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Geneticists, or perhaps more accurately genomicists, are used to big science, enormous proj-

ects that take years to complete and consume vast sums of money: sequencing mammalian

genomes, genotyping a million people, obtaining ever more extensive catalogs of epigenetic

marks, and so on. Last year the neuroscience community proposed something to rival the

ambition of the human genome project. Entitled ‘The mind of a mouse’, a position paper in

Cell described a visionary project to construct the map of the mouse brain down to the level of

the synapse, requiring electron microscopy to obtain the necessary resolution [1]. With a price

tag estimated at hundreds of millions of dollars, the amount of data to be generated makes the

genome project look like the work of a miniaturist. “Roughly 1 million terabytes of data will

need to be acquired”, and of course the project is only the beginning: unlike the identical con-

nections that make up every worm brain (to date the only organism to have its connectome

published), each mouse brain is unique, so “later work using the same brain mapping infra-

structure will reveal aspects of neural circuits that are preserved from one animal to another,

presumably based on inheritance, and importantly the ways in which connections vary

between individuals, presumably based in part on different experiences”

There was a time when the generation of what is sometimes euphemistically called genome

resource generation projects, including large-scale genome-wide association studies of disease,

were decried as ‘fishing trips’ and contrasted with supposedly more impactful hypothesis-

driven research. For those who recall those criticisms, it’s reassuring to discover that neurosci-

entists are now won over to the cause of resource generation. But it also raises an issue much

discussed at the initiation of the Human Genome Project: what is industrial-scale science good

for? And an ancillary, but equally important, question: is it worth the money?

There are many parallels between the Mind of a Mouse and the Human Genome Project:

proof of principle experiments carried out in model organisms, the development of new and

the improvement of old technologies, the realization that producing such vast amounts of data

was going to place computational needs center stage, the promise of “discoveries . . . largely

unexplainable in a previous era of investigation” [1] and community buy-in to protect the

project from those who think the money would be better spent on other things. In the spirit of

wanting to get the best science done, perhaps the genomics community can offer some advice

to the connectomics community on how to do big science.

The first piece of advice has to do with the way a genomics resource is used. The genome

project democratized genetic mapping and cloning. In the words of Francis Collins, the work

of identifying mutations went from the perditional to the traditional [2]. Long ago, before we

had physical maps, let alone genome sequence, the identification of a disease-causing mutation

was the sort of success that would guarantee you a chair at a leading university. Nature, Cell

and Science would be clamoring to publish your discovery. Now, with the genomes to hand,

it’s a trivial job for a single laboratory. Mind you, this isn’t just because of the databases of

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009692 July 16, 2021 1 / 7

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Chen PB, Flint J (2021) What

connectomics can learn from genomics. PLoS

Genet 17(7): e1009692. https://doi.org/10.1371/

journal.pgen.1009692

Editor: Gregory P. Copenhaver, The University of

North Carolina at Chapel Hill, UNITED STATES

Published: July 16, 2021

Copyright: © 2021 Chen, Flint. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Funding: The author(s) received no specific

funding for this work.

Competing interests: This work was partially

supported by National Institutes of Health grants

(R01MH115979 (JF, PBC). Publication charges for

this article have been funded by 1R01MH115979.

The funders had no role in study design, data

collection and analysis, decision to publish, or

preparation of the manuscript.

https://orcid.org/0000-0002-2460-690X
https://orcid.org/0000-0002-9427-4429
https://doi.org/10.1371/journal.pgen.1009692
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1009692&domain=pdf&date_stamp=2021-07-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1009692&domain=pdf&date_stamp=2021-07-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1009692&domain=pdf&date_stamp=2021-07-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1009692&domain=pdf&date_stamp=2021-07-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1009692&domain=pdf&date_stamp=2021-07-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1009692&domain=pdf&date_stamp=2021-07-28
https://doi.org/10.1371/journal.pgen.1009692
https://doi.org/10.1371/journal.pgen.1009692
http://creativecommons.org/licenses/by/4.0/


assembled genomes that anyone with a computer terminal can access. It’s also due to the tech-

nological developments that the genomics projects supported, the development of automated

sequencing machines and computer infrastructure that allows a single laboratory on its own to

sequence entire genomes.

It would be great if connectomics could democratize neuroscience in the same way, but

from the results from the pilot projects it’s hard to imagine that it will do so. For example, we

now have a connectome of one half of the fly brain (about 22,500 neurons [3]) and of the

mushroom body [4], the major site of associative learning in insects. This means that, if I were

a fly researcher I would be in a position to identify connections for large areas of the brain, but

once I had that circuit information, what will my next experiment be? The value of the electron

microscopy data is the power it provides to understand circuitry, but it’s also essential to

manipulate, to test hypotheses about how brains work. The genetics toolkit available in the fly,

and worm, allows the manipulation of neurons and makes interventionist science possible. It’s

almost inevitable that I’d want to create the connectome for a mutant, for a fly that has been

subject to some experimental paradigm. And to do so, I’ll need to replicate all that expensive

machinery and infrastructure belonging to the connectomics laboratories. That’s going to be

even harder to do with the mammalian connectome. Of course, it’s possible that someone

works out a quicker, cheaper, way to build a connectome so that the science does democratize.

