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Abstract: Cancer is the deadliest disease among all the diseases and the main cause of human
mortality. Several types of cancer sicken the human body and affect organs. Among all the types of
cancer, stomach cancer is the most dangerous disease that spreads rapidly and needs to be diagnosed
at an early stage. The early diagnosis of stomach cancer is essential to reduce the mortality rate. The
manual diagnosis process is time-consuming, requires many tests, and the availability of an expert
doctor. Therefore, automated techniques are required to diagnose stomach infections from endoscopic
images. Many computerized techniques have been introduced in the literature but due to a few
challenges (i.e., high similarity among the healthy and infected regions, irrelevant features extraction,
and so on), there is much room to improve the accuracy and reduce the computational time. In
this paper, a deep-learning-based stomach disease classification method employing deep feature
extraction, fusion, and optimization using WCE images is proposed. The proposed method comprises
several phases: data augmentation performed to increase the dataset images, deep transfer learning
adopted for deep features extraction, feature fusion performed on deep extracted features, fused
feature matrix optimized with a modified dragonfly optimization method, and final classification of
the stomach disease was performed. The features extraction phase employed two pre-trained deep
CNN models (Inception v3 and DenseNet-201) performing activation on feature derivation layers.
Later, the parallel concatenation was performed on deep-derived features and optimized using the
meta-heuristic method named the dragonfly algorithm. The optimized feature matrix was classified
by employing machine-learning algorithms and achieved an accuracy of 99.8% on the combined
stomach disease dataset. A comparison has been conducted with state-of-the-art techniques and
shows improved accuracy.

Keywords: stomach disease; deep features; features optimization; disease classification

1. Introduction

In medical imaging, gastric lesion identification is an active research domain. Different
gastric lesions include bleeding, esophagitis, ulcer, and polyps. Bleeding and ulcer are the
most common among all abnormalities [1]. These stomach lesions have become a leading
cause of mortalities in humans [2]. Globally, stomach cancer is the third major cause of
death among all cancer deaths [3]. In the global cancer cases, esophageal cancer is at the
seventh position [4]. In 2021 in the United States, Siegel et al. [5] estimated 26,560 new
cases of stomach cancer of which 16,160 cases were in males and 10,400 were in females.
The approximate deaths were 11,180, including 6740 males and 4440 females. In the United
States, the American Cancer Society estimated there would be 26,380 new patients with
stomach cancer for the year 2022. The estimated cases in men are 15,900 and 10,480 in
women. The estimated deaths from these cases are 11,090, including 6690 males and
4400 females [6].
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Wireless capsule endoscopy (WCE) [7] is the medical imaging method used to analyze
the gastrointestinal (GI) tract. This imaging technique is widely utilized in clinics for the
examination of the GI tract. In this technique, a tiny camera is sent into the GI tract to
record the images. During the WCE procedure, about 50,000 images are generated. The
gastroenterologists examine these images, which is a time-consuming process that is neither
efficient nor very accurate. An average of two hours are required for an expert to analyze the
images [8]. This issue can be resolved by developing automated computer-aided diagnostic
(CAD) systems. These CAD models extract features from the WCE images to diagnose
diseases. The fundamental steps of CAD systems include data acquisition, pre-processing,
feature extraction, feature selection or feature optimization, and finally, classification.

In recent years, several computer vision (CV) researchers have introduced automated
CAD models for the recognition of GI abnormalities [9–12]. The CAD models utilize hand-
crafted features and deep convolutional neural network (CNN) features for the recognition
of WCE images. Different studies have utilized color features [13,14], texture features [15],
point features [16], and histogram of oriented gradients (HOG) features [17]. With the re-
cent developments in the deep-learning area, some researchers have utilized deep features
to identify GI diseases.

Stomach disease recognition is a challenging task due to the presence of several
diseases and the availability of disease databases. The propound method of stomach
disease classification’s main goal is to accurately predict the disease with less computation
time. Deep-learning models inception v3 and DenseNet-201 are utilized in this paper for
the deep feature extraction from stomach endoscopic images. Features fusion is performed
on deep extracted features to attain rich feature space. The presence of redundant features
which impacts the accuracy and prediction time came under consideration. The meta-
heuristic approach was adopted to optimize the features for the accurate classification of
stomach infections with less processing time. The robust selected features classification was
performed using several machine algorithms. The major contribution of our propounded
technique is as follows:

• Fine-tuning of pre-trained deep-learning models was performed with parameter
modification for the derivation of high-level features by implementing the activation
function at the average pooling layer.

