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A B S T R A C T

The recognition of medical images with deep learning techniques can assist physicians in

clinical diagnosis, but the effectiveness of recognition models relies on massive amounts of

labeled data. With the rampant development of the novel coronavirus (COVID-19) world-

wide, rapid COVID-19 diagnosis has become an effective measure to combat the outbreak.

However, labeled COVID-19 data are scarce. Therefore, we propose a two-stage transfer

learning recognition model for medical images of COVID-19 (TL-Med) based on the concept

of ‘‘generic domain-target-related domain-target domain”. First, we use the Vision Trans-

former (ViT) pretraining model to obtain generic features frommassive heterogeneous data

and then learn medical features from large-scale homogeneous data. Two-stage transfer

learning uses the learned primary features and the underlying information for COVID-19

image recognition to solve the problem by which data insufficiency leads to the inability

of the model to learn underlying target dataset information. The experimental results

obtained on a COVID-19 dataset using the TL-Med model produce a recognition accuracy

of 93.24%, which shows that the proposed method is more effective in detecting COVID-

19 images than other approaches and may greatly alleviate the problem of data scarcity

in this field.
� 2022 Published by Elsevier B.V. on behalf of Nalecz Institute of Biocybernetics and Bio-

medical Engineering of the Polish Academy of Sciences.
1. Introduction

Since the outbreak of the novel coronavirus (COVID-19) in late

2019, the virus has been ravaging the world to date, which has

had a great impact on global politics, the economy, culture,

etc., and has caused immeasurable economic and property

losses. Due to its extremely high infection rate and mortality

rate, the World Health Organization declared that the COVID-

19 outbreak was a global health emergency in a very short
period [1]. As of 6 September 2021, more than 220 million

cumulative diagnoses and more than 85 million cumulative

deaths have been confirmed worldwide. These numbers

may be even higher due to asymptomatic cases and flawed

tracking policies. Some researchers have modeled COVID-19

through the fractal approach of the epidemic curve to help

the medical community understand the dynamics and evolu-

tion of the COVID-19 outbreak, and thus control the spread of

the outbreak [2]. Other researchers have used mice to study
the Polish
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the pathogenesis of COVID-19 in order to evaluate the effec-

tiveness of new treatments and vaccines and to find more

effective ways to combat COVID-19 [3]. Despite global efforts

to prevent rapid outbreaks of the disease, hundreds of thou-

sands of COVID-19 cases continue to be confirmed worldwide

every day, making rapid COVID-19 detection an effective mea-

sure with which governments can respond to COVID-19; this

can help health departments and government authorities

develop effective resource allocation strategies and break

the chain of transmission.

The most typical symptoms of COVID-19 include fever, dry

cough, myalgia, dyspnea, and headache, but in some cases,

no symptoms can be seen (these are called asymptomatic

cases), making this disease a greater public health threat than

other diseases. Currently, reverse transcription-polymerase

chain reaction (RT-PCR) is viewed as the gold standard for

the diagnosis of COVID-19. However, the rapid and effective

screening of suspected cases is limited by the lack of

resources and stringent testing environment requirements.

In addition, RT-PCR tests are time-consuming and have high

false negative (FN) rates [4]. The spread of COVID-19 has led

to the production of many variants of this strain, such as

delta variant, which is hundreds of times more virulent and

infectious than common strains; these mutations undoubt-

edly add to the pressure of COVID-19 detection. However,

computed tomography (CT) scan images are considered a bet-

ter method for detecting COVID-19 [5], with a sensitivity of

98 % (compared to 71 % for RT-PCR) [4]. In COVID-19 cases,

CT scan images show some specific manifestations, including

multilobular ground glass shadows (GGOs) distributed on

both sides, in the periphery or in the rear [6], predominantly

in the lower lobes and less frequently in the middle lobes. Dif-

fuse distribution, vascular thickening, and fine reticular

clouding are other common features reported for patients

with neocoronavirus pneumonia. For example, Fig. 1 shows

two CT scans: one for a patient with COVID-19 and one for

a non-COVID-19 patient [7]; the CT scan of the lungs of a

patient infected with COVID-19 is located on the left side of

the figure, where some distinct GGOs are shown as red

arrows, and a normal CT scan of the lungs is shown on the

right side. The use of computers to classify medical images

and thus to assist physicians in diagnosis is now a common

and effective method [8,9]. The use of artificial intelligence
Fig. 1 – A CT scan of the lungs of a patient infected w
technology to classify CT images has become a widespread

concern in medical image analysis [10,11].

During the pandemic, hospitals generate thousands of CT

scan images every day. For such a large number of CT scan

images, it is a great challenge to rely on the naked eye of a

professional physician for detection and identification, and

the human eye tends to become fatigued and easily overlook

some details, leading to misdiagnosis; the cost of misdiagno-

sis is unbearable. In contrast, machines do not become fati-

gued, and some details that are easily overlooked by

humans can be detected. Therefore, the deep learning

approach can effectively help us to quickly detect and identify

COVID-19. Based on these facts, our approach introduces a

Vision Transformer (ViT) into the COVID-19 detection and

classification task.