Perhaps tackling the connectome of the mouse will be an aspirational goal, focused on improv-

ing technology beyond the imaginable.

The second piece of advice follows from the first: that the generation of the resource is not

divorced from the science to which it will ultimately be used. There’s no doubt that having a

connectome will change neuroscience, but it’s not necessary to finish the whole mammalian

connection then ask questions. It’s been difficult to use the connectome in the fly, and we have

little clue how a connectome of the mammalian cortex is going to guide science. The fly proj-

ects demonstrate the value, the necessity, of asking questions as the project proceeds.

Geneticists routinely use the results of mega-science, the genome projects in their various

incarnations, as tools to perform problem-centered science. There is no reason why a mamma-

lian connectome project shouldn’t similarly bring together scientists working at different levels

using cutting-edge technologies to solve a problem related to a mouse brain region, circuit or

behavior. The real tragedy would be if the mouse connectome is created in a bubble, without

connection to the genomics, and functional investigations that would make the breakthroughs

we’d expect of a project on this scale. Rather than a detailed connectome of one C57BL/6J

mouse brain, we need an organic mix of focused problem-based experimentation with high

quality structured science approaches to provide a model for moving neuroscience forward in

the 21st century: connectomics, circuit function, genetics, and molecular biology of a brain

region or a behavior, tied closely together to address problems at multiple levels.

There are instructive examples where connectomics has already moved the field forward. In

the fly visual system there are separate pathways for recognizing on- and off-edge motion sig-

nals. The on-edge signals are locally computed on the dendritic arbours of columnar cells,

called T4 cells. T4 cells respond to visual motion in a directionally-selective manner and have

four subtypes, T4a-T4d. Each subtype is tuned to one of four cardinal directions. How do T4

cells compute the direction of motion? Before the fly connectome the eight classes of neurons

were known, but not the mechanism. A high-resolution map revealed that the orientation of

inputs to T4 subtypes reflects the direction to which they respond, so that inputs from the

front of the neuron (relative to the animal) carry information about motion in that direction,

and so on [5]. Cell type specific information and connections made it possible to test hypothe-

ses about how motion direction works. Even more strikingly, a connectome revealed how flies

orient themselves in space. Dendrites of a population of neurons called E–PG neurons in the
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fly’s ellipsoid body are arranged in a ring (see Fig 1). There is one ‘bump’ of activity in this ring

which represents the direction of a fly’s movement. In short, the E–PG neurons are compass

neurons, arranged appropriately as a compass [6,7]. In addition to the orientation and visual

system examples, single behavior studies, combined with connectomics, have led to the discov-

ery of a mechanism for sleep in flies [8], organizational principles governing how fruit flies

groom their bodies [9], the identification of the neuronal basis of a distance-evaluation system

[10] and given insights into the biology of aggression [11].

The value of integrating connectomics with a single functional question is made clear when

we contrast the findings from the investigation of how the visual system works, and how the

fly finds its way around the world, with the unbiased screen for circuit function carried out by

activating subsets of neurons with genetic drivers [12]. That screen used GAL4 driver lines to

obtain control over activity in neuronal populations [13]. Transgenes that turn off neuronal

function were inserted into vast numbers of randomly selected neuronal patterns, and the flies

were subjected to a battery of automated high throughput behavioral tests (think of this as a

genetic screen in which the individual units are circuits, rather than genes). More than two

thousand populations of neurons were genetically targeted, and behavioral traits were

recorded in almost half a million flies. This heroic experiment identified regions of the fly

Fig 1. EP-G neurons in the fly ellipsoid body. Circles represent the cell bodies and bars represent dendrites, arranged

in a ring. Neuronal activity in this ring, indicated by the black arrows, represents the direction of a fly’s movement.

https://doi.org/10.1371/journal.pgen.1009692.g001
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brain involved in sensory processing, locomotor control, courtship, aggression, and sleep. But

no novel mechanism was observed, no structure-function relationship similar to the compass

discovery emerged.

What connectomics, and the associated technologies of circuit tracing and activation, teach

us about the organizational principles of insect brains might not, of course, be informative of

their performance in mammalian systems. Mammalian brains are likely not just more com-

plex, they may have different design principles than insect brains. One example is their greater

flexibility and redundancy. It’s perhaps not widely enough recognized that in the face of pro-

foundly atypical neuroanatomy it’s possible to retain remarkably intact intellectual ability.

Rare cases of hydrocephalus exist that result in massive enlargement of the ventricles and a

brain with a very thin cortex [14], yet functionally appear relatively normal. Brain lesion stud-

ies teach the same lesson, of functional capacity maintained despite tissue loss [15,16].