• Deep features were concatenated using the parallel maximum covariance (PMC)
method, and the resultant feature map was optimized using the nature-inspired
modified binary dragonfly algorithm to reduce feature redundancy.

The remaining paper is organized as follows: Section 2 comprises related work, and
Section 3 contains a brief description of the proposed methodology. Section 4 illustrates
the experiments and results in a detailed description, and the conclusion of the paper is
presented in Section 5.

2. Related Work

Several models have been designed for the detection and identification of stomach
abnormalities. The presented techniques aim to identify stomach diseases in less compu-
tation time with higher accuracy. Different deep-learning techniques [18] equipped with
feature optimization approaches for robust disease recognition have been utilized by the
researcher [19]. In [20], the authors introduced a method for the recognition of bleeding
and ulcers in WCE images. In the first step, they performed preprocessing techniques on
the dataset including 3D-median filtering, 3D-box filtering, and HSV color variation. In
the second phase, extraction of geometric features was performed to obtain binary images,
and masks were generated and implemented to further improve the data. After that, the
researchers extracted shape, and color, and speeded up robust features (SURF), and a
serial-based fusion technique was applied to obtain the feature set. In the third step, feature
selection was performed using the correlation coefficient and principal component analysis
(PCA) approaches. Finally, in the classification phase, the researchers achieved a good
classification accuracy on the SVM classifier. Zhao et al. [21] introduced TriZ, a rotation
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tolerant image feature for the recognition of gastric infections. Researchers compared the
TriZ with the HOG method and observed a better recognition rate. Only 126 image features
of TriZ were utilized for the experiment to compare with the HOG method. They achieved
an accuracy of 87% using their model.

Majid et al. [22] classified stomach infections using handcrafted and deep features.
They computed discrete cosine transform (DCT), color, discrete wavelet transforms (DWT),
and VGG16 features in the feature extraction step. After extraction of the features, the
feature set was given to the genetic algorithm (GA) for the selection of the best features.
The maximum classification accuracy achieved on deep and classical optimized features
was 96.5% on the ensemble classifier. Khan et al. [2] introduced an automated deep-
learning technique based on deep feature classification for the recognition of stomach
infections. First, researchers utilized a saliency-based technique for lesion detection. After
lesion recognition, transfer learning was performed on the pre-trained VGG16 model, and
features were computed from the fully connected layer. Then particle swarm optimization
(PSO) was applied to the feature set for optimization. Finally, the selected features were fed
to the classifiers for recognition. Using this model, they obtained the best accuracy on the
Cubic SVM.

Researchers in [23] recognized stomach diseases using deep features. Researchers
extract features from the Inception V3 model and implemented PSO and the crow search
algorithm (CSA) for feature optimization. The results of both optimization techniques were
fused and fed into a multi-layer perceptron for classification. Their technique outperformed
as compared to the other methods. Bora et al. [24] designed a model for the recognition
of polyps. They utilized a generic Fourier descriptor (GFD) for shape features extraction,
while color and texture features were collected using the non-subsampled contourlet
transform (NSCT). After feature extraction, they evaluated the significance of features
using the analysis of variance (ANOVA). In the feature selection phase, researchers utilized
the fuzzy entropy-based method. Finally, the selected features were classified using a
multi-layer perceptron, and least square SVM. Ayyaz et al. [25] utilized deep CNN models
for the recognition of gastric abnormalities. First, they implemented the transfer-learning
technique on AlexNet and VGG19. Then researchers extracted features from both CNN
models and gave them to the GA for feature optimization. After that, the selected features
were combined using the serial-based technique and given to the multiple classifiers
for final recognition. Their model obtained a promising recognition rate on Cubic SVM.
In [19], researchers extracted ResNet101 [26] features to classify stomach infections. Urban
et al. [27] utilized features from VGG16 [28], VGG19 [29], and ResNet50 [26] models for the
classification of polyps. Some researchers observed that the combination of the handcrafted
and CNN features enhances the performance of the CAD model. Different classical and
deep-learning-based approaches have been proposed by authors, but the challenges such
as features redundancy, computational cost, and model robustness persist [30,31].