The proposed model uses CT scan images to identify nor-

mal CT scan images and patient CT scan images. Since the

generic domain dataset used for the ViT-pretrained model

and the dataset used in this experiment are different in terms

of their feature spaces and dimensions and the tuberculosis

(TB) dataset is highly similar to the COVID-19 dataset with

respect to their feature spaces and dimensions, in the first

stage, we use heterogeneous transfer learning to learn the

generic features of the images and use the ViT model (which

is trained on a large proportion of the generic domain data) to

detect the five types of TB. Then, in the second stage, the

domain features of the images are learned by using homoge-

neous transfer learning. Based on the first stage, the model

obtained from the TB dataset is used as the second stage pre-

trained model in the second stage, and this model then fine-

tuned to detect and identify either COVID-19 or non-COVID-

19 patients. The performance of the proposed technique is

evaluated by comparing the results derived from the model

with those of Residual Network 34 (ResNet34) [12], ResNet101

[12], and DenseNet169 [13], which are based on convolutional

neural network (CNN) technology. The experimental results

show that the developed model outperforms the existing

models based on CNN techniques.

The remainder of the paper is organized as follows. Sec-

tion 2 introduces the related works on COVID-19 detection.

Section 3 describes the proposed method in detail. Section 4

gives the related experimental results, and Section 5 draws

conclusions.
ith COVID-19 and a CT scan of a normal lung [7].
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2. Related work

In this section, we discuss the research areas relevant to our

work - research related to the detection of COVID-19.

Since the COVID-19 outbreak, rapid diagnostic testing has

become one of the most effective methods for interrupting

the spread of COVID-19. Because deep learning-based detec-

tion methods are more convenient and faster than traditional

approaches, researchers have developed many effective mod-

els for detecting COVID-19 based on deep learning.

Heidarian et al. [14] developed a two-stage fully automated

CT framework (COVID-FACT), which is mainly composed of a

capsule network. COVID-FACT can capture spatial informa-

tion without extensive data augmentation and large datasets

and is performed in two stages: the first stage detects infected

slices, and the second stage classifies the patient CT scan

image of the patient. The supervision and annotation of

COVID-FACT depend less on the input data relative to the

same type of model.

Chaudhary et al. [15] developed a two-stage classifica-

tion framework based on CNNs. The authors first used a

pretrained DenseNet [13] for COVID-19 or community-

acquired pneumonia (CAP) detection in the first stage and

then used the EfficientNet [16] network for COVID-19,

CAP and normal controls for triclassification. Its classifica-

tion effectiveness was ranked first in the IEEE ICASSP 2021

Signal Processing Grand Challenge (SPGC) evaluation. Data

are expensive resources; in particular, datasets in the med-

ical field are extremely scarce. For this reason, He et al.

[17] collected and collated hundreds of COVID-19 CT scan

images and made them publicly available. A self-

supervised transfer learning method was also proposed,

reducing the bias generated on the source images and

their class labels by conducting an auxiliary task on the

CT images, and its performance was superior to that of

several state-of-the-art methods. Polsinelli et al. [18]

designed a lightweight CNN based on SqueezeNet [19],

whose processing speed surpassed that of other models

and whose processing time when running without GPU

acceleration also surpassed that of many models that

require GPU acceleration; however, its performance was

not greatly improved over that of other networks, and its

accuracy was not high. Sani et al. [20] constructed a new

network structure for COVID-19 recognition by using a

high-precision Hopfield neural network (HNN) to find

symptoms and using a mathematical model to improve

the accuracy of masking. Scarpiniti et al. [21] proposed a

novel unsupervised method that used deep denoising con-

volutional autoencoders to provide compact and meaning-

ful hidden representations. The experimental results

show that the method has high reliability and low compu-

tational cost for the recognition of COVID-19.

Similarly, Pathak et al. [22] designed a transfer learning

network based on ResNet-50 [23] that extracts the latent fea-

tures of CT COVID-19 images through ResNet-50 and uses

transfer learning to train the classification model. Finally,

based on its training results, optimized hyperparameters are

obtained by using a CNN. Jaiswal et al. [24] used DenseNet201

[13] to classify patients with COVID-19. They used transfer
learning techniques to extract the image features learned by

pretraining DenseNet201 and then fed these obtained fea-

tures into a CNN for classification. Loey et al. [25] generated

more images via classical data augmentation with condi-

tional generative adversarial networks (CGANs) [26], and then

they trained these networks for classification via deep trans-

fer learning methods. Muhammet et al. [27] proposed two

architectures to classify COVID-19. In this study, AlexNet is

used as the backbone network for transfer learning. Com-

pared with architecture 1, which directly used AlexNet for

transfer learning, architecture 2 consists of AlexNet and

BiLSTM, considering the time and order of the data.

There are also many researchers working on the detection

of COVID-19 through the study of X-ray modal data. Xiao et al.

[28] adopted a local phase-based image enhancement method

to obtain a multi-feature CXR image, which was fed into the

network together with the original image for fusion, which

further improved the classification performance of themodel.

For the tuning problem in deep learning, Mohammad et al.

