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Abstract: Serous carcinoma (SC) is the most common subtype of epithelial ovarian carcinoma and is
divided into four stages by the Federation of Gynecologists and Obstetrics (FIGO) staging system.
Currently, the molecular functions and biological processes of SC at different FIGO stages have
not been quantified. Here, we conducted a whole-genome integrative analysis to investigate the
functions of SC at different stages. The function, as defined by the GO term or canonical pathway
gene set, was quantified by measuring the changes in the gene expressional order between cancerous
and normal control states. The quantified function, i.e., the gene set regularity (GSR) index, was
utilized to investigate the pathogenesis and functional regulation of SC at different FIGO stages.
We showed that the informativeness of the GSR indices was sulfficient for accurate pattern recognition
and classification for machine learning. The function regularity presented by the GSR indices showed
stepwise deterioration during SC progression from FIGO stage I to stage IV. The pathogenesis of SC
was centered on cell cycle deregulation and accompanied with multiple functional aberrations as
well as their interactions.

Keywords: epithelial serous ovarian cancer; function; integrative analysis; gene expression
microarray; gene set; machine learning

1. Introduction

Epithelial ovarian cancers (EOC) are classified into several subtypes of heterogeneous diseases.
Serous carcinoma (SC) is the most common subtype of EOCs, accounting for approximately 70% of
them [1], and has a poor prognosis with a five-year survival rate of only 10%-20%. Based on findings
through surgical staging, the Federation of Gynecologists and Obstetrics (FIGO) system [2], the most
commonly utilized staging system, divides SC into four stages: stage I: tumor confined to ovaries;
stage II: tumor involves one or both ovaries with pelvic extension; stage III: tumor involves one or
both ovaries with cytologically or histologically confirmed spread to the peritoneum outside the pelvis
and/or metastasis to the retroperitoneal lymph nodes; and stage IV: distant metastasis. The prevalence
of stages I, II, III, and IV was 10.3%, 8.4%, 55% and 26.3% of total SC cases, respectively [3]. FIGO staging
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was established based on disease progression, including the primary site, lymph nodal draining and
metastatic sites. A considerable number of clinical studies have shown its applicability to evaluate
disease survival or the treatment response for SC.

As a complex disease, the carcinogenesis of SC evolves in a number of aberrant functions, and
these functions fluctuate with disease progression. Knowing how these functions deteriorate from SC
stage I to IV will facilitate the investigation of SC pathogenesis. Although the FIGO staging system
shows great consistence with the progression and disease severity of SC, it does not provide the
information about the regularity of cellular functions at different stages. Currently, the relationship
between the molecular functions or biological processes with different FIGO stages of SC has not
been measured. In this study, we conducted a gene set-based study to investigate and quantify the
molecular features of SC at different FIGO stages. This study integrated microarray gene expression
datasets from a publicly available database by converting them to gene expression orderings through
the gene ontology (GO) term or canonical pathway gene sets from the Molecular Signatures Database
(MSigDB) [4]. The GO term gene set database collected 1454 gene sets defining biological processes,
molecular functions or cellular components; the canonical pathway gene set database collected
1330 canonical pathways from the Kyoto Encyclopedia of Genes and Genomes (KEGG), Pathway
Interaction Database (PID), Reactome databases, etc. For simplicity, we refer to the molecular function,
biological process, cellular component and pathway defined by a gene set as a “function” in this study.
Currently, no databases can annotate the functionome, i.., all the biological functions in human bodies.
We utilized the two databases to annotate human functionome because they collected a relatively
comprehensive set of human functions. These functions were quantified by measuring the change in
the gene expression ranking between cancerous and normal states in a given gene set. This quantified
change in the gene expression ranking in a gene set was defined as the “gene set regularity (GSR)
index”, which measures the regularity of the function defined by that gene set. Then, the pathogenesis
of SC at different stages was evaluated with the GSR indices using statistical methods, set analysis
and exploratory factor analysis (EFA) to identify the most important deregulated functions and the
interaction network contributing to SC carcinogenesis.

2. Results

2.1. DNA Microarray Gene Expression Datasets and Gene Sets

A total of 1236 samples were initially collected from the Gene Expression Omnibus (GEO) database,
and 1029 samples remained in this study after the datasets that did not meet the criteria were removed.
The final dataset included 34, 39, 689, and 131 samples for SC stages I to IV, respectively, as well
as 136 normal control samples, as shown in Table 1. These data were collected from 35 datasets
containing five different DNA microarray platforms without missing data. Detailed information about
the samples, including the staging, DNA microarray platform, dataset series and accession numbers,
are presented in Table S1. The definitions of the gene sets were downloaded from the MSigDB (versions:
“c5.all.v5.1.symbols.gmt” and “c2.cp.v5.1.symbols.gmt”) for the GO term and canonical pathway gene
sets, which contained 1454 and 1330 gene set definitions. Because different genes were utilized in
different platforms, 1443, 1442, 1377 and 1440 GO gene sets and 1324, 1323, 1269 and 1322 canonical
pathway gene sets were ultimately utilized for the stage I-IV groups.
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Table 1. Sample number and mean gene set regularity indices for each group. The table displayed the
sample numbers, means and standard deviations (SDs) of the gene set regularity (GSR) indices for the
four stages and the normal ovarian tissue controls computed through the gene ontology (GO) term
gene sets. The gene expression profiles of the 136 normal ovarian tissue samples were utilized as the
control group for the stage I-IV groups.

Stage Case  Control Total Case Mean (SD) Control Mean (SD) p Value *

I 34 136 170 0.7425 (0.1511) 0.7752 (0.1370) <0.05
II 39 136 175 0.7088 (0.1745) 0.7752 (0.1369) <0.05
III 689 136 825 0.6483 (0.2007) 0.7738 (0.1548) <0.05
v 131 136 267 0.6197 (0.1922) 0.7737 (0.1413) <0.05

SD: standard deviation; * Mann-Whitney U test.

2.2. Means and Histograms of the Gene Set Regularity (GSR) Indices for the Four Stage Groups

The workflow of the GSR model is displayed in Figure 1 and described in detail in the Materials
and Methods section. The GSR index ranged from 0 to 1, where 1 represented no changes in the
gene expression ordering between the SC and the most common gene expression orderings in the
normal controls, and 0 represented completely different gene expression orderings from the normal
state, meaning the most chaotic state of gene set regularity. The informativeness of the GSR index
was evaluated by the accuracies of classification and predication using machine learning and the
functionome patterns generated from the 1454 GO terms or 1330 canonical pathway gene sets.