3. Materials and Methods

A detailed description of the proposed method is presented in this section. The
method comprises several steps for stomach disease classification. In the first phase, data
augmentation is employed to balance and increase the per-class images using flip and
transpose operations. At the second phase, fine-tuned deep CNN models, namely inception
v3 and DenseNet-201, are employed for deep features derivation by utilizing transfer
learning and features fusion performed on deep derived features maps. The concatenated
feature space has redundant features, which were removed using a metaheuristic approach.
In the last phase, a features optimization binary dragonfly algorithm was implemented on
the fused feature vector to remove redundant features, and classification was performed to
classify the stomach disease. The detailed explanation of our proposed model for stomach
disease classification is illustrated in Figure 1.
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Figure 1. Proposed technique for stomach disease classification.

3.1. Data Acquisition and Preparation

The proposed stomach disease recognition method is utilized to classify the five
major diseases of the stomach. We acquired two classes of bleeding and healthy from
datasets [9] containing 3000 images per class. Esophagitis, polyps, and ulcerative colitis
were extracted from publicly available challenging stomach gastrointestinal tract Kvasirv1
having 500 images per class and KvasirV2 having 1000 images per class [32]. The imbalance
in the division of images per class and the varied sizes affected the performance of the
proposed classification techniques. Data augmentation is a prominent step toward deep-
learning performance. The inclusion of more data for the training of deep-learning models
increases their performance. The maximum number of images per class is 3000, and the
minimum images per class are 500. We performed different flip and transpose operations,
which increased the number of images without losing the information and the features
of images. The applied flip operation increased the dataset images and equaled out the
images per class. The sample images after the augmentation process are shown in Figure 2.
The mathematical notation of the flip operation on images is as follows:

Figure 2. Sample Images after data augmentation.

Let us have an input size of the image matrix 256× 256 expressed as Ñl,m having
lth rows and mth column and Ñl,m ∈ Sl×m. The matrix row l = {1, 2, 3 . . . õ} and column



Sensors 2022, 22, 2801 5 of 17

m = {1, 2, 3 . . . p̃} where the number of channels is 3. The orientation of the RGB image
was processed using three data augmentation operations.

ÑT = Ñl,m (1)

The transposition of the original image is expressed using ÑT , the operation which
alters the indices of images.

ÑH = Ñl( p̃ + 1−m) (2)

The horizontal flip of images is expressed as ÑH .

ÑV = Ñ(õ+1−l) (3)

ÑV illustrates the vertical image flip. The mentioned augmentation operation is
repeated to equal the number of images per class and reach the 3500 number of images.

3.2. Deep Feature Extraction

Pattern recognition and computer vision tasks are performed using features derived
from images. The features present an object according to its color, shape, and positioning.
In the computer vision and medical imaging domain, the inclusion of deep learning
significantly improves the diagnosis of diseases [33]. A deep convolutional neural network
(CNN) normally has different layers such as the input layer, the convolutional layer,
batch normalization, fully connected, and the activation layer ReLU. The CNN input
layers feed the input data to the convolutional layer, and the weights are calculated. The
activation function is applied using the ReLU layer, and inactive neurons are removed. The
classification is performed on features computed using a fully connected layer by SoftMax
layer. In our proposed method of stomach disease recognition, two deep CNN models,
inception v3 and DenseNet-201 were implanted for deep feature derivation. The next
sections comprise a description of the deep-learning models.

3.2.1. Inception v3

Inception v3 is a deep-learning model that has robust performance in classification
tasks. The model has a directed acyclic graph (DAG) with 94 convolutional layers, 316 lay-
ers, and 350 connections [34]. The architecture of the DAG network is complex due to
multiple inputs to different layers at the same time. Several masks are implemented on
different layers for the derivation of different features. The diverse architecture of inception
v3 allows employing different masks and parameters on different layers as compared to
the conventional CNN model, which has predetermined parameters on layers. Inception
v3 was trained on ImageNet, a challenging image dataset having over a million images
and 1000 classes [35]. The deep-learning model learned information about multiple objects
and categories. The input size of inception v3 was 299× 299× 3. The first convolutional
layer was processed by performing activation to derive a feature matrix having a size of
149× 149× 3, and the filter applied had a size of 32. The ReLU function was utilized to
perform activation, and the next batch normalization was performed. ReLU, an activation
function, is expressed as follows:

TeN
j = max

(
lw.lw(N−1)

)
(4)

A pooling layer is sandwiched in convolutional layers having a filter size of 2× 2,
which is illustrated below

oz(q)1 = oz(q−1)
1 (5)

oz(q)2 =
oz(q)2 − H(q)

Sq + 1 (6)

oz(q)3 =
oz(q)3 − H(q)

Sq + 1 (7)
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where oz(q)1 , oz(q)2 , and oz(q)3 are filters applied on the feature vector, and Sq expresses the
stride. Several layers are concatenated before the average pooling layer. The average pool-
ing layer deployed for the derivation of the deep CNN feature map has a size FV1 × 2048
by performing activation.