[29] optimized the CNN structure in multiple stages by itera-

tively using heuristic optimization methods to finally evolve

the best performing network with the smallest number of

convolutional layers. Govardhan et al. [30] utilized two CNN

models (ResNet50 and ResNet101) for a two-stage detection

task. In this study, the first-stage ResNet50 distinguished bac-

terial pneumonia, viral pneumonia, and X-rays of normal

healthy people, and the detected viral pneumonia samples

are used as the input data of the second-stage ResNet101 net-

work to distinguish COVID-19 and other viral pneumonia

patients. Bejoy et al. [31] used multiple pre-trained CNN mod-

els for feature extraction, before selecting significant features

through correlation-based feature selection techniques and

subset size forward selection, and finally classifying them

through a Bayesnet classifier. Ruochi et al. [32] proposed the

COVID19XrayNet model, which was designed using two-step

transfer learning. In this study, the first step used pre-

trained ResNet34 for fine-tuning on the common pneumonia

dataset, transfering the model weights trained in the first step

to the corresponding network modules in the second step,

and trained on the COVID-19 dataset. Shervin et al. [33]

fine-tuned four pre-trained network models (ResNet18,

ResNet50, SqueezeNet, DenseNet-169) with a small number

of COVID-19 datasets, and the model performed well. Shayan

et al. [34] directly utilized standard CNN to classify lung

images, and the model performed well. Gupta et al. [35] pro-

posed the COVID-WideNet capsule network. Compared with

other CNN models, its parameters are greatly reduced, and

it can detect COVID-19 quickly and efficiently. Goel et al. [36]

proposed the Multi-COVID-Net model, which was an ensem-

ble network composed of InceptionV3 and ResNet50 pre-

trained networks, and optimized hyperparameters through

the Multi-Objective Grasshopper Optimization Algorithm

(MOGOA). Since fine-tuning the architecture and hyperpa-

rameters of deep learning models is a complex and time-

consuming process, Jalali et al. [37] proposed a novel deep

neuroevolutionary algorithm, which was mainly achieved by

modifying the competitive swarm optimizer algorithm and

adjusting the volume Hyperparameters and Architecture of

Productive Neural Networks.
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Comparedwith the CNN structure, ViT can pay attention to

more global information at the lower level. And more data for

training can help ViT to further learn local information,

thereby improving the performance of the model [38]. There-

fore, many researchers use the ViT architecture to detect

COVID-19. In order to accurateely classify and quantify the

severity of COVID-19, Sangjoon et al. [39] proposed a multi-

task Vision Transformer model.The method obtained its low-

level corpus features by pre-training on a large and general

CXR dataset, and then used the acquired corpus features are

input as a general Transformer for classification and severity

quantification of COVID-19. To address the problem that the

Vision Transformer required large-scale data for training, in

order to obtain a Vision Transformer with good performance,

Li et al. [40] usedResNet as a teacher network through a knowl-

edge distillation method to extract its knowledge learned in

COVID-19 CT images into the student network Vision Trans-

former. Debaditya et al. [41] proposed the COVID-Transformer

model, which fine-tuned the Vision Transformer on a large

dataset collected and merged, and performed well compared

to other standard CNN models. Sangjoon et al. [42] proposed

the FESTA framework. By dividing the Vision Transformer into

three parts: head, tail and Transformer for training, it reduced

the consumption of client resources and bandwidth by joint

training, and improved theperformanceof themodel for single

task processing. By fine-tuning the Vision Transformer,

Koushik et al. [43] performed better than other standard CNN

models. Sangjoonet al. [44] usedDenseNet to extract abnormal

lung features on a large low-level dataset, and then used it as a

corpus for Vision Transformer training to obtain a better fea-

ture embedding and improve the performance of the model.

ARNAB et al. [45] proposed the xViTCOS framework, which

employed Vision Transformer as the backbone network

through a multi-stage transfer learning approach, pre-

training and fine-tuning on multiple scales of ImageNet data-

sets, followed by fine-tuning training on the COVID-19 CXR

dataset and CT dataset, respectively, to allow the model to

them for classification.Sangjoon et al. [46] trained a backbone

network with a large number of carefully curated public

records to generate generic CXR results, thereby maximizing

the performance of the Transformer model using a low-level

CXR corpus from the backbone network.

3. Proposed method

In this paper, we propose a two-stage transfer learning

approach, which is based on the ViT model, to classify

COVID-19 by using different transfer learning methods.

The overall model structure is shown in Fig. 3. In the fig-

ure, ① indicates that the ImageNet dataset is trained through

the ViT model, ② indicates that the trained model in ① is

used as a pretraining model to complete heterogeneous

transfer learning on the TB dataset, ③ represents the transfer

of the relevant medical feature knowledge learned in ② (as

shown by the dotted line in the figure) and the completion

of homogeneous transfer learning on the COVID-19 dataset.

The main process of the model is as follows. First, a multi-

modal image is input x 2 RH�W�C and undergoes a series of

image preprocessing steps to convert the image to a uniform
resolution size (224, 224); the image is then passed through a

convolution layer and flattened to xp 2 RN� P2 �Cð Þ, where p is the

resolution size of each image patch and N ¼ HW=P2 is the

number of image patches, which is then spread and projected

using a trainable linear E 2 R P2 �Cð Þ�D onto a D-dimensional vec-

tor and then concatenated with a trainable class token for

classification, i.e., xclass 2 R1� P2 �Cð Þ. Thus, its dimensionality

becomes xp 2 RðNþ1Þ�D, after which a positional embedding

with the same dimensions is added: Epos 2 RðNþ1Þ�D. The

obtained result is fed into the transformer encoder module

for computation, and finally, the class token with dimensions

xclass 2 R1� P2 �Cð Þ is extracted and sent to the multilayer percep-

tron (MLP) module for classification.