136 Normal ovarian tissue 1029 Ovarian stage I-IV
gene expression profiles serous cancer gene
expression profiles

GO term/canonical
pathway gene sets

| Computing GSR indices |

\ 4
" GSRindices

\ 4 A 4

Statistical methods and
exploratory factor analysis

Machine learning

Y

A 4

Binary or multiclass Pathogenesis of SC,
classification and function regulation for
prediction stage I-IV

Figure 1. Workflow of the gene set regularity model. The gene set regularity (GSR) index was computed
by converting the gene expression ordering of each sample in each group using the gene ontology
(GO) term or canonical pathway gene set. A machine-learning algorithm was trained to recognize the
patterns consisting of the GSR index matrices and then executed the binary (each stage vs. control
group) or multiclass (stage I to IV + control groups) classifications. The functionome analyses were
performed to investigate the pathogenesis of ovarian serous carcinoma (SC) using statistical methods,
hierarchical clustering and exploratory factor analysis.
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The differences in the GSR indices between each stage and the normal control group were
statistically significant (p < 0.05, Table 1), indicating that the functions were generally deregulated in
the SC group compared with the normal control group. As shown in Table 1, the averages of the GSR
indices decreased linearly from 0.7425 in stage I, to 0.7088 in stage II, 0.6483 in stage III and ultimately
0.6197 in stage IV, and the differences between two consecutive stage groups were also statistically
significant, indicating that the functional regulation deteriorated steadily from stage I to IV.

When displayed on the histogram (Figure 2), the GSR indices of each stage and control group
appeared to be overlapping, but they have different distributions. Compared with the same control
group, the distribution of the stage I group was similar to the control group, whereas a second group
of smaller GSR indices, which are located on the left side, appeared and grew in density from stage
II to IV. This result indicated that a group of deregulated functions existed and increased in number
during disease progression.
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Figure 2. Histograms of the gene set regularity indices for the stage I-IV and control groups. The figures
show the distributions of the GSR indices from the SC stage I-IV and control groups. The normal
control group (blue), which is located on the right side of the histogram, was the same for the four stage
groups. A second group of smaller GSR indices, which is located on the left side, was observed and
increased in density from stage I to IV (orange).

2.3. The Relationship of the Four Serous Carcinoma (SC) Stage Groups Revealed by Hierarchical Clustering

Unsupervised classification by hierarchical clustering was utilized to uncover the relationship
between the four stages and the unlabeled GSR indices. Based on function regularity, the order of
stages I to IV could be accurately recognized in the dendrogram (Figure 3). When displayed on the
heatmaps, the GSR indices of the four stages showed stepwise deteriorations in the functions that
were compatible with the severity of SC from stage I to IV. These findings indicated the GSR indices
could provide sufficient information to make a clear distinction among the four stage groups. It also
provided the evidence that the progression of SC stages I to IV classified by the FIGO staging system
was compatible with the severity of function regularity, as quantified by the GSR model.
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Figure 3. Heatmaps and dendrogram for the stage I-IV groups. The dendrogram (top of the heatmap)
show the relationship between the four stage groups. When displayed on the heatmaps, the GSR
indices of the four stages computed through either the GO terms or canonical pathway gene sets
showed distinct patterns and stepwise deteriorations in the functions from stage I to IV.

2.4. Function Regularity Patterns among the Four Stages Classified and Predicted by Machine Learning

Because distinct function regularity patterns were observed among the four stages of SC, as
shown in the histograms, we utilized machine learning to recognize, classify and predict the patterns to
evaluate the informativeness of the GSR indices. Supervised classification was performed by support
vector machine (SVM), and the performance was assessed by determining the accuracies of the binary
and multiclass classifications. The performance was tested by five-fold cross-validation. The results
showed the highest accuracy of 99.43% in stage IV and the lowest accuracy of 98.82% in the stage I
group. The areas under the curves (AUCs) ranged from 0.9692 to 0.9942 (Table 2). The accuracy of the
multiclass classification among the stage I-IV groups was 90.38%. This decreased accuracy probably
arose from the similarities in the functional regularity among the stage I-IV groups. These results
revealed that the functions, as quantified by the GSR indices converted from the microarray gene
expression profiles, can provide sufficient information for machine learning to recognize and perform
adequate recognition and classification. These results also indicated the GSR indices could be utilized
for molecular classification among gene expression profiles from different FIGO stages of SC.

Table 2. Accuracies of the binary and multiclass classifications and predictions by machine learning.
This table displayed the performances of the binary (each stage group vs. control group) and multiclass
classifications (the four stage groups + normal control group) and predictions by SVM using the GSR
indices computed through the GO terms. The sensitivities, specificities, areas under the curves (AUCs),
accuracies and standard deviation (SD) were measured by five-fold cross-validation. Each measurement
was computed from 10 cumulative results of the repeated classifications and predictions.

Classification Stage Sensitivity (SD)  Specificity (SD)  Accuracy (SD) AUC

I 0.9488 (0.0857) 1.0000 (0.0000) 0.9882 (0.0205) 0.9692
Binar II 0.9655 (0.0568) 1.0000 (0.0000) 0.9914 (0.0138) 0.9807
y III 0.9920 (0.0069) 0.9769 (0.0363) 0.9890 (0.0079) 0.9835
v 0.9929 (0.0149) 0.9961 (0.0121) 0.9943 (0.0091) 0.9942
Multiclass -1V NA NA 0.9038 (0.0054) NA

AUC, area under the curve; SD, standard deviation; NA, not available.
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2.5. The Most Significantly Deregulated Gene Ontology (GO) Terms and Canonical Pathways

The 1454 GO terms or 1330 canonical pathways among the four stages of SC groups were ranked
by their p values to show the most deregulated functions at different stages of SC. Table 3 displays the
15 most deregulated GO terms for the stage I-IV groups; all the p values were significant. The top
deregulated GO term for each stage group was “calcium channel activity”, “lysosomal membrane”,
“protein tyrosine kinase activity” and “lysosomal membrane”. Lysosomal membrane was also the
fiftth most deregulated GO term for the stage I group. The other important deregulated GO terms for the
stage I and II groups were those functions related to channel activity, transport, binding, metabolism,
cell development and maturation. Noticeably, the proportion of cell cycle-related GO terms increased
dramatically in stages III and IV. The 15 most deregulated canonical pathways for stages I to IV are
displayed in Table 4; all of the p values were significant. The top deregulated pathway for each stage
group was “Reactome CD28-dependent phosphoinositide 3-kinase-AKT (PI3BK-AKT) signaling”,
“Biocarta A Kinase Anchor Protein 13 (AKAP13) pathway”, “PID androgen receptor transcription
factor (AR TF) pathway” and “KEGG glycosphingolipid biosynthesis ganglio series”. The full list of
GO terms and canonical pathways, as well as the corresponding p values, are shown in Tables 52 and S3.
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Table 3. The 15 most deregulated gene ontology terms for the four stage groups ranked by their p values.

