SBP
compounds and food chemicals. Interestingly, 99% of HBP and SBP compounds have HBA of 10 or
less. The rotatable bond profiles of both HBP and SBP compounds (Figure 10E) show a similar pattern
to that of compounds in the DB database with approximately 95% of compounds falling within the
Veber-compliant rotatable bond region, while 88% and 64% of compounds in the DB and FC databases,
respectively, are in this region. The tPSA of HBP compounds peaks between 60–80 Å2, whereas tPSA of
SBP compounds is higher between 80–100 Å2 (Figure 10F). However, 97% of HBP and SBP compounds
have a tPSA of 140 Å2 or less, which is significantly more than compounds in the FC (74%) and DB
(85%) databases.

Overall, approximately 93% of both HBP and SBP components follow the Lipinski’s rule of five,
which is significantly greater than compounds of both the FC (59%) and DB (87%) databases (Figure 10G).
Taking Veber’s criteria into account (Figure 10H), about 91% of HBP and SBP compounds follow the
rule while only 50% of food chemicals and 79% of approved drugs were compliant. This analysis of the
physicochemical properties based on Lipinski and Veber descriptors indicates that there is relatively high
chance (about 90%) to find drug-like potential compounds with oral bioavailability in propolis sources.
When comparing physicochemical properties of HBP and SBP compounds with those of drugs derived
from natural products [232], HBP and SBP compounds are close to those of oral, topical and inhalant
drugs, and significantly different from injectable drugs (Supporting Information 1, Figure S1).
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3.2. Structural Diversity

3.2.1. Fingerprint-Based Diversity

Despite the fact that physicochemical properties represent an intuitive manner to describe
compound databases, they do not provide information of the atom connectivity and information of
the topology. For instance, it might happen that two molecules with different chemical structures
share similar or even identical drug-like properties based on the Lipinski and Veber descriptors.
Therefore, in addition to using physicochemical properties to characterize the HBP and SBP,
the datasets were further characterized by molecular fingerprints to describe rapidly, but efficiently,
the molecular structures based on their atom connectivity and topology, and complement the diversity
analysis of compound collections [233]. Molecular diversity analysis based on molecular fingerprint
representations provides information on the diversity of the entire molecule by comparing the presence
or absence of fragment fingerprint features within the molecule [234]. In this work, the molecular
diversity was computed using the well-known fingerprint representation Molecular ACCess System
(MACCS) keys (166-bits) and the Tanimoto coefficient [235]. High value of the Tanimoto coefficient
(close to one) indicates high structure similarity (based on that particular fingerprint), hence, a low
diversity. The cumulative distribution function of the pairwise MACCS keys fingerprints/Tanimoto
similarity values for each dataset (Figure 11A) indicated that SBP was less diverse than HBP. The relative
order of diversity was further confirmed by the median Tanimoto similarity values (Table 4) with 0.545
for SBP versus 0.479 for HBP. Having the median similarity values of 0.302 and 0.323, DB and FC were
the first and second diverse databases, respectively. The results of the fingerprint diversity for the
reference collections (FC and DB) are consistent with previous reports [236].
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Table 4. Summary of structural diversity of HBP, SBP, and reference datasets.

Dataset Size Chemotype Median
Similarity

Scaffold Diversity
(AUC)

Scaffold
Diversity (F50)