In this work, several main parts of the model include a

self-attention (SA) mechanism, a multiheaded self-attention

(MSA) mechanism, and an MLP.

3.1. Attention mechanisms

Since the transformer [47] was proposed in 2017, it has devel-

oped in the field of natural language processing (NLP) at an

astonishing rate, and its attention model soon received great

attention from NLP researchers. In the following years,

transformer-based models have emerged, and some of the

better models, such as the bidirectional encoder representa-

tions from transformers (BERT) model [48], have occupied

the main position in the field of NLP in recent years. Inspired

by the success of transformers in NLP, researchers have intro-

duced them into the computer vision (CV) field and con-

ducted some experiments. The experimental results show

that transformers have great potential to surpass modelswith

pure CNN architectures in some areas. Some researchers have

used combinations of CNNs and transformers [49,50], and

other researchers have directly used a pure transformer

architecture instead of a CNN architecture [51,52]. The biggest

reason for the success of transformers is their attention

mechanism. For translation tasks, the transformer model

proposed by Google replaced long short-term memory (LSTM)

with an attention mechanism and has been a great success.

The principle of an attention mechanism is that different fea-

tures are contained in each layer of a network; these features

can be in different channels and different locations and have

different levels of importance, and the later layers should pay

attention to the most important information and suppress

the less important information. In other words, an attention

mechanism should increase the presence of the areas that

need attention and give them extra attention, while it should

reduce the presence of less important areas and then reduce

their influence on the overall situation.

The ViT model proposed in [51] has greatly stimulated

interest in transformer research. Similar to the sequence pro-

cessing approach in the field of NLP, ViT uses a pure trans-

former structure, where the input images are split into

fixed-size patches, and then the embedded sequences of

these image patches are used as inputs for the transformer.

Through a series of experiments, it has been shown that

ViT has great potential for image processing, especially for

large-scale image processing.
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Nonlocal neural networks [53] are viewed as early works

on attention mechanisms in computer vision and early

attempts by researchers to use transformers in the CV field.

The use of self-attention mechanism involves building

remote dependencies and then directly capturing these

remote dependencies for determining the interactions

between any two locations without being restricted to adja-

cent points; this is equivalent to constructing a convolution

kernel as large as the size of the feature map and thus can

maintain more information. The drawbacks of this network

model are that its time complexity and space complexity

are both large and that expensive GPU devices are required

to train the model on massive data. Bahdanau et al. [54] first

introduced an attention mechanism into the field of NLP. Pre-

viously, the main architecture for neural machine translation

models was the sequence-to-sequence (Seq2Seq) framework,

and the main bottleneck of this model framework was its

intermediate transformation of the fixed dimensional sizes

of vectors. To solve this problem, a Seq2Seq + attention model

was used for machine translation, achieving excellent results.

Vaswani et al. [47] completely discarded common network

structures such as recurrent neural networks (RNNs) and

CNNs for machine translation tasks, used the attention

mechanism only for machine translation tasks, and achieved

excellent results. Since then, the attention mechanism has

become a hot research issue.

3.2. Transfer learning

With the rapid development of machine learning, an increas-

ing number of machine learning application scenarios have

emerged. The better performance of supervised learning is dri-

ven by a large amount of data, but in some domains, such data

are oftenhard to obtain or too small to support the training of a

good model; thus, transfer learning was born. Transfer learn-

ing models are mostly pretrained on large-scale datasets

(e.g., ImageNet [55]) and thenfine-tuned fordownstream tasks.

This idea has been successfully applied to many scenarios,

such as dense pose recognition [56], image classification [57],

and language understanding [48]. Transfer learning also has

many applications in the medical field, such as tuberculosis

detection [58], chest X-ray pneumonia classification [28], and

breast cancer classification [59]. The main transfer learning

methods that have emerged include sample-based transfer

learning [60], feature-based transfer learning [61], model-

based transfer learning [62], homogeneous transfer learning

[63], heterogeneous transfer learning [64], and adversarial

transfer learning [65]. Among them, homogeneous transfer

learning and heterogeneous transfer learning are the main

methods used in this paper for the classification of COVID-19.

Domains and tasks are two common basic concepts in

transfer learning. A domain D in transfer learning contains

two parts, i.e., a feature space X and a marginal probability

distribution PðXÞ; the domain is given by:

D ¼ fX;PðXÞg ð1Þ
A task T in transfer learning consists of two parts, i.e., a

label space Y and a target prediction function f Xð Þ; which

can also be viewed as the conditional probability PðY j XÞ; this
is given by:
T ¼ fY;PðY j XÞg ð2Þ
Among the source domain and the target domain in trans-

fer learning, the former is the domain used to train the model

or the tasks, and the latter is the machine learning domain

used to predict, classify, and cluster the data by using the for-

mer model.

A generalized definition of nonuniform transfer learning,

schematically shown in Fig. 2, is as follows:

� Condition: Given a source domain Ds and a learning task

on the source domain Ts, a target domain Dt and a learning

task Tt on the target domain.
� Goal: Use the knowledge of Ds and Ts to improve the learn-

ing of the prediction function on the target domain fð�Þ.
� Restrictions: Ds–Dt;Ts–Tt.