Ranking Stage I Stage II Stage III Stage IV

1 Calcium channel activity lysosomal membrane protein tyrosine kinase activity lysosomal membrane

2 Cell maturation vacuolar membrane vitamin metabolic process vacuolar membrane

3 Oxygen binding regulation of actin filament length Ozigsli;iicéisg;gi;itglu;cg?gsr?oie regulation of actin filament length

4 Secretin-like receptor activity regu;it(i;;r;fgz;t;?yi?g;l:éi(ﬁtion regulation of actin filament length regulation of cellular component size

5 Lysosomal membrane regulation of cellular component size regulation of actin polym efization regulation of actin polym e1jization
and/or depolymerization and/or depolymerization

6 Vacuolar membrane amino acid derivative metabolic process  regulation of cellular component size vacuolar part

7 Developmental maturation response to hormone stimulus spindle pole cell division

8 Taste receptor activity vacuolar part homophilic cell adhesion cytokinesis

9 I_ileon;?aticfgi;tt(iiii:etel-f::g?oil;isz(?jigo neuropeptide signaling pathway single-stranded DNA binding cell maturation

10 Cofactor transporter activity G-protein coupled receptor binding innate immune response amino acid derivative metabolic process

11 Auxiliary transport protein activity vitamin metabolic process spindle vitamin metabolic process

12 Hormone activity steroid hormone receptor binding damaged DNA binding response to hormone stimulus

13 Orgargii?;f;gf::g:ngmne aromatic compound metabolic process Rho protein signal transduction calcium channel activity

14 Response to hormone stimulus cell maturation microtubule cytoskeleton coenzyme binding

15 Potassium channel regulator activity chaperone binding structure specific DNA binding developmental maturation
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Table 4. The 15 most deregulated canonical pathways in the stage I-IV groups ranked by their p values.

Ranking Stage I Stage I1 Stage II1 Stage IV
1 Reactome CD2§—dep§ndent PIBK Biocarta AKAP13 pathway PID AR TF pathway KEGG glycosphingolipid biosynthesis ganglio series
AKT signaling
2 Biocarta AKAP13 pathway Reactome CD28-dependent PI3K AKT signaling KEGG glycogsrlrl\;rll;gooilelzligsblosynthe51s Biocarta AKAP13 pathway
3 KEGG ascorbate and aldarate metabolism Reactome PI3K events in ERBB4 signaling Biocarta CK1 pathway PID AR TF pathway
4 KEGG glycogg) r}:lgriligooile}; ;(e:lsblosynthesm KEGG ascorbate and aldarate metabolism Reactome COPI-mediated transport Reactome CD28-dependent PI3K AKT signaling
5 Reactome signaling by NOTCH3 Reactome GPVI-mediated activation cascade Reactome GO and early G1 Reactome GPVI-mediated activation cascade
. . . .. . . Reactome hormone-sensitive lipase HSL-mediated
6 Reactome packaging of telomere ends Biocarta MTA3 pathway Reactome sphingolipid de novo biosynthesis triacylglycerol hydrolysis
7 Reactome meiotic synapsis Reactome GABI signalosome KEGG cell cycle Reactome termination of O glycan biosynthesis
8 KEGG retinol metabolism Reactome PI3K AKT activation Reactome DARPP 32 events KEGG aldosterone-regulated sodium reabsorption
9 Reactome apOPtOth clea'vage of cell Reactome p0§t-chaperon1n tubulin Reactome meiotic synapsis Reactome PI3K events in ERBB4 signaling
adhesion proteins folding pathway
10 Reactome cytosolic sulfonation of KEGG glyoxylate and dicarboxylate metabolism PID AR pathway KEGG inositol phosphate metabolism
small molecules
11 Reactome digestion of dietary carbohydrate Reactome GABA synthesis 'release reuptake Reactome neurotransmitter release cycle Reactome GO and early G1
and degradation
12 Reactome peptide ligand binding receptors Reactome packaging of telomere ends PID AJDISS 2 pathway KEGG acute myeloid leukemia
13 Reactome synthesis of PIPS at the KEGG glycosphmAgohp%d biosynthesis Reactome signaling by Rho GTPases KEGG tryptophan metabolism
plasma membrane ganglio series
14 Reactome xenobiotics PID TGFBR pathway KEGG progesterone-mediated oocyte maturation =~ Reactome downregulation of ERBB2 ERBB3 signaling
15 SA TRKA receptor Reactome adenylate cyclase inhibitory pathway Reactome trans Golgi network vesicle budding Reactome meiotic synapsis
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2.6. The Commonly Deregulated GO Terms and Canonical Pathway Gene Sets among the Four Stages

As shown in Table 3, certain GO terms clearly co-occurred among the four stages, indicating
the interaction of deregulated functions in the pathogenesis of SC. To discover the members of the
interaction network, we utilized set analysis to identify the commonly deregulated gene sets among the
stage I-IV groups. The 200 most deregulated GO term or canonical pathway gene sets for each group
were selected for set analysis; all the p values were significant. There were 55 commonly deregulated
GO terms among the stage I-IV groups, as shown in Figure 4. Based on the GO hierarchy, the 55 GO
terms could be summarized in the following categories: cell cycle (“cell division”, “cytokinesis”,
“spindle”, “double-stranded DNA binding”, and “cell cycle check point”), channel activity (“calcium
channel activity” and “ligand-gated channel activity”), hormone response, metabolism, protein kinase
activity, oxidoreductase activity, GTPase activity and binding (“oxygen binding”, “receptor binding”
and “amine binding”). Figure 5 shows the results of the set analysis and the commonly deregulated

7

canonical pathways. There were 72 commonly deregulated canonical pathways among the four stages.
The results revealed that a relatively large proportion of these deregulated pathways were related to cell
cycle, such as “Reactome meiotic synapsis”, “Reactome RNA Pol I promoter opening”, “Reactome GO
and early G1”, “Biocarta eukaryotic initiation factor-2 (EIF2) pathway”, “KEGG cell cycle”, “Reactome
mitotic prometaphase”, and “Reactome telomere maintenance”. The other important commonly
deregulated pathways included the PI3K-AKT, AKAP13, metabolism, NOTCH and mammalian target
of rapamycin (mTOR) signaling pathways.
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Figure 4. Venn diagram of the 200 most significantly deregulated GO terms for the stage I-IV groups.
The results of the set analysis of the stage I-IV groups showing the 200 most significantly deregulated
GO terms ranked by their p values are displayed on the Venn diagram to show the gene set numbers of
all possible logical relations among the stage I-IV groups. The 55 most commonly deregulated GO
terms among the four groups are listed.
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Figure 5. Venn diagram of the 200 most significantly deregulated canonical pathways for the stage
I-1V groups. The results of the set analysis of the stage I-IV groups showing the 200 most significantly
deregulated canonical pathways ranked by their p values are displayed on the Venn diagram to show
the gene set numbers of all possible logical relations among the stage I-IV groups. The 72 most
commonly deregulated canonical pathways among the four groups are listed.

2.7. The Elements of Serous Carcinoma Carcinogenesis Networks Discovered by Exploratory Factor
Analysis (EFA)

EFA can detect the underlying structure among numerous gene set variables; therefore, we
performed EFA to discover the elements involved in the networks of SC carcinogenesis among
these deregulated GO terms. For simplicity, we merged all of the datasets together, recomputed
the GSR indices, and then executed the EFA. The EFA revealed eight factors, indicating eight
groups of elements involved in the pathogenesis networks. In brief, factor 2 contained the elements
related to channel activity and protein tyrosine kinase activity; factor 3 was related to actin and the
cytoskeleton; factor 4 was related to protein complex assembly and cell maturation; factor 5 was
related to oxidoreductase activity, cell adhesion and DNA binding; factor 6 was related to the cell
cycle; factor 7 was related to cell adhesion and binding; factor 8 belonged to one part of factor 2;
and factor 1 combined factor 2 and 8, as well as the following GO terms: metabolism, catabolism,
cell development/differentiation, programmed cell death, cell proliferation, immune response, and
regulation of transcription. These deregulated functions contributed to carcinogenesis and participated
in the interaction networks of SC. Factor 1 was the main network, and the other factors were its
sub-networks. The full list of these factors and elements was presented in Table S4.