HBP 471 115 0.479 0.809 0.078
SBP 94 38 0.545 0.737 0.158
FC 3772 0.323 0.878 0.004
DB 2077 1164 0.302 0.707 0.144

3.2.2. Scaffold Diversity

To further characterize the diversity of compound datasets, molecular scaffolds are commonly
used in chemoinformatic analysis as they provide direct information of the molecular structure and are
intuitive to interpret [236,237]. A scaffold is defined as the core structure of the compound consisting
of all of its rings and connecting linkers [238]. A scaffold with a privileged substructure character
associated with specific biological activities can be used as a template for target-directed compound
development or compound library design [239]. In this analysis, the scaffold diversity of the four
databases was quantified using cyclic system recovery (CSR) curves, which represents a way to capture
the distribution of compounds in the cyclic systems of a compound collection [240]. The lower the area
under the CSR curve (AUC), the larger the scaffold diversity [241]. The graph (Figure 11B) indicated
that the DB database, being the closest to a diagonal, was the most diverse (AUC = 0.707). With an
AUC value of 0.737, SBP was the second most diverse dataset, followed by HBP (0.809) and FC (0.878).
The high scaffold diversity of the approved drug dataset was expected, not only because of the dataset
size but also because of the nature of the molecules (directed to a broad range of molecular targets and
therapeutic indications). However, it was remarkable that the SBP dataset had high scaffold diversity
regardless its relatively small size (94 molecules). As for the FC dataset, it has been shown that the low
scaffold diversity (despite the large size with 18,556 molecules) is due to the high number (32%) of
acyclic compounds [236].

The scaffold diversity can also be assessed from the CSR curves by the fraction of cyclic systems
required to retrieve 50% (F50) of the molecules of the dataset. Thus, larger F50 values indicate higher
diversity [241]. Based on this metric (Table 4), the diversity of the four databases decreased in the
following order: SBP > DB > HBP > FC. In general, both AUC and F50 values obtained from CSR
curves indicated that SBP had quantitatively higher scaffold diversity than HBP even though SBP
displayed less fingerprint-based diversity than HBP.

The comparisons of the scaffolds in HBP and SBP with the scaffolds in the FC and DB databases
(Figure 11C) indicated that HBP shared 14 scaffolds with both FC and DB compounds while SBP shared
five scaffolds with both FC and DB. Four scaffolds were identified to be present in all four datasets
including benzene, coumarin, flavane, and flavone scaffolds (Figure 11D). The analysis also revealed 56
unique scaffolds in 89 compounds of HBP and 10 unique scaffolds in 13 compounds of SBP (Supporting
Information 2). Approximately 50% of the unique scaffolds from HBP were found in tropical regions
and only 10% were found in temperate areas. In terms of SBP, only one unique scaffold was identified
in a sub-tropical area of Australia (South East Queensland) whereas the other nine unique scaffolds
were found from tropical regions. Several representative compounds containing the unique scaffolds
of HBP and SBP such as (2R,4R,6R)-4-hydroxy-2-methoxy-6-((S)-1-phenylallyl)cyclohexan-1-one [78],
hyperibone A [91], moronic acid [61], and cinnamoyloxy-mammeisin [182] exhibited potent
anti-bacterial, anti-HIV, and anti-inflammatory activities (Figure 12). About 30% of unique HBP
scaffolds and 60% of unique SBP scaffolds have not been assessed for their biological activities.
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4. Conclusions and Perspectives

It is generally accepted that the chemistry of propolis depends on the bee species and the flora of
the region inhabited by the bees. However, this study has shown that bees in different regions harvest
similar compounds from different plant families, such as chrysin, pinocembrin, mangiferonic acid,
and isocupressic acid. We also found that both honey bees and stingless bees are attracted by similar
flavanone and cycloartane-type triterpenes. Although the current literature does not identify the
mechanisms that drive bees to recognize the compounds, the coincidences in chemical components of
propolis indicate that bees actively and selectively forage plant resins containing bioactive compounds,
particularly antimicrobial compounds (antibacterial, antifungal, antiparasitic, and antiviral properties),
to protect themselves against pathogens and predators.

A unique compound database consisting of 502 compounds from HBP and 100 compounds from
SBP (of which 24 compounds overlapped between the two) was assembled in this work and is freely
accessible in the Supporting Information. Although HBP and SBP components are mainly phenolics
and terpenoids originally from plant resins, new and novel compounds in propolis continue being
identified. This study showed that over 90% of the compounds found from HBP and SBP have oral
bioavailability property and fit in the chemical space of drug-like molecules as defined by Lipinski’s
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and Veber’s rules [229,230], which is a greater proportion than is observed in the food chemical and
approved drug databases.