3.2.1. Homogeneous transfer learning
If the source and target domain data have the same or similar

representation structures but obey different probability distri-

butions, i.e., the feature spaces of the source and target

domains are the same, (Xs ¼ Xt) and have the same dimen-

sionality (ds ¼ dt), homogeneous transfer learning is applica-

ble. Both data- and model-based transfer learning belong to

homogeneous transfer learning. The shortcoming of homoge-

neous transfer learning lies in its ability to improve the gener-

alization of the target domain with only the help of the source

domain of the homogeneous representation space.

3.2.2. Heterogeneous transfer learning
In this case, the source and target domains have different fea-

ture spaces or different feature representations, i.e., Xs–Xt:

For example, if the source domain is a dataset from the gen-

eric domain and the target domain is a proprietary dataset,

the feature spaces have different dimensions, i.e., ds–dt. For

the scenario of medical image classification, suppose that

the source domain is an ImageNet dataset about the aspects

of our daily life and that the target domain is a CT scan image

regarding tuberculosis. In general, these domains contain dif-

ferent features and possess different feature dimensions. In

heterogeneous transfer learning, the source domain generally

possesses richer labeling samples, while the target domain is

unlabeled or has a small number of labeled samples, and this

approach overcomes the shortcomings of homogeneous

transfer learning by allowing the domains to be different.

3.3. SA and MSA

Attention mechanism is essentially derived from the visual

attention mechanism of humans. Humans do not always

focus their attention on the whole of something when view-

ing it, but rather on particular parts that interest them. More-

over, when people find that a scene often shows a certain part

of something they want to observe, they perform learning to

focus their attention on that part when a similar scene occurs

again in the future. SA is a class of attention mechanism that

goes through different parts of the same sample to obtain the

part that should be focused on. SA has various forms, and the



Fig. 2 – Schematic diagram of transfer learning.

Fig. 3 – Overall structure of the model.
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generic converter relies on the scaled dot product form shown

in Fig. 4. In the SA layer, the input vector is first converted into

three different vectors, i.e., a query matrix Q, a key matrix K

and a value matrix V. Then, the weights of these vectors are

obtained by the dot product of Q and each K. After normaliz-

ing these weights by using a softmax function, finally, the

weights and their corresponding key values V are weighted
Fig. 4 – SA s
and summed to obtain the final attention value. The function

is calculated as follows:

AttentionðQ;K;VÞ ¼ Softmax
QKTffiffiffiffiffi
dk

p
 !

� V ð3Þ

where dk is the dimensionality of the vector and
ffiffiffiffiffi
dk

p
normal-

izes the vector.
tructure.
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MSA is the core component of the transformer. Its struc-

ture is shown in Fig. 5, which differs from that of SA in that

the input of MSA is divided into many small parts. Then,

the scaled dot product of each input is calculated in parallel,

and all the attention outputs are concatenated to obtain the

final result. The MSA equation is expressed as follows:

head i ¼ Attention QWQ
i ;KW

K
i ;VW

V
i

� � ð4Þ

MSAðQ;K;VÞ ¼ Concat head i; � � � ;headið ÞWO ð5Þ

where WQ
i , W

K
i , W

V
i , and WO are trainable parameter matrices.

3.4. MLP and embedding layers

In [17], the MLP head immediately follows the MSA and is

composed of a fully connected layer (Linear), and the final

class token passes through its output prediction class; more-

over, an MLP block is also present in the transformer encoder.

The transformer encoder consists of a stack of encoder

blocks, and the transformer encoder is also alternatively com-

posed of MSA and MLP blocks. In the transformer encoder,

layer normalization (LN) is applied before each block, and

residual concatenation is used after each block. One of the

MLP blocks is composed of a nonlinear activation function

(a Gaussian error linear unit (GELU)), a dropout layer, and

two fully connected layers. The structural composition is

shown in Fig. 6.

The input image is split into fixed-size patches and then

convolved, and the resulting vector is flattened and mapped

to the corresponding size dimension by using a trainable lin-

ear projection.

4. Experiments

4.1. Datasets

4.1.1. COVID-19 dataset
The COVID-19 dataset required for the experiments in this

paper is obtained from [6], with a total of 746 CT scans. In
Fig. 5 – Multiheade
the dataset, 349 of these COVID-19-positive CT images were

collected from papers on COVID-19 in medRxiv and bioRxiv,

and the other 397 COVID-19-negative CT images were

obtained from PubMedCentral (a search engine) and MedPix

(a publicly available online medical image database contain-

ing CT scans of various diseases). The data distributions for

these two categories are shown in Table 1.

4.1.2. TB dataset
The TB dataset is obtained from the ImageCLEF2021 chal-

lenge, which was used to classify TB cases into five main

types: (1) infiltrative; (2) focal; (3) tuberculoma; (4) miliary;

and (5) fibro-cavernous. We use 917 3D CT scans, which are

stored in the NIFTI file format. Each slice has an image size

of 512 � 512 pixels, and the number of slices is approximately

100; the dataset distribution is shown in Table 2 below.

4.2. Preprocessing

The images are first matched one by one with the category

labels, and then each image is resampled to (224, 224). Thus,

the final 746 CT scans are all processed to sizes of (3, 224, 224).

The data are enhanced using horizontal flipping, vertical flip-

ping, rotation, brightening, and darkening operations. The

distributions of the data before and after enhancement are

shown in Table 3 and the brackets indicate the data after

augmentation.