2.8. Trees of Deregulated Gene Ontology Terms for Serous Carcinoma

There were total 310 gene set elements among the eight factors revealed by EFA. To further
summarize these elements, we remapped the 310 GO terms to establish the GO tree based on the
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parent-child relationship of GO hierarchies (Figure 6). When displayed on the GO tree, the redundant or
related GO terms were summarized and visualized in an intuitive way. The related GO terms clustered
together; each cluster was summarized according to their common parental GO term, including cell
cycle, binding, programmed cell death, immune response, chromosome, channel activity, regulation of
transcription, oxidoreductase activity and protein tyrosine kinase activity. The GO tree was consistent
with the results of the EFA and further provided a more concise way to summarize the numerous
deregulated GO terms. The full GO tree is presented in Figure S1.

Cell cycle ‘ Binding wProgrammedr Immune = | Chromosome

| | | ")

cell death ; refponse _ -
) \
% -
L2 ' g

Channel Regulétion of | ‘ bxidoreductaé-e 1 | Protein tyrosine

activity ~ transcription | - activity - kinase activity

Figure 6. The gene ontology tree of serous carcinoma. This figure displayed a screenshot of the full gene
ontology (GO) tree for serous carcinoma (SC) (middle). After mapping to the GO tree, the similar or
related GO terms were clustered together. Each cluster was circled (red), and the important deregulated
GO terms (green boxes) in the cluster were magnified to view the details. Each cluster was labeled by
the common parental GO term (orange rectangle).

2.9. Interaction Network of SC Pathogenesis

To show the interaction among the 310 gene set elements among the eight factors analyzed by
the EFA, the interaction network was reconstructed based on the mutual information. We extracted
and displayed the largest network consisting of 137 GO terms using Cytoscape (version 3.3.0) with
the “degree sorted circular layout” (Figure 7). As a complex disease, the deregulated functions of SC
exhibited extensive interactions; they affected each other and participated in the pathogenesis network of SC.

2.10. The Progressively Deregulated Functions in the Pathogenesis of SC from Stage I to IV

The importance of given functions can be evaluated and compared by tracing their positions in the
functionome during disease progression from stage I to IV. To filter the important deregulated functions
in the pathogenesis of SC, those statistically significant GO terms that moved up in rankings from
stage I to IV were selected, and the paths of ranking are displayed on the line chart shown in Figure 8.
There were 26 GO terms that met the selection criteria; these GO terms were progressively deregulated
and played increasingly important roles in the pathogenesis of SC from stage I to IV. These GO terms
could be summarized in the following categories: cell cycle, cell proliferation and maturation, cell
adhesion, immune response, oxidoreductase activity, binding, protein complex assembly, regulation of
cytoskeleton organization, transport and metabolism.
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Figure 7. Interaction network of SC pathogenesis. The figure shows the interactions among the
deregulated GO functions constructed from the elements identified in the exploratory factor analysis
(EFA). The largest network consisting of 137 elements was extracted and displayed by the degree sorted
circular layout. The deregulated functions with largest numbers were magnified to show the details.
The network statistics are displayed in the bottom right part of the figure.
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Figure 8. The rankings of the progressively deregulated GO terms from SC stage I to IV. The GO terms
that were statistically significant and moved upward in rankings from SC stage I to IV were selected;
a total of 26 GO terms met the criteria. The paths of the changes in ranking from stage I to IV of these
progressively deregulated GO terms is displayed on the line chart.
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2.11. Differentially Expressed Genes in Ovarian Serous Carcinoma

To discover the differentially expressed genes (DEGs) in SC, we merged all microarray gene
expression datasets and carried out integrative analysis for microarray gene expression datasets.
The number of common genes among all of the datasets was 4686; these gene expressions for each of
1026 cases (892 SC and 134 control samples) were rescaled to cumulative proportion before integration.
Tables 5 and 6 listed the top 10 down-regulated and up-regulated genes, the related GO terms or
canonical pathways, and the adjusted p values. The GO terms and pathways related to the DEGs were
extracted from the GeneCards database (http:/ /www.genecards.org/). The top 10 down-regulated
genes were related to metabolism, catabolism, translation, apoptosis, cell proliferation, oxygenase
activity, Notch signaling pathway, protein binding and metalloendopeptidase inhibitor activity.
The top 10 up-regulated genes were related to transcription, p53 binding, cell cycle, apoptosis, nRNA
processing, transport, metabolism, MAPK, ERBB2 and TGF-beta receptor signaling pathway. The full
table list of these DEGs and their p values is presented in Table S5. To discover the progressively
deregulated DEGs in the pathogenesis of SC from stage I to IV, we carried out integrative analysis for
the microarray gene expression datasets for stage I to IV separately. The number of common genes
among the datasets for the four stages was 4548. Those statistically significant DEGs that moved up in
rankings from stage I to IV were selected and ordered by their ranking difference between stage IV
and L. A total of 182 DEGs met the selection criteria and the top 20, as well as those related to GO terms
or pathways, are listed in Table 7. These DEGs were progressively deregulated and played increasingly
important roles in the pathogenesis of SC from stage I to IV. These DEGs could be summarized in the
following categories: transcription, DNA binding, G-protein activity, GTPase activity and metabolism.
The full table list of the progressively deregulated DEGs is presented in Table S6. These findings were
consisted with, and provided an explanation for, the results computed through the GSR model.

Table 5. Top 10 down-regulated differentially expressed genes for serous carcinoma.

Gene Symbol Alias Related GO Terms or Pathways p Value
Catalytic activity (GO:0003824)
AOX1 Aldehyde Oxidase 1 Aldehyde oxidase activity (GO:0004031) 3.51 x 10133
Small molecule metabolic process (G0:0044281)
Translation initiation factor activity (GO:0003743)
. . Protein binding (GO:0005515)
Eukaryotic Translation -
EIF3F Initiation Factor 3, TRanslation (GO:0006412) 2.00 x 107132
Subunit F Eukaryotic translation initiation (Reactome)
Activation of the mRNA upon binding of the cap-binding complex and
elFs and subsequent binding to 43S (Reactome)
Apoptotic process (GO:0006915)
DFENA5 Deafness, ‘Autosomal Negative regulation of cell proliferation (GO:0008285) 1.26 x 10—128
Dominant 5
Positive regulation of intrinsic apoptotic signaling Pathway (GO:2001244)
Monooxygenase activity (GO:0004497)
Prostaglandin 12 Protein binding (GO:0005515
PTCIS o rtos agliir;slr;th rotein binding ( ) 685 x 10-125
ostacyc ynthase Oxidoreductase activity acting on paired donors with Incorporation or
reduction of molecular oxygen (GO:0016705)
TSPANS Tetraspanin 5 Positive regulation of Notch signaling pathway (GO:0045747) 708 x 10-124
Protein maturation (GO:0051604)
Positi lation of cell proliferati : 284
BMP and Activin ositive regulation of cell proliferation (GO:0008284)
BAMBI Membrane-Bound Transforming growth factor 3 receptor signaling pathway (GO:0007179) 2.13 x 10108
Inhibitor TGEF-f receptor signaling (PID)
Serine-type endopeptidase inhibitor activity (GO:0004867)
Sparc/Osteonectin, . . 1 . N
Cwev and Kazal-Like Cysteine-type endopeptidase inhibitor activity (GO:0004869) .
SPOCK1 213 x 107108