3.2.2. DenseNet-201

A deep CNN model is known for the robust classification and recognition tasks. The
DenseNet-201 [36] layers, having a directed connection to the next layers, increase the learn-
ing rate with minimal information loss. The network has fewer parameters in comparison
to the other CNN models. Information maintainability requires less information loss from
the first to the last layer. The information and features extracted at the different network
layers can easily be predicted. The presence of gradient function decreases the chances of
overfitting. The input size of the DenseNet-201 is 224× 224× 3.

Suppose an image ξz is used as an input to DenseNet-201. The network has M number
of layers and transformation filters which are nonlinear Sm(.). The transformation filter
Sm(.) is utilized as a concatenated function of convolution, batch normalization pooling,
and ReLU. The output of the mth the layer is computed in a classical CNN model as
(m + 1)th and mathematical modeling as follows:

Bm = Sm(Bm − 1) (8)

DenseNet-201 layers have a direct connection to each other, and the mth layers carry
information computed from all network layers b0, b1 . . . . . . bn−1 which can be defined as

bn = Sm([b0, b1 . . . . . . bn−1]) (9)

In the above equation, b0, b1 . . . . . . bn−1 are the computed feature map of layer 0, . . . . . .
n− 1. The resultant feature vector of previous layers is utilized by the average pooling
layer and activation is employed to extract the required deep CNN feature map having a
size of FV× 1920.

3.2.3. Feature Extraction Using Transfer Learning

Transfer learning has been employed on the deep CNN model for different machine-
learning tasks and proved to be robust in recognition and classification tasks. We implanted
transfer learning on our pre-trained fine-tuned deep CNN models for deep features extrac-
tions. The created stomach disease classification data was used to collect deep features
by adopting transfer learning. We utilized 70:30 practice for the data split, training was
performed on 70% data, and the remaining 30% was used for testing. The preprocessing
step resized the images according to the input size of fine-tuned deep-learning networks.
We employed the fine-tuned DenseNet-201, and the convolutional layer of the network was
utilized as an input layer. The average pooling layer was used for the implementation of the
activation function for features computation. The derived features map had a FV × 1920
size and s expressed as ϕm1. The architecture of DenseNet for transfer learning is expressed
in Figure 3.

We employed the pre-trained Inception V3 for deep features derivation by utilizing
transfer learning. The convolutional layer used for image input and average pooling
layer was activated using the activation function. The derived features vector size was
FV1 × 2048 and the feature map of derived features are illustrated using ϕm2. The derived
features from DensNet-201 and inception V3 were fused for training and testing of the
model. The architecture of inception v3 is illustrated in Figure 4. Training of the pre-trained
model was performed using a sigmoid function. We utilized different parameters such
as 250 epochs, iteration 30, learning rate 0.0001, batch size 64, and data shuffling was
performed on all epochs.
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Figure 3. Transfer-learning architecture of DenseNet-201 for feature extraction.

Figure 4. Transfer-learning formation of Inception V3 for feature derivation.

3.3. Features Fusion

Feature fusion provides rich feature space for pattern recognition applications [37].
Recognition and classification of objects and images require an enriched feature space
to recognize the specific image and feature concatenation that provides specific dense
feature space. Feature concatenation provides efficient feature space for the classification of
objects but impacts the processing time. A novel feature concatenation technique, parallel
maximum covariance (PMC), is employed in our method for feature fusion. The integration
of two deep CNN feature maps results in a single feature space.

Suppose the deep CNN features extracted from two deep CNN models are ϕm1 and
ϕm2. The dimensions of these two feature vectors Fv and Fv1 are q× r and q× s, the q
represents the number of images in a feature space where r and s represents the length of
the attribute matrix. The features extracted using the pre-trained inception v3 are q× 2048,
and the features derived using the pre-trained deep CNN model DenseNet-201 are q× 1920.
The dimensions of feature spaces are equalized by computing the average and the addition
of the average as padding. Suppose the d denotes a column vector n in a feature space ϕ1,



Sensors 2022, 22, 2801 8 of 17

and pattern field ϕ2 has a column vector e. The utilization of time series presents the row
vectors as:

z1 =ϕ1
T ϕm1 (10)

z2 =ϕ2
T ϕm2 (11)