4.3. Experimental setup and evaluation criteria

In our experiments, we randomly divide the dataset into a

training set (598) and a test set (148) based on a ratio of 8:2,

where data augmentation is used on the training set. The dis-

tributions of the dataset before and after augmentation are

shown in Table 3. The training set is then used to optimize

the parameters. We set the optimizer (stochastic gradient

descent (SGD)) learning rate to 0.01, the momentum to 0.9,

and the weight decay to 5x10�5. Training is conducted for a

total of 30 rounds.
d SA structure.



Fig. 6 – Transformer block structure.

Table 1 – COVID-19 dataset table.

categories quantities

COVID-19 349
NonCOVID-19 397

Table 2 – TB dataset.

Types Amounts

Infiltrative 420
Focal 226
Tuberculoma 101
Miliary 100
Fibro-cavernous 70

Table 3 – Distributions before and after data enhancement.

Type Categories Total

COVID-19 NonCOVID-19

Train 280(2520) 318(2862) 598(5382)
Test 69 79 148
Total 349(2589) 397(2941) 746(5530)
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The main objective of this paper is to classify COVID-19.

Classification results can be positive (infected with COVID-

19) or negative (not infected with COVID-19). The predicted

outcome of each classification match may or may not align

with the actual category. In this setup, it is assumed that a

true positive (TP) indicates an actual COVID-19 case and that

the CT image can be correctly classified as COVID-19. A false

positive (FP) indicates that an actual nonCOVID-19 case is

incorrectly classified as COVID-19. A true negative (TN) indi-

cates an actual nonCOVID-19 case whose CT images can be

correctly classified as nonCOVID-19. Finally, an FN indicates

that the actual COVID-19 case is incorrectly classified as

nonCOVID-19.

The performance of the model is evaluated with several

commonly used evaluation criteria, i.e., the accuracy (Acc),

precision (Precision), recall (Recall), and F1 value. These met-

rics are defined below:

Acc ¼ TPþ TN
TPþ FPþþTNþ FN

ð6Þ

Precision ¼ TP
TPþ FP

ð7Þ

Recall ¼ TP
TPþ FN

ð8Þ

F1 ¼ 2 � precision � recall
precision þ recall

ð9Þ

In medical research, especially for major infectious dis-

eases such as COVID-19, it is very important to reduce the

numbers of FP and FN results in the modeling process. In par-

ticular, FNs should be minimized to avoid classifying any
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COVID-19 patients as nonCOVID-19 pneumonia patients, as

coronavirus may cause more significant damage. Of course,

it is also important to minimize the FP rate to avoid the

unnecessary waste of manpower and resources.

4.4. Classification model comparison

We evaluate DenseNet169 [12], ResNet101 [22] and ResNet34

[22] on the COVID-19 dataset and compare them with the

ViT model. And they all have pretrained on ImageNet dataset.

The experimental results are shown in Table 4. The number of

model training rounds is set to 30. From the experimental

results, ViT achieves accuracy improvements of 3.37 %,

4.05 %, and 5.4 % over those of DenseNet169, ResNet101, and

ResNet34, respectively. Moreover, compared to these models,

the ViT converges more quickly, and the area under the recei-

ver operating characteristic curve (Auc) = 0.9545, which

means that the COVID-19 classification model based on the

ViT performs better. Through these comparative experi-

ments, the ViT model is still more effective than other classi-

fication models in this area of image classification.

4.5. Comparison of transfer models

We first use the TB dataset, whose construction is shown in

Table 2. Since the pretrained model is obtained via training

on the ImageNet dataset [27], which belongs to the general-

purpose domain, and the dataset used in this experiment

consists of the COVID-19 CT images in the specialized

domain, this scenario involves heterogeneous transfer learn-

ing. Since these CT images are stored in the NIFTI file format,

we first slice them, train the obtained 110,000 CT images by

using the pretrained model, and save the best-performing

parametric model. Several types of slices are shown in Fig. 7.

We train the best-performing model obtained through

heterogeneous transfer learning as a pretrained model on

the COVID-19 dataset, which is distributed as shown in

Table 1. The comparison results obtained in our experiments

are shown in Table 5. Among the tested methods, ViT-HTL

indicates heterogeneous transfer learning, and TL-Med indi-

cates further homogeneous transfer learning on top of

heterogeneous transfer learning. And ResNet34-TL,

ResNet101-TL and DenseNet169-TL indicate that they are

pre-trained on the TB dataset, and then fine-tuned on the

COVID-19 dataset. It is shown that homogeneous transfer

learning yields better results. The main reason for this is that

the structures of the TB and COVID-19 datasets are similar,

i.e., the feature spaces of the source and target domains are

similar, and the features learned by the models are also

similar.
Table 4 – Comparison among the pretrained models.

Model Acc. Precision Re

DenseNet169 0.8649 0.9538 0.7
ResNet101 0.8581 0.9028 0.8
ResNet34 0.8446 0.8500 0.8
ViT 0.8986 0.9103 0.8
4.6. Ablation experiments

In this subsection, for the overall TL-Med model, we explore

the impact of changing the corresponding settings on the

model performance; in other words, we explore the impacts

of whether the pretrained model is frozen, whether the prel-

ogit module (PL) which consists of a linear layer and a nonlin-

ear activation function(Tanh) is increased, and a before-and-

after comparison of the enhancing data on the resulting

model.