Domains Proteoglycan
(Testican) 1

Calcium ion binding (GO:0005509)

Protein binding (GO:0005515)

Metalloendopeptidase inhibitor activity (GO:0008191)
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Gene Symbol Alias Related GO Terms or Pathways p Value
Glutamine-fructose-6-phosphate transaminase (isomerizing) activity
Glutamine-Fructose- (G0:0004360)
-107
GFPT2 6-Phosphate Carbohydrate binding (GO:0030246) 891 x 10
Transaminase 2
Amino sugar and nucleotide sugar metabolism (KEGG)
Chromosome 21 Open —106
C2lorf62 Reading Frame 62 Unclear 1.35 x 10
Receptor signaling protein activity (GO:0005057)
Fibronectin Leucine Protein binding (GO:0005515)
FLRT2 Rich Transmembrane 529 x 107104
Protein 2 Fibroblast growth factor receptor signaling pathway (GO:0008543)
Cell adhesion (GO:0007155)
Table 6. Top 10 up-regulated differentially expressed genes for serous carcinoma.
Gene .
Symbol Alias Related GO Terms or Pathways p Value
Claorfz ~ Chromosome 14 Open unclear 8.15 x 1078
Reading Frame 2
transcriptional regulation by TP53(Reactome)
Cytochrome C Oxidase gene expression (Reactome) i
COXe6B1 Subunit VIb Polypeptide 1 transcription initiation from RNA polymerase II 2.59 %10
promoter ( GO:0006367)
gene expression (GO:0010467)
p53 binding (GO:0002039)
DNA damage response signal transduction by p53 class mediator
TP53 Regulated Inhibitor resulting in cell cycle arrest (GO:0006977)
TRIAP1 of Apoptosis 1 3.44 x 1075
pop DNA damage response signal transduction by p53 class
mediator (GO:0030330)
negative regulation of apoptotic process (GO:0043066)
contributes to ubiquitin-protein transferase activity (GO:0004842)
DNA repair (GO:0006281)
Ring-Box 1, E3 Ubiquitin MAPK de (GO:0000165 63
RBX1 Protein Ligase cascade (GO ) 9.37 x 10
signaling by ERBB2 (Reactome)
RAF/MAP kinase cascade (Reactome)
response to stress (GO:0006950)
Cell Growth Regulator . 6l
CGRRF1 o Ring Finger Domain 1 cell cycle arrest (GO:0007050) 1.25 x 10
negative regulation of cell proliferation (GO:0008285)
cytoplasmic mRNA processing body (GO:0000932)
spliceosomal complex (GO:0005681)
LSM6 Homolog, U6 Small U6 snRNP (GO:0005688)
LSM6 Nuclear RNA and MRNA 6.16 x 10790
Degradation Associated nucleolus (GO:0005730)
small nucleolar ribonucleoprotein complex (GO:0005732)
deadenylation-dependent mRNA decay (Reactome)
cytochrome-c oxidase activity (GO:0004129)
transcriptional regulation by TP53 (Reactome)
COXSA Cytodslr(?bme C\?xidase mitochondrial electron transport; cytochrome c to oxygen (GO:0006123) 171 x 10—
ubunit Va '
transcription initiation from RNA polymerase II promoter (GO:0006367)
gene expression (GO:0010467)
Translocase of Inner protein targeting to mitochondrion (GO:0006626)
TIMMSB Mitochondrial Membrane protein transport (GO:0015031) 1.54 x 1058
8 Homolog B (Yeast)

cellular protein metabolic process (GO:0044267)

chaperone-mediated protein transport (GO:0072321)
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Table 6. Cont.

Gene .
Symbol Alias Related GO Terms or Pathways p Value
type I transforming growth factor beta receptor binding (GO:0034713)
phosphatidylinositol binding (GO:0035091)
protein homodimerization activity (GO:0042803)
SNXe Sorting Nexin 6 TGF-p receptor signaling pathway (Reactome) 1.62 x 1078
negative regulation of epidermal growth factor-activated receptor
activity (GO:0007175)
negative regulation of transforming growth factor 3 receptor signaling
pathway (GO:0030512)
IER3IP1 Im;}ictti;it];:irl}[’)iigf?se regulation of fibroblast apoptotic process (GO:2000269) 1.88 x 10-5
g endoplasmic reticulum (GO:0005783)
Table 7. Top 20 progressively deregulated genes from stage I to IV.
Gene Alias Related GO Terms or Pathways
Symbol
UEC1 Ubiquitin-Fold Modifier protein binding (GO:0005515)
Conjugating Enzyme 1 response to endoplasmic reticulum stress (GO:0034976) protein ufmylation (GO:0071569)
transcription regulatory region sequence-specific DNA binding (GO:0000976
P 8 y reg q P 8
transcriptional activator activity, RNA polymerase II core promoter proximal region

SRY (Sex Determining sequence-specific binding (GO:0001077)

SOX12 Region Y)-Box 12
& RNA polymerase II transcription coactivator activity (GO:0001105)
DNA binding (GO:0003677)
molecular mechanisms of cancer (QIAGEN)
phospholipid binding (GO:0005543)
cholesterol binding (GO:0015485)

APOC3 Apolipoprotein C-1II enzyme regulator activity (GO:0030234)

lipase inhibitor activity (GO:0055102)

signal transduction (Reactome)

G-protein coupled receptor signaling pathway (GO:0007186)
RAB11 Family Rab GTPase binding (GO:0017137)
RABIIFIP2 Interacting Protein 2 protein kinase binding (GO:0019901)

(Class I)
protein homodimerization activity (GO:0042803)

protein binding (GO:0005515)
Procollagen collagen binding (GO:0005518)
PCOLCE2 C-Endopeptidase heparin binding (GO:0008201)

Enhancer 2 peptidase activator activity (GO:0016504)
collagen formation (Reactome)

positive regulation of peptidase activity (GO:0010952)
DNA binding (GO:0003677)
transcription factor activity, sequence-specific DNA binding (GO:0003700)
Signal Transducer and signal transducer activity (GO:0004871)
STAT2 Activator Of Jak-STAT signaling pathway (KEGG)

Transcription 2, 113 kDa
transcription, DNA-templated (GO:0006351)

regulation of transcription, DNA-templated (GO:0006355)

regulation of transcription from RNA polymerase II promoter (GO:0006357)

RNA polymerase II core promoter proximal region sequence-specific DNA
binding (GO:0000978)

RNA polymerase II transcription factor binding (GO:0001085)

AR Androgen Receptor DNA binding (GO:0003677)
chromatin binding (GO:0003682)

signaling by Rho GTPases (Reactome)
regulation of transcription, DNA-templated (GO:0006355)
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Table 7. Cont.