The maximum covariance of ϕ1 and ϕ2 can be described as

f̌ = Cov[z1, z2] (12)

f̌ = Cov
[

ϕ1
T ϕm1, ϕ1

T ϕm1
]

(13)

f̌ =
1

n− 1
Cov

[
ϕ1

T ϕm1, ϕ1
T ϕm1

]
(14)

f̌ = ϕ1(Fϕ1 ϕ2) ϕ2 (15)

Fϕ1 ϕ2 =
1

n− 1

(
ϕ(m1)ϕ(m2)T

)
(16)

where Fϕ1 ϕ2 represents covariance between ϕ1 and ϕ2, and features are expressed as ith
and jth for ϕi and ϕj. The maximum covariance of the final concatenated feature space is
Fϕ1 ϕ2. The features concatenation process makes the feature map dense and, in addition,
creates redundant features. The final feature map obtained after feature fusion has a
FV2 × 3968 dimension.

3.4. Features Optimization

Feature assortment is the robust process of obtaining the most relevant features using
features selection algorithms. The prime goal of features optimization is to reduce the
presence of irrelevant features that impact classification functioning and computation time.
The implanted features optimization method is illustrated in Figure 5. In our propounded
technique, we utilized the binary dragonfly metaheuristic optimization method which
utilized the KNN fitness function for robust feature selection. A detailed description of the
implanted optimization method dragonfly is presented here.

Figure 5. Proposed feature optimization architecture.

Recently, Mirjalili et al. [38] introduced the nature-inspired dragonfly algorithm (DA).
This is a population-based metaheuristic technique, motivated by the hunting and migra-
tion behavior of dragonflies. Small groups of dragonflies move to find food sources in
what is known as the hunting procedure. In the migration process, the larger groups of
dragonflies fly in one direction. The swarming behavior of dragonflies is explained by the
following five parameters.

Separation: This operator ensures that the search agents in the neighborhood keep
away from each other. Mathematically, it can be described as:

Pi = −
N

∑
j=1

A− Aj (17)
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where N represents the neighborhood size, A is the current location of the individual, and
Aj denotes the j-th neighbor of the position A.

Alignment: This parameter describes the velocity of an individual according to the
other neighboring individuals. The following equation describes this behavior:

Xi =
∑N

j=1 Wj

N
(18)

Wj is the velocity of the j-th neighbor.
Cohesion: It indicates the individual’s movement behavior between the neighborhood

to the center of the mass. This can be mathematically explained as:

Mi =
∑N

j=1 Aj

N
− A (19)

Attraction: This parameter defines the attraction of the flying individual towards a
food source. This can be modeled as:

Hi = Hloc − A (20)

where Hloc denotes the location of the food source.
Distraction: The movement of an individual away from the enemy is a distraction. It

can be given as:
Ki = Kloc + A (21)

where, Kloc is the enemy position.
In the DA, the optimization problem is solved using a step vector and a position vector.

The following equation defines the step vector:

∆At+1 = (sSi + xXi + mMi + hHi + kKi) + ω∆At (22)

where s is the separation weight, Si denotes the i-th individual separation, x denotes the
alignment weight, Xi represents the alignment of i-th individual, m is the cohesion weight,
Mi represents the cohesion of i-th individual, h is the food factor, Hi denotes the i-th
individual’s food source, k is the enemy factor, Ki is the location of the enemy of the i-th
individual, ω indicates the inertia weight, and t indicates the iteration number which is 100
in our proposed modified optimization model.

In the search space, a step vector is added to the previous position to revise the position
of dragonflies. However, the following equation is used in a binary search space:

A(t + 1) =
{

At, r < T(∆at+1)
At, r ≥ T(∆at+1)

(23)

where r represents the random number between the range 0 and 1. T(∆at+1) is the transfer
function that calculates the probability of a location update for all dragonflies, and this is
given as:

T(∆a) =
∣∣∣∣ ∆a√

∆x2 + 1

∣∣∣∣ (24)

The pseudo-code of the modified Binary Dragonfly is presented below (Algorithm 1):
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Algorithm 1: Pseudocode of the Dragonfly Algorithm (DA)

Input: Feature Vector ( N× 3968 )
Output: Selected Feature vector ( N× 1855 )
Maximum Iteration = 100
Step 1: Initializing the population Ai(i = 1, 2, 3, . . . , n)
Step 2: Initialize ∆Ai(i = 1, 2, 3, . . . , n)
Step 3: while ( t < Max Iteration ) do