From Table 6, concerning the freezing of the pretraining

model, we can see that the pretraining models without freez-

ing are generally better than those that freeze. The accuracy

is improved by 6.08 %, 4.06 %, and 7.43 % under the same

experimental settings by only changing the freeze setting of

the pretrained model, which shows that changes in the pre-

trained model settings have great impacts on the model per-

formance. It is not difficult to understand that the freezing

operation involves freezing all the previous layers and train-

ing only the MLP head module, i.e., train the classification

output layer, whose model has fewer adjustable parameters

and therefore results in limited model performance improve-

ment. The operation without freezing uses the pretraining

weights as the initial weights, and all of the weights partici-

pate in the training of themodel, so the overall effect is better.

To achieve greater learning and fitting capabilities for the

network model and to strengthen the representation capabil-

ity of the network, we add the PL module before the last layer

(linear layer), where the PL and the linear layer constitute the

MLP head; this is denoted as the linear + tanh activation func-

tion. That is, the MLP head consists of two linear layers and a

nonlinear activation function. Compared with Method Ⅰ and
Method III, this approach achieves improved experimental

results by adding the PL module, with a 2.02 % improvement

in accuracy. Compared with Method Ⅱ and Method Ⅳ, this

approach does not achieve obviously improved accuracy, but

its recall is improved by 1.26 %, and the F1 value is increased

by 0.11 %. The improvement in recall, which indicates a

reduction in FNs, allows us to minimize the risk of the model

diagnosing a COVID-19 patient as a nonCOVID-19 patient dur-

ing the test identification process for infectious diseases,

especially for a major infectious disease such as COVID-19.

The distribution of the data after data augmentation is

shown in Table 3. Pretraining is viewed as a major modeling

technique in CV, in which pretraining is always applied to

one dataset for use with another dataset. From Table 6, we

can see that when the pretraining weights are frozen, the per-

formance of the model decreases by 1.35 % when utilizing

data augmentation. The reason for this phenomenon may

be that after the pretraining model of the network is frozen,
call F1 Auc Time (min)

848 0.8611 0.9274 8
228 0.8609 0.9176 15
608 0.8553 0.9439 10
987 0.9045 0.9545 9.4



Fig. 7 – Five types of TB slices.

Table 5 – Transfer learning comparison.

Model Acc. Precision Recall F1 Auc Time

ResNet34-TL 0.777 0.8833 0.6709 0.7626 0.8556 9
ResNet101-TL 0.7635 0.7683 0.7975 0.7826 0.7666 10
DenseNet169-TL 0.8919 0.8795 0.9241 0.9012 0.9532 10
ViT-HTL 0.8986 0.9103 0.8987 0.9045 0.9545 9.4
TL-Med 0.9122 0.9459 0.8861 0.9150 0.9606 9.3

Table 6 – Ablation experiments.

Model Acc. Precision Recall F1 Auc Time

TL-Med + freeze 0.8514 0.8800 0.8354 0.8571 0.9066 7.2
TL-Med + no-freeze 0.9122 0.9459 0.8861 0.9150 0.9606 9.3
TL-Med + freeze + PL 0.8716 0.9054 0.8481 0.8758 0.9197 7.1
TL-Med + no-freeze + PL 0.9122 0.9342 0.8987 0.9161 0.9576 9.3
TL-Med + freeze + PL + dataAug 0.8581 0.8919 0.8354 0.8627 0.9145 337
TL-Med + no-freeze + PL + dataAug 0.9324 0.9600 0.9114 0.9351 0.9686 364.9
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the use of the data augmentation technique adds more

labeled data to the training process, which has a bad effect

on pretraining and then reduces the effect of pretraining. In

Fig. 8, we can see that the accuracy achieved on the test set

before data augmentation increases more; however, it

increases slowly after data augmentation or even becomes

gradual, and the overall increase is less than that before data

augmentation. Therefore, we can notice that the use of the
Fig. 8 – Test set accuracies before and after data

enhancement experiments.
data augmentation technique adds more labeled data but

has some negative effects on pretraining, which directly

results in a decrease in model accuracy. That is, data augmen-

tation and the use of more labeled data in the pretraining

mode do not necessarily improve the performance of the

model. Zoph et al. [66] studied the problems associated with

pretraining in detection and segmentation tasks and sug-

gested that using more powerful data augmentation tech-

niques and more labeled data reduced the role of

pretraining. However, by comparing Method IV and Method

VI, the method improves the performance of the model by

increasing the amount of data through data augmentation

techniques. Therefore, with the pre-trained model frozen,

the limited number of trainable parameters limits the ability

of the model to learn more data-relevant features through

the data augmentation technique. It can be seen that the

number of trainable parameters has an impact on the data

augmentation technique. After employing the data augmen-

tation techniques without freezing the model, we can see that

the accuracy, precision, recall, F1 value and Auc of the model

are substantially improved, which implies that increasing the

number of trainable parameters and combining them with

more labeled data may effectively contribute to improving

the model performance.
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5. Discussion

In the past period of time, many researchers have studied the

detection of COVID-19, and developed some COVID-19 detec-

tion models based on deep learning. Table 7 compares our

proposed method with the existing literature.Due to the dif-

ferent datasets, validation methods, and some corresponding

evaluation metrics, a fair comparison with the model results

proposed in the literature cannot be made. However, it is

worth noting that our proposed method achieves relatively

good performance on a dataset size of 746 CT images. The

number of images we use is less than that used by other

methods. The method by Xiao et al.[28] achieved high accu-

racy on the two datasets respectively. The method by Naren-

dra et al.[67] achieved 99.12 % accuracy, 99 % recall and 99 % f-

score in a balanced dataset of 400 COVID-19 and 400 normal

images. The method of Nayeeb et al.[68] achieves 99.39 % pre-

cision, 99.39 % recall and 99.19 % f-score using a limited data-

set. Mahesh et al.[69] achieved an accuracy of 98.30 %, a recall

of 98.31 and an f-score of 98 % on a relatively large dataset.