Gene

Symbol Alias Related GO Terms or Pathways

transcription factor binding (GO:0008134)

regulation of cholesterol biosynthesis by SREBP (Reactome)

INSIG2 Insulin Induced Gene 2 cholesterol biosynthetic process (GO:0006695)
response to sterol depletion (GO:0006991)
cholesterol metabolic process (GO:0008203)

negative regulation of steroid biosynthetic process (GO:0010894)
nucleic acid binding (GO:0003676)
single-stranded DNA binding (GO:0003697)

Polymerase (RNA) II
POLR2G (DNA Directed) single-stranded RNA binding (GO:0003727)

Polypeptide G translation initiation factor binding (GO:0031369)
mRNA splicing, via spliceosome (GO:0000398)
DNA repair (GO:0006281)
carbohydrate binding (GO:0030246)

CHODL Chondrolectin regulation of neuron projection development (GO:0010975)

perinuclear region of cytoplasm (GO:0048471)

extracellular matrix structural constituent (GO:0005201)
protein binding (GO:0005515)

extracellular matrix constituent conferring elasticity (GO:0030023)

Collagen, Type 1V,
Alpha 1 platelet-derived growth factor binding (GO:0048407)

focal adhesion (KEGG)
patterning of blood vessels (GO:0001569)
receptor-mediated endocytosis (GO:0006898)
GTPase activity (GO:0003924)
RAB9A, Member RAS GTP binding (GO:0005525)
RABIA Oncogene Family GDP binding (GO:0019003)
signal transduction (GO:0007165)
small GTPase-mediated signal transduction (GO:0007264)

COL4A1

RNA polymerase II core promoter proximal region sequence-specific DNA
binding (GO:0000978)

. transcriptional repressor activity, RNA polymerase II core promoter proximal region
EN1 Engrailed Homeobox 1 sequence-specific binding (GO:0001078)

DNA binding (GO:0003677)
sequence-specific DNA binding (GO:0043565)
ATPase activator activity (GO:0001671)
response to hypoxia (GO:0001666)

ATPase, Na+/K+
ATP1B1 Transporting, Beta 1 potassium ion transport (GO:0006813)

Polypeptide sodium ion transport (GO:0006814)
cellular calcium ion homeostasis (GO:0006874)
acyl binding (GO:0000035)

Guanine Nucleotide G-protein coupled receptor binding (GO:0001664)
Binding Protein (G GTPase activity (GO:0003924)
GNAT1 Protein), Alpha
Transducing Activity signal transducer activity (GO:0004871)

Polypeptide 1 activation of the phototransduction cascade (Reactome)

G-protein coupled receptor signaling pathway (GO:0007186)
SH3 domain binding (GO:0017124)

proteinase activated receptor binding (GO:0031871)

protein homodimerization activity (GO:0042803)

Programmed Cell Death

PDCD6IP 6 Interacting Protein

protein dimerization activity (GO:0046983)

cell separation after cytokinesis (GO:0000920)

apoptotic process (GO:0006915)

regulation of centrosome duplication (GO:0010824)
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Table 7. Cont.

Gene

Symbol Alias Related GO Terms or Pathways
catalytic activity (GO:0003824)
pyruvate dehydrogenase activity (GO:0004738)
PDHB Pyruv'ate Dehydrogenase glucose metabolic process (GO:0006006)
(Lipoamide) Beta acetyl-CoA biosynthetic process from pyruvate (GO:0006086)
pyruvate metabolic process (GO:0006090)
tricarboxylic acid cycle (GO:0006099)
acetylglucosaminyltransferase activity (GO:0005975) carbohydrate metabolic
Glucosaminyl (N-Acetyl) process (GO:0008375)
GCNT3 Tl:/?fll:ifr?r"?;;:’ protein O-linked glycosylation (GO:0006493)
post-translational protein modification (GO:0043687)
ion channel activity (GO:0005216)
FXYD3 Cont;;?r(lg E) in"}fai;sport chloride channel activity (GO:0005254)
Regulator 3 sodium channel regulator activity (GO:0017080)
ATPase binding (GO:0051117)
protein binding (GO:0005515)
CHGA Chromogranin A Peptide hormone biosynthesis (Reactome)

Androgen biosynthesis (Reactome)

Signaling by GPCR (Reactome)

3. Discussion

After converting the data to the GSR indices, the gene expression profiles of SC from stage I
to IV showed clear stepwise patterns of deteriorating functions. The averages of the GSR indices
revealed a linear decrease in their levels from stage I to IV. The histogram of each stage group
showed two distributions of the GSR indices during disease progression. In addition to the normal
functions, a second group of deregulated functions was observed beginning at stage I, and the indices
for the members in this group increased as the disease progressed. These findings indicated the
presence of a group of deregulated functions that increased in severity and number from stage I to
IV. The subsequent analyses in the study were executed to investigate these deregulated functions
and the pathogenesis of SC. The patterns of function regulation from stage I to IV could be accurately
recognized and classified by unsupervised classification with hierarchical clustering and by supervised
classification using SVM. The results showed that the informativeness of the GSR indices was sufficient
to make a clear distinction among the four FIGO stages.

The most deregulated GO terms in SC ordered by statistical significance were “calcium channel
activity”, “lysosomal membrane”, “protein tyrosine kinase activity” and “lysosomal membrane”;
the most deregulated canonical pathways were “Reactome CD28-dependent PI3K-AKT signaling”,
“Biocata AKAP13 pathway”, “PID AR TF pathway” and “KEGG glycosphingolipid biosynthesis gangio
series” for the stage I to IV groups, respectively. Channel activity is involved in the cell cycle control in
the carcinogenesis of EOC [5]. The lysosome is an organelle responsible for autophagy and apoptosis,
and the permeability of the lysosomal membrane is involved in the processes of carcinogenesis [6].
“Receptor tyrosine kinase binding” (GO:0030971, the 47th deregulated GO term in stage III) is the child
of “protein tyrosine kinase binding” (G0O:1990782, the 1st deregulated GO term in stage III). It can
activate the PI3K-AKT pathway (the 1st, 2nd and 4th deregulated pathway in stage I, II, IV, respectively).
The PI3K/AKT/mTOR pathway is frequently activated in EOCs [7] and leads to abnormal cell growth,
proliferation and malignant transformation [8]. Deregulations in PI3K-AKT, protein tyrosine kinase
binding, receptor tyrosine kinase binding and mTOR were among the most significantly deregulated
functions detected in this study. Androgens can stimulate ovarian epithelial cells, resulting in increased
proliferation and protection from apoptosis. Evidence has shown that androgen receptor is involved
in the pathogenesis of ovarian cancer, and clinical trials using anti-androgens showed a response in
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relapsed ovarian cancer [9]. The role of AKAP13 in ovarian cancer is still unclear. However, evidence
has shown it is a proto-oncogene that interacts with estrogen receptor alpha to regulate cell growth; it
is also expressed in ovarian epithelial neoplasms [10]. Aberrant glycosylation and glycosphingolipid
expression were associated oncogenic transformation [11]. Ganglioside levels can affect the motility of
ovarian carcinoma cells [12] and regulate cell proliferation by affecting tyrosine kinase activity [13].
These commonly deregulated functions interacted with each other and the shared part of these most
significantly deregulated functions was associated with cell cycle, cell proliferation or growth. Notably,
the proportion of the cell cycle-related GO terms was prominently increased in stages III and IV.
The “spindle pole”, “single-stranded DNA binding”, “spindle”, “damaging DNA binding”, and
“structure-specific DNA binding” were the 7th, 9th, 11th, 12th and 15th most deregulated GO terms
related to the cell cycle in stage III. The analysis of the deregulated canonical pathways also revealed
consistent findings.