- evaluate each dragonfly
- Update (H) and (K)
- Update the coefficients (s, x, m, h, k, and ω)
- Calculate (S, X, M, H, and K)
- Update Step Vector (∆At+1)
- Update At+1

Step 4: Return: the best solution

4. Results

The proposed technique of stomach disease classification is implanted on the stomach
dataset created from challenging datasets. We acquired different disease images such as
a polyp, ulcerative-colitis, and esophagitis from challenging datasets such as Kvasir V1
and Kvasir V2 [32] and two classes, bleeding, and healthy obtained in [9]. A few sample
images from the created dataset are shown in Figure 6. Cross-validation of the 10-fold and
the 70:30 ratio was employed, 70% for training and 30% for testing.

The extensive experiments and simulation of the propounding method were processed
on a system having an Intel Core i7 9th generation processor, a memory of 16 gigabytes,
and 11 gigabytes of the graphic processing unit. Several machine-learning algorithms were
employed for the prediction of stomach diseases, and a robust one was determined based
upon accurate disease prediction and processing time. The robustness of the implanted
method was assessed using several performance validation metrics such as accuracy,
precision, recall, f1-score, false-negative rate (FNR), and computational time.

Figure 6. Sample images from stomach disease classification dataset.
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4.1. Deep Feature Fusion Results

A brief description of the aspired methodology results has been demonstrated in
this section. The numerical outcomes of the implanted deep features fusion technique
are shown in Table 1. The deep features are derived from pre-trained deep CNN models
and parallel fusion functions. Several machine-learning classifiers were applied to the
fused feature map to perform the stomach disease classification. In our experiments, the
cubic SVM obtained the highest recognition accuracy of 96.2% with an FNR of 3.8%. The
remaining machine-learning algorithms employed for the recognition of stomach disease
on the fused feature space were linear support vector machine (L-SVM), quadratic support
vector machine (Q-SVM), medium Gaussian support vector machine (MG-SVM), cosine
Gaussian support vector machine (CG-SVM), Gaussian-naïve Bayes (GN-Bayes), ensemble
subspace discriminant (ESD), cosine K-nearest neighbor (C-KNN), and linear discriminant
(LD) and their attained corresponding classification results are 96%, 96.1%, 95.6%, 95.2%,
93.7%, 90.7%, 93.6%, 91.5%, respectively. The concatenation of deep CNN features increased
the accurate classification but also increased the processing time.

Table 1. Stomach disease classification results using deep CNN features fusion.

Classifier
Evaluation Measures

Accuracy (%) FNR (%) Time (s)

L-SVM 96 4 514
Q-SVM 96.1 3.9 730
C-SVM 96.2 3.8 611

MG-SVM 95.6 4.4 1310
CG-SVM 95.2 4.8 1214
GN-Bayes 93.7 6.3 354

ESD 90.7 9.3 125
C-KNN 93.6 6.4 153

LD 91.5 8.5 272

4.2. Deep Feature Optimization Results on (CV = 10)

The main goal of the proposed technique was to accomplish the highest classification
accuracy of stomach diseases in minimal computational time. The obtained fused feature
space was optimized using a robust feature optimization algorithm called the binary drag-
onfly algorithm. The optimization technique eliminated the redundant features and picked
the most relevant and robust features. The selection of the best features increases the dis-
ease classification functioning in less processing time. The proposed features optimization
technique outcomes are presented in Table 2. Different machine algorithms are adopted
for stomach disease recognition, different performance evaluation measures are utilized
for the assessment of the methodology, and a robust one was selected based on processing
time and accurate classification rate.

Table 2. Stomach disease classification with proposed feature optimization technique (CV = 10).

Classifier
Evaluation Measures

Accuracy (%) Precision (%) FNR (%) Recall (%) F1_Score (%) Time(s)

L-SVM 98.6 98.8 1.4 99.1 98.9 65.271
Q-SVM 99.1 99.2 0.8 98.3 98.7 69.563
C-SVM 99.8 99.8 0.2 99.4 99.6 33.18

MG-SVM 96.5 97 3.5 97.5 97.2 252.343
CG-SVM 95.6 95.6 4.4 96.6 96.1 102.235
GN-Bayes 92.6 92.7 7.3 93.7 93.2 89.102