Chemical diversity analysis provided quantitative evidence that HBP had higher structural
diversity based on molecular fingerprints, but lower scaffold diversity than SBP. However, the larger
number of HBP compounds, as compared to SBP compounds (502 compounds versus 100 compounds),
could significantly affect the structural diversity analysis. Therefore, we may find that the SBP database
has higher structural diversity when additional SBP compounds are discovered. Despite the relatively
small number of compounds identified from HBP and SBP, they have provided access to 66 novel
scaffolds, which are not currently represented in food chemicals and approved drugs. Interestingly,
31 novel scaffolds from HBP and 9 novel scaffolds from SBP were from the compounds identified in
tropical regions where bees can access a wide range of floral sources, due to the high biodiversity in
the tropical zone. Although we remain largely unaware of their therapeutic benefits, research has
revealed that over 50% of compounds containing these unique scaffolds showed at least one biological
activity including anti-microbial, anti-inflammatory, and anticancer properties. The identification of
these novel scaffolds may be valuable starting points for future drug design and development to treat
infectious and chronic diseases.
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AGE Advanced glycation endproducts
AH1N1 Influenza A virus subtype H1N1
AP-1 Activator protein 1
AUC Area under the cyclic system recovery curve
CAPE Caffeic acid phenyl ester
COX-2 Cyclooxygenase-2
CSR Cyclic system recovery
CXCL2 Chemokine ligand 2
CYP2E1 Cytochrome P450 Family 2 Subfamily E Member 1
DB Drug bank
DPPH 2,2-Diphenyl-1-picrylhydrazyl
ERK 1/2 Extracellular signal-regulated protein kinase 1/2
FC Food chemicals
FDA Food and Drug Administration
GC Gas chromatography
GC-MS Gas chromatography—Mass spectrometry
GRP78 Glucose Regulated Protein 78
HBA Hydrogen bond acceptor
HBD Hydrogen bond donor
HBP Honey bee propolis
HIF-1a Hypoxia-inducible factor 1-alpha
HIV-1 Human immunodeficiency virus 1
HPLC High-performance liquid chromatography
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IL-4 Interleukin 4
IL-5 Interleukin 5
IL-13 Interleukin 13
iNOS Inducible nitric oxide synthase
JAK2 Janus Kinase 2
JNK Jun N-terminal kinases
LC-MS Liquid chromatography—Mass spectrometry
LogP Partition coefficient between octanol and water
MACCS Molecular ACCess System
MIP-2 Macrophage inflammatory protein 2
MMP-1 Matrix metalloproteinase-1
MMP-2 Matrix metalloproteinase-2
MMP-3 Matrix metalloproteinase-3
MMP-9 Matrix metalloproteinase-9
MMP-10 Matrix metalloproteinase-10
MMP-13 Matrix metalloproteinase-13
MS Mass spectrometry
NF-κB Nuclear factor kappa B
NMR Nuclear magnetic resonance
NO Nitric oxide
p38 MAPK p38 mitogen-activated protein kinases
PERK Protein kinase RNA-like endoplasmic reticulum kinase
PI3K Phosphoinositide 3-kinases
P-gp Permeability glycoprotein
PPARγ Peroxisome proliferator-activated receptor gamma
RAGE Receptor for advanced glycation endproducts
RB Rotatable bond
ROS Reactive oxygen species
SBP Stingless bee propolis
STAT3 Signal transducer and activator of transcription 3
TGF-β Transforming growth factor beta
TNF-α Tumor necrosis factor alpha
tPSA Topological polar surface area
TRAIL Tumor necrosis factor-related apoptosis-inducing ligand
VEGF Vascular endothelial growth factor
Wnt Wingless-related integration site
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