One important feature of complex diseases such as SC is the aberrations in multiple gene functions
and their interactions. However, the analysis of the p values for the most significant GO terms or
canonical pathways did not provide information on the structure of SC pathogenesis. The co-recurrence
of some significantly deregulated GO terms or canonical pathways implied the existence of interactions
among these deregulated functions. To discover the members in the SC pathogenesis network, we
performed a set analysis and EFA of these significant GO terms or pathways to identify the elements
involved in the pathogenesis of SC, and the result showed that the most commonly deregulated
functions between the GO terms and canonical pathways were related to the cell cycle. To detect the
elements of the network involved in the carcinogenesis of SC among the 1454 GO terms, we executed
the EFA and mapped the elements of the factors to the GO tree to further summarize them according
to their parent-child GO hierarchy. The result showed that the cell cycle, programmed cell death,
immune response, regulation of transcription and oxidoreductase activity were the most commonly
deregulated functions involved in the pathogenesis of SC. The network reconstructed from the mutual
information for these EFA elements showed extensive interactions among these deregulated functions.

In addition to the EFA, the most important deregulated functions were investigated by tracing
their rankings in the functionome from stage I to IV. These progressively deregulated GO terms,
including cell cycle, immune response and oxidoreductase activity, showed gradually decreased
function regularity and increased in ranking from stage I to IV; “mitotic cell cycle checkpoint” was the
most import element among the cell cycle-related GO terms.

Currently, the two-tier system classifying EOC to low-grade or high-grade cancer is widely
accepted because it is reproducible [14]. In addition, based on the clinicopathological and molecular
features, a dualistic model was proposed that divides EOCs into type I and II categories [15]. Type Il
EOC, which is mainly high-grade SC, exhibits impaired DNA damage repair and a more uncontrolled
cell differentiation and aggressive behavior. TP53 was the primary molecular aberration observed
in the pathogenesis of high-grade SC, which leads to deregulation of cell cycle control and increased
mitotic figures, cell proliferation and aggressive behavior. However, most of the datasets in this study
did not provide information regarding these classifications. Because high-grade SC constitutes 90%
of the total SCs, it is reasonable to assume most of the samples in this study were high-grade SC or
type II EOC. Our results from the functionome analysis were compatible with the behavior of type
II, high-grade SC and the sequelae of TP53 aberration. In addition to the cell cycle, this model also
detected numerous aberrant pathways reported in The Cancer Genome Atlas (TCGA) study [16],
including the PI3K, NOTCH and forkhead box protein M1 (FOXM1) pathways, all of which were
highly ranked on the list and showed statistical significance (Table S3).

The workflow of analyzing microarray gene expression data usually consists of detecting the
differentially expressed genes and then mapping them to the GO terms or pathways in an enrichment
analysis to identify the aberrant functions. This approach will focus on the statistically significant
genes or functions, but those genes that do not reach significance will be omitted. However, complex
diseases, such as ovarian cancers, usually involve multiple genes or functional aberrations, as well as
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their interactions. To consider these features, we conducted this gene set-based study and investigated
the pathogenesis of SC based on the “functionome”. The gene expression profiles were converted
to orderings, and the functions were quantified by measuring the changes in the gene expression
ordering changes among the genes in the gene sets defined by the GO terms or canonical pathways.
Computing the changes in gene expression ordering in a gene set will consider the interactions of the
gene elements in a gene set. In addition, functions are more easily understood than gene symbols,
and converting tens of thousands of gene expression levels to approximately one thousand GSR
indices will reduce the dimensions and noise of the data. This workflow is able to provide a more
comprehensive and intuitive way to view the functionome and understand the pathogenesis of SC.
The GSR model converts gene expression profiles to gene expression orderings in ordinal data; this
data type will encounter less bias during the cross-platform integration of gene expression datasets
than gene expression levels. This conversion makes it feasible for the GSR model to integrate the
microarray gene expression datasets from different microarray platforms.

This model had limitations. The first is that the GO terms and canonical pathway gene set
databases did not define all human functions. For example, the GO term “cell cycle” (GO:0007049)
has more than 8000 offspring. However, far fewer GO terms related to cell cycle were defined in
the MSigDB, which might reduce the informativeness of this model. The second limitation is the
detectability of this model. The GSR model converted gene expression levels to gene expression
ordering. If the expression levels do not reach the detection levels, the GSR index will remain
unchanged and aberrations will be missed. The third limitation is false positivity. Duplicated elements
may exist in different gene sets and lead to false positive findings. For example, the 68th most
significantly deregulated canonical pathway in the stage I group was “KEGG olfactory transduction”.
The “olfactory transduction” function is apparently not involved in the carcinogenesis of SC. This false
positivity resulted from the similar response of gene elements to G-protein transduction in the “KEGG
olfactory transduction” gene set; however, G-proteins were shown to be involved in the carcinogenesis
of SC using this model.

4. Materials and Methods

4.1. Workflow of Computing GSR Indices

The GSR index is computed by modified Differential Rank Conservation (DIRAC) [17],
an algorithm measuring the ordering perturbations of gene elements in a gene set. In contrast
to gene set perturbation, the GSR model quantifies the ordering changes of the gene elements in
a gene set between two different phenotypes, such as cancer and the normal state in this study.
The microarray gene expression profiles were downloaded from the GEO database in soft format, and
then the gene expression levels were converted to the gene expression orderings using the gene sets
defined by the GO terms or canonical pathway gene set databases. The GSR index was computed
by measuring the differences in gene expression ordering in a gene set between the cancerous and
the baseline gene set ordering template, which was defined as the most common gene expression
ordering among the normal ovarian control samples. The baseline gene set ordering template for
each gene set was established by pairwise comparison between the expression levels of two genes
for all possible combinations of a gene pair. A gene set contains m genes G = {Gy, ..., G;;} and
the corresponding gene expression profile E = (Ey, ..., Ey), E; denotes the expression level of
gene G;. Each sample is labeled by a phenotype of a case (SC stage I-IV) or normal control group,
respectively. The baseline gene set ordering template for each gene set is established by pairwise
comparison between the expression levels of two genes for all possible combinations of a gene pair.
The baseline gene ordering template B for a given gene set G is the binary vector composed of
symbol “A” or “B”, where each component is “A” if the probabilities Pr(E; < E; | phenotype = control) > 0.5;
or “B” if Pr(E; < E; | phenotype = control) < 0.5. For the expression profile of a given sample ey,
the GSR index R for a given gene set is the fraction of the m x (m — 1)/2 pairs for which the
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observed gene expression orderings within e, match the baseline gene ordering template B, namely,
R = (number of “A”)/(m x (m — 1)/2). Establishment of the baseline gene set expression ordering
templates and measurement of GSR indices were executed in the R environment; the code and the test
datasets are available on the GitHub (https://github.com/carlzang/GSR-model.git).