ESD 94.2 94.3 5.8 95.2 94.7 125.36
C-KNN 97.4 98.4 2.6 98.4 98.4 27.151

LD 98.3 98.7 1.7 99.3 99 32.14
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C-SVM attained the highest accuracy of 99.8% with 0.2% FNR, 99.8% precision, 99.4%
recall, and 99.6% f1-score in a 33.18 s processing time. L-SVM, Q-SVM, MG-SVM, CG-
SVM, GN-Bayes, ESD, C-KNN, and LD accomplished an accuracy of 98.6%, 99.1%, 96.5%,
95.6, 92.6%, 94.2%, 97.4%, and 98.3%, respectively. The most robust classifier in terms of
processing time was LD with a processing time of 32.14 s, and the worst classifier was
MG-SVM with a computational time of 252.343 s as presented in Figure 7.

Figure 7. Computational time comparison of utilized machine-learning classifiers.

4.3. Deep Feature Optimization Results on (CV = 15)

This section of results provides the proposed feature fusion and optimization method
results on several machine-learning classifiers. Different optimized features vectors were
fed to machine-learning algorithms to evaluate the performance of the proposed fusion
and optimization approach. The main goal of experiments of the proposed technique at
(CV = 15) was to analyze the performance of stomach disease recognition. Results are
presented in Table 3 and show the highest accuracy of 99.6% with a 99.3 f1 score.

Table 3. Stomach disease classification with proposed feature optimization technique (CV = 15).

Classifier
Evaluation Measures

Accuracy (%) Precision (%) FNR (%) Recall (%) F1_Score (%) Time(s)

L-SVM 99.5 98.4 0.5 99.1 98.7 67.271
Q-SVM 99.5 99.1 0.5 98.3 98.7 73.561
C-SVM 99.6 99.2 0.4 99.4 99.3 39.18

MG-SVM 99.4 99.3 0.6 99.5 99.4 286.393
CG-SVM 99.2 99 0.8 99.4 99.2 152.135
GN-Bayes 98.3 98.1 1.7 99.3 98.7 92.112

ESD 99.2 99.1 0.8 99.4 99.2 139.36
C-KNN 99.4 98.6 0.6 99.6 99.1 29.121

LD 98.9 98.4 1.1 99.3 98.8 35.11

In addition to the highest accuracy, the other performance evaluation measure such as
precision 99.2%, recall 99.4% with 0.4% FNR were also computed on the C-SVM machine-
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learning algorithm. The worst classification performance was achieved on GN-Bayes
with 98.3% accuracy. The best machine algorithm which utilized less computational cost
was linear discriminant, and the worst classifier in terms of computation time was MG-
SVM. The results show that the C-SVM achieved overall better accuracy, and LD achieved
the best computational time. The overall performance of C-SVM is better in stomach
disease recognition.

The results highlight the robustness of the proposed deep features extraction and
optimization using the binary dragonfly algorithm. The highest classification accuracy of
machine-learning algorithms using features optimization also reduced the computational
time. The computational time of employed classifiers is presented in Figure 7.

The optimized feature map classification was executed using various machine-learning
algorithms, and a robust one was selected based upon the highest accuracy and less
processing time. The C-SVM obtained the highest classification accuracy of 99.8% with a
FNR of 0.2%. The robustness of the C-SVM classifier was also verified using the confusion
matrix expressed in Table 4.

Table 4. Confusion matrix of proposed features optimization for stomach disease classification.

Stomach Disease
Stomach Diseases

Healthy Bleeding Esophagitis Polyps Ulcerative-Colitis

Healthy 100%
Bleeding 100%

Esophagitis 100%
Polyps <1% 99% <1%

Ulcerative-Colitis <1% 99%

The proposed deep CNN-based stomach disease classification methodology com-
pared with other deep CNN models such as AlexNet, VGG19, VGG16, InceptionV3, and
GoogleNet utilized for stomach disease classification and recognition accuracy has been pre-
sented in Figure 8. We have also trained our fine-tuned models and performed classification
of stomach disease and compared with them. The results show that the pre-trained model
accuracy of AlexNet, VGG16, VGG19, GoogleNet, and Resnet50 was 94.67%, 93.96%, 95.9%,
97.5, and 92.17, respectively, while the proposed model attained an accuracy of 99.8%.