At the end of a long description of attempts to reconstruct a piece of mouse neocortex at

nanometer resolution [17], the authors posed the following question: “given the many chal-

lenges we encountered and those that remain in doing saturated connectomics, we think it is

fair to question whether the results justify the effort expended. What, after all, have we gained

from all this high-density reconstruction of such a small volume?” They answer their own

question as follows: “we think that this “omics” effort lays bare the magnitude of the problem

confronting neuroscientists who seek to understand the brain.” Hardly a ringing endorsement

of the connectomics creed. And the densest mammalian connectome yet published (half a mil-

lion cubic micrometers of cortical tissue yielding 2.7 m of neuronal cables and 153,171 synap-

ses) [18] hasn’t led to major insights into how the brain works.

This brings us to the last piece of advice: involve geneticists. At some point the mammalian

connectome will become a genomics project. It’s worth remembering that the human genome

project went hand in hand with projects to create a compendium of sequence variants (the

HapMap [19] and thousand genome’s projects [20]). The single biggest factor that determines

variation in connectomes is heredity, something that is relatively easy to exploit in mice

because of access to genetically inbred strains. There are 2,831 strains listed on the website of

the Jackson laboratory (http://www.informatics.jax.org) and these are only a fraction of the

total, if we include their derivatives, such as the recombinant inbreds (more than 100 BXD

lines, mice descended from crosses between B6 and DBA/2J). The strains come from two spe-

cies (Mus musculus and Musculus spretus) and at least three subspecies (Mus musculus muscu-
lus, Mus musculus castaneus, Mus musculus domesticus) [21]. The large amount of genetic

variation that the inbred strains capture contributes to a remarkable array of behavioral and

morphometric differences.

Variability is not limited to a handful of regions: cortical [22,23], hippocampal [24], subcor-

tical [25], and sensory neurons [26] all vary with genetic background. The effect of genetic var-

iation can even be seen in the total volume of structures; lateral septum volume can be ~68%

as large in certain BXD lines compared to others [27], while basolateral amygdala volume can

vary up to ~66% [28]. There are likely to be even more differences in cellular composition

attributable to genetic variation in hitherto unanalyzed brain regions.

Since genetics has a such a large effect on the composition of cell type and brain volume,

strain differences can be used to explore the consequences of changing circuit cellular compo-

sition and structure. For example, visual contrast in the mammalian retina is enhanced by a

process known as lateral inhibition, where feedback loops between different cell types (such as

rod and cone cells synapsing onto horizontal cells) ultimately serve to enhance firing of on-

center cells and silence off-center cells to generate a visual receptive field [29]. Horizontal cells

are a key cell type governing lateral inhibition to establish a receptive field. Based on these find-

ings, circuit models have been generated on the assumption that the physical inputs and
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outputs from each cell type to each other cell type are conserved, with the ratio between inputs

and outputs important and sensitive to the function of the network [30]. Yet some mouse

strains have nearly twice as many horizontal cells or retinal ganglion cells than others; strains

with high numbers of cells of one type do not necessarily also have high numbers of the other

[31,32]. All of these animals have a functioning visual system, so how does the operation of the

visual circuit change, given twice as many horizontal cells or retinal ganglion cells?

Similar questions about the relationship between circuit function and structure can be

posed for behavior. For instance, low levels of activation of Vgat+ neurons in the posterodorsal

subdivision of the medial amygdala lead to parental behaviors, while high levels lead to infanti-

cide [33]. These switches from one behavior to another are believed to be due to changes in the

number of activated neurons in a circuit, and the levels of activation within each neuron. With

connectomic and cellular composition data indicating the appropriate strain differences, it

becomes possible to test these hypotheses about how circuit architecture relates to function

and behavioral output.

Brains, like genomes, need to be mapped. Cartographic tools transformed genetics, just as

they will for neuroscience. There’s no doubting the value of having a connectome of the mam-

malian brain, but the manner of its doing and the use it will be put to are still matters for dis-

cussion. Our advice is to do it in collaboration with scientists who want to know what a

particular circuit does, who want to know the biological basis of a behavior. A lesson from the

fly connectome is that deferred gratification isn’t necessary, and might even be counterproduc-

tive; breakthroughs will come even when components of the connectome are complete. When

we have a visual cortex, an amygdala, at what point do we need to commit to doing the whole

mouse? Simply looking at a whole connectome won’t immediately suggest mechanism, unless

we look with questions in mind, as the identification of the fly’s internal compass demon-

strates. But even when we have such questions, the connectome is just the start. It’s an open

question whether the connectome should be thought of as a technology project, whose aim is

to put connectomics technology within reach of a single laboratory. But however that question

gets answered, the hard questions of what circuits do, and how they do it, are still to be

addressed, which is where genetics comes in, providing the tools to dissect mechanism.
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