4.2. Microarray Datasets, Gene Set Definition and Data Processing

The selection criteria for the downloaded microarray gene expression datasets were as follows:
(1) both the case and normal control samples should originate from ovarian tissue; (2) the datasets
should provide clear information about the diagnosis and stage of each sample; (3) a dataset was
discarded if it resulted in less than 4000 common genes upon integration because this study utilized
the common genes among the selected datasets; and (4) the gene expression profile was discarded if it
contained missing data.

4.3. Statistical Analysis

The differences in the GSR indices between the four SC stages and the control groups were tested
by the Mann-Whitney U test and corrected by multiple hypotheses using the false discovery rate
(Benjamini-Hochberg procedure). The significance level was set at <0.05.

4.4. Classification and Prediction by Machine Learning

The GSR indices computed through the GO terms and canonical pathway gene sets were classified
and predicted by SVM with kernlab [18], which is an R package for kernel-based machine-learning
methods and was used to classify the patterns of the GSR indices with the following settings:
kernel = “vanilladot” (linear kernel function) and type = “C-svc” (C classification). The performance
of the classification and predictions by SVM were measured by five-fold cross-validation; the samples
were randomly sampled and divided into five parts: four parts were used for training sets and the
remaining part was used for the prediction. The performance of binary classification was assessed by
sensitivity, specificity, accuracy and area under the curve (AUC). Sensitivity, specificity, accuracy and
AUC were computed using the cumulative results of 10 repeated classifications. AUC was computed
by an R package, pROC [19]. The performance of multiclass classification was assessed by the accuracy
computed from the fraction of correct predictions within total prediction number.

4.5. Hierarchical Clustering, Dendrogram and Heatmaps

All the GSR indices in each gene set and for each group were averaged then underwent hierarchical
clustering with the function “heatmap.2” in R package “gplots” (version 2.17.0) as the default.
This function executed the hierarchical clustering and drew the dendrogram and heatmaps.

4.6. Set Analysis

All possible logical relations among the deregulated gene sets of the stage I-IV groups were
evaluated by set analysis and displayed in a Venn diagram using the R package “VennDiagram”
(version 1.6.16).

4.7. Exploratory Factor Analysis for the Deregulated GO Terms and Establishment of the GO Tree

The deregulated GO terms with a p value <0.05 were selected for the exploratory factor analysis
(EFA). EFA was executed with the R package “psych” (version 1.5.8). The number of factors to be
extracted was determined by the function “pa.parellel”. The factoring method used in this study was
set to “pa” and the correlation matrix rotation method was “promax”. The tree of the deregulated GO
terms was constructed and visualized in Portable Network Graphics (PNG) format constructed by the
“RamiGO” [20], an R package providing functions that interact with the AmiGO 2 web server [21] and
retrieves the GO trees.
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4.8. Ranking Analysis

The importance of the given GO terms was evaluated by their rankings in the functionome at
different stages during the progression of SC. To compare the rankings at different stages, we selected
the GO terms with the following criteria: (1) p < 0.05; (2) The rank at stage IV was less than 200; and
(3) the difference in the ranks between two consecutive stages was more than 15. The ranks of the
selected GO terms were displayed on a line chart to show the paths of the changes in rankings from
stage I to IV.

4.9. Construction of the Interaction Network

The network was established with the mutual information based on entropy estimates from the
k-nearest neighbor distances and Algorithm for the Reconstruction of Accurate Cellular Networks
(ARACNE), and the interaction networks (multiplicative model) were reconstructed using the R
package “parmigene” (version 1.0.2). The network was exported in the graph modeling language
(GML) format and displayed on Cytoscape (version 3.3.0).

4.10. Detection of Differentially Expressed Genes in Ovarian Serous Carcinoma

To discover the DEGs in SC, we merged all microarray gene expression datasets and carried
out integrative analysis. The gene expression levels were transformed and rescaled to cumulative
proportion values from 0 (lowest expression) to 1 (highest expression) with an R package “YuGene”
(version 1.1.5) for all samples in each dataset before integration. The DEGs were discovered using
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linear model computed with empirical Bayes analysis by the functions “ImFit” and “eBayes” provided
by the R package “limna” (version 3.26.9).

5. Conclusions

By converting the gene expression levels into gene expression rankings through the gene ontology
terms or canonical pathway gene set, the function defined by that gene set was quantified into a GSR
index. In this study, we investigated the pathogenesis of SC using the functionome consisting of 1454
GO terms or 1330 canonical pathway-defined functions. We showed that the informativeness of the GSR
indices was sufficient for accurate pattern recognition and classification, and the function regularity
showed a stepwise deterioration, consistent with the severity of SC according to the four FIGO stages.
Through a series of analyses using statistical methods, set analysis, EFA and ranking analysis, the
results revealed that the core of SC pathogenesis was related to the cell cycle. The cell cycle began to be
deregulated in stage I and worsened as the disease progressed. The pathogenesis of SC was complicated
and involved aberrations in multiple functions and their interactions. In addition to the cell cycle,
several other deregulated functions also participated in the network of SC pathogenesis, including
channel activity, transport, binding, metabolism, cell differentiation, hormone response, protein kinase
activity, oxidoreductase activity, GTPase activity, actin, cytoskeleton, chromosome, protein complex
assembly, cell adhesion, catabolism, programmed cell death, cell proliferation, immune response, and
regulation of transcription.
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Abbreviations
SC Serous carcinoma
FIGO Federation of Gynecologists and Obstetrics
GO Gene ontology
GSR Gene set regularity
EFA Exploratory factor analysis
EOC Epithelial ovarian cancers
MSigDB Molecular Signatures Database
KEGG Kyoto Encyclopedia of Genes and Genomes
PID Pathway Interaction Database
GEO Gene Expression Omnibus
SD Standard deviation
SVM Support vector machine
AUC Area under curve
PI3K-AKT Phosphoinositide 3-kinase-AKT
AKAP13 A Kinase Anchor Protein 13
ARTR Androgen receptor transcription factor
EIF2 Eukaryotic initiation factor-2
mTOR Mammalian target of rapamycin
FOXM1 Forkhead box protein M1
DIRAC Differential Rank Conservation
PNG Portable Network Graphics
ARACNE Algorithm for the Reconstruction of Accurate Cellular Networks
GML graph modeling language
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