Figure 8. Proposed stomach disease recognition model comparison with CNN models.
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5. Discussion

In this work, we performed a fair comparison of our proposed methodology with other
pertinent techniques presented for stomach disease recognition. In our proposed features
extraction and optimization method, we utilized cross-validation of 10-fold to examine the
robustness of our methodology. The maximum accuracy achieved by concatenating deep
features spaces was 96.2%, and the deployment of a modified dragonfly algorithm increased
the accuracy to 99.8 using C-SVM machine-learning classifiers. The comparison of the
proposed feature optimization method with relevant methodologies is presented in Table 5.
The techniques that are used for the comparison of the proposed method used the same
dataset or same classes of stomach dataset used in this proposed work. Researchers [39]
utilized 12,147 stomach disease endoscopic images to extract from Kvasir v2 and endoscopy
artifact detection (EAD) [40] for disease recognition, using a deep-learning-based attenua-
tion technique and achieved a classification accuracy of 93.19%. In [41] stomach disease
recognition was performed on 6702 images from Kvasir V2, challenging the stomach dis-
ease dataset using data augmentation and fine-tuning of CNN models for stomach disease
classification with an accuracy of 96.33%. In [42] 2006, capsule endoscopy images acquired
from Kiang Wu Hospital used by researchers for the classification of gastric disease using a
deep attention model for segmentation to locate the lesion region for accurate recognition of
disease recognition and attained 96.76% of stomach disease classification accuracy. In [43]
researchers employed CNN and capsule network for stomach disease classification and
deformation analysis using a Kvasir V2 dataset having 8000 images with an accuracy of
94.73%. In [44] the authors classified ulcerative colitis from challenging datasets Kvasir,
Kvasir V2, and hyper-Kvasir for binary classification using deep learning and achieved an
accuracy of 87.50%. Our proposed deep feature extraction and optimization technique for
stomach cancer classification was applied on 17,500 images of different stomach disease
classes for stomach diseases recognition from Kvasir and Kvasir v2 and two classes of
healthy and bleeding obtained from [9] and achieved the highest accuracy of 99.8% on the.
cubic SVM classifier. The proposed model also reduced the computational time as com-
pared to modern techniques of stomach infection recognition. We performed experiments
on the fused feature vector and compared these results after applying the optimization
method. The results clearly show that the proposed binary dragonfly algorithm increases
the efficiency of the model as presented in Figure 9.

Table 5. Comparison of the proposed model with existing techniques.

Ref. Year Dataset No. of
Images Accuracy

[39] 2021 Kvasir V2 + EAD2019 12,147 93.19%

[41] 2021 Kvasir V2 6702 96.33%

[42] 2022 Kiang Wu Hospital dataset 2006 96.76%

[43] 2022 Kvasir V2 8000 94.83%

[44] 2022 Kvasir + Kvasir V2 3482 87.50%

Proposed 2022 Kvasir + Kvasir V2 + Healthy + Bleeding 17,500 99.8%

The robustness and consistency of the proposed method were also evaluated using a
confidence interval, a statistical method used for the computation of error and continuity
exemplified in Figure 10. Normally, in data representation, 5% is used as a statistical
significance for the confidence level score of 95% with a standard deviation of 0.08. The
presence of error in our proposed method is 99.74 ± 0.118 (±0.12%). The statistical analysis
presented in the figure shows that the proposed stomach disease classification method is
consistent and accurate at different confidence intervals.
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Figure 9. Stomach disease recognition accuracy with and without optimization.

Figure 10. Statistical confidence interval of proposed stomach classification method.

6. Conclusions

Deep CNN-based feature derivation and optimization methodology have been pre-
sented in this paper for stomach disease classification. In the suggested method, the deep
CNN features derivation was performed by employing transfer learning using Inception
V3 and DenseNet-201, Activation was performed on the feature derivation layers of both
models to obtain the specific feature matrix. The derived feature matrix was fused with the
help of the parallel maximum covariance method. The maximum accuracy achieved after
feature fusion was 96.2% on the C-SVM. The concatenated features matrix was optimized
using a modified binary dragonfly algorithm. The features optimizing technique provided
better results as compared to the individual deep CNN feature fusion feature map. The
maximum recognition accuracy of stomach disease recognition after feature optimization
was 99.8% on a C-SVM machine-learning classifier which represents the robustness of
the proposed feature optimization technique. The main strength of the proposed method
comprised robust feature derivation and selection to enhance the accuracy of stomach
diseases recognition. The major disadvantage of the implanted technique is the increase
in computational cost due to feature concatenation. Future work will comprise the large
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database creation and optimal deep-learning model creation, especially for stomach disease
recognition. Furthermore, a deep-learning model will be trained from scratch to perform
polyp and ulcer segmentation.
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