Bejoy et al.[31] method was able to achieve an accuracy of

91.15 % on the first dataset and 97.43 % on the second dataset

containing only 71 COVID-19 images and 7nonCOVID images.

Shome et al.[41] achieved 93.2 % precision and 96.09 % recall.

The training of the model is a process of continuous adjust-
Table 7 – Comparison of our proposed method with the existin

Method dataset

Xiao et al.[28] Test data 1:
2567COVID-19,
2567normal,
2567 Pneumonia
Test data 2:
756COVID-19,
6284normal,
3478 Pneumonia

Narendra et al.[67] 400 COVID-19,
400 normal

Nayeeb et al.[68] 408COVID-19, 816Non-COVID
Mahesh et al.[69] 2249COVID-19,

2396no-Findings
Bejoy et al.[31] Test data 1:

453COVID-19,
497 Non-COVID
Test data 2:
71COVID-19,
7non-COVID

Govardhan et al.[30] 250COVID-19,
965 other

Shome et al.[41] 10819COVID-19,
10,314 normal

Ruochi et al.[32] 189COVID-19,
63 other,
235 normal

Mohammad et al.[29] 184COVID-19,
5000 normal

Panwar et al.[70] 142COVID-19,
142Non-COVID

Proposed Method 349COVID-19,
397Non-COVID
ment and optimisation. Ruochi et al.[32] achieved 91.08 %

accuracy on a small datasets.Mohammad et al.[29] achieved

an accuracy of 99.11 % by continuously optimising the model

to obtain the best combination of model hyperparameters.

However, Panwar et al.[70] achieved an accuracy of 88.1 %

on a balanced dataset with experimental results obtained

on a relatively small dataset. And from the table, we can also

conclude that the size of the data has a certain impact on the

performance improvement of the model.The studies by [67

69,70] were based on popular convolutional neural network

architectures such as VGG16, ResNet50, Xception. [30,68] used

a two-stage training scheme, which differed from the training

scheme used in this paper in that they both separate network

architectures, and both perform transfer learning on relevant

datasets closely related to COVID-19.

The model proposed in this paper is developed with the

aim of being used in clinical conditions for detecting

COVID-19 patients from their chest CT images.Based on this,

the model can be used to assist specialist practitioners in

rapid diagnostic screening during an outbreak. Therefore,

the purpose of this model is to rapidly screen COVID-19 from

other diseases. From the experimental results, our model can

be used for initial rapid screening of suspicious people and

can provide effective assistance to front-line medical staff

to further improve the efficiency of detection of COVID-19
g literature.

Acc. Precision Recall F1 Auc

0.9557 0.99 0.99 0.99 –

0.9444 0.95 0.95 0.95 –

0.9912 0.99 0.99 0.99 –

0.9939 0.9919 0.9939 0.9919 –
0.983 – 0.9831 0.98 0.999

0.9115 0.853 0.985 0.914 0.963

0.9743 0.986 0.986 0.986 0.911

0.9777 0.9714 0.9714 – –

0.9320 – 0.9609 – –

0.9108 – – – –

0.9911 – – – –

0.881 – – – 0.881

0.9324 0.96 0.9114 0.9351 0.9686



Fig. 9 – The confusion matrix of the proposed TL-Med

framework.
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and stop the spread of COVID-19. And as shown in the confu-

sion matrix in Fig. 9, the proposed model in this paper pro-

duces more false negatives, which will be a direction for our

future improvement. As to whether the results of the deep

learning method constitute a reliable diagnosis, due to the

rigorous nature of medicine, we will conduct experiments

on additional COVID-19 datasets in the future to further

demonstrate the performance of our model.

6. Conclusion

In the past few decades, machine learning has developed

rapidly and has been applied in many industries and fields.

Since medical image recognition is the most basic and diffi-

cult problem in the medical field, the use of computers to

assist doctors in identifying and detecting cases is a common

application of machine learning. In this paper, a two-stage

transfer learning model (TL-Med) based on the ViT is pro-

posed to detect and identify CT data. To detect COVID-19

effectively, we first perform pretraining on the TB dataset,

where the aim is to obtain medical features and use the best

obtained results as a pretrained model, and then we train and

test the resulting models on the COVID-19 dataset. To over-

come the problem of data scarcity, we use a data augmenta-

tion technique. The data augmentation effectively improves

the training of TL-Med by enabling it to learn more classifica-

tion features and learning parameters from the rich training

dataset. The classification model can effectively aid clinicians

in the detection and identification of COVID-19.

In the medical field, data scarcity is a common phe-

nomenon. In the future, we plan to use TL-Med to explore

other medical image detection and classification scenarios,

such as breast cancer, brain tumors, and diabetic retinopathy.
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