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ABSTRACT
Experimental methods play a crucial role in identifying the subcellular localization of proteins and
building high-quality databases. However, more efficient, automated computational methods are
required to predict the subcellular localization of proteins on a large scale. Various efficient feature
extraction methods have been proposed to predict subcellular localization, but challenges remain.
In this paper, three novel feature extraction methods are established to improve multi-site
prediction. The first novel feature extraction method utilizes repetitive information via moving
windows based on a dipeptide pseudo amino acid composition method (R-Dipeptide). The second
novel feature extraction method utilizes the impact of each amino acid residue on its following
residues based on pseudo amino acids (I-PseAAC). The third novel feature extraction method
provides local information about protein sequences that reflects the strength of the
physicochemical properties of residues (PseAAC2). The multi-label k-nearest neighbor algorithm
(MLKNN) is used to predict the subcellular localization of multi-site virus proteins. The best overall
accuracy values of R-Dipeptide, I-PseAAC, and PseAAC2 when applied to dataset S from Virus-mPloc
are 59.92%, 59.13%, and 57.94% respectively.
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Introduction

Knowledge about the subcellular localization of proteins
is critical for understanding their functions and biologi-
cal processes in cells.1 High-quality databases of infor-
mation on the subcellular localization of proteins are
informed by wet laboratory experiments. However, such
experiments are time-consuming, costly and laborious.2

Experimental methods for handling proteins on a large
scale have become increasingly difficult. It is necessary to
develop effective computational methods to analyze sub-
cellular localization.3 The web servers proposed to iden-
tify the subcellular localization of proteins based on their
sequence information can be classified into two series.4

One is the “PLoc” series, and the other is the “iLoc”
series. The “PLoc” series includes six web servers to han-
dle eukaryotic, plant, human, gram-negative bacterial,
gram-positive bacterial, and viral proteins, while the
“iLoc” series includes seven web servers to handle
eukaryotic, plant, human, animal, gram-negative bacte-
rial, gram-positive bacterial, and viral proteins.5 Many

studies have indicated that greater progress in prediction
systems is obtained by developing feature extraction
methods than by improving the classifiers.6,7

In recent years, a wide range of feature extraction
methods have been proposed to improve the perfor-
mance of prediction: (1) amino acid composition (AAC)
methods;8-11 (2) homology-basedmethods;7,12 (3) sorting
signal-based methods;13-14 and (4) pseudo amino acid-
based feature methods (PseAAC).15-17 All these methods
have shown good performance but could be improved.
AAC methods lack location information; homology-
basedmethods are not suitable for low-homology protein
sequences; and PseAAC can reflect some of the effects of
sequence order but lacks the impact of each residue on
the subsequent residues. Therefore, three feature extrac-
tion methods are proposed to improve the performance
of multi-site prediction.

The three novel feature extraction methods proposed
in this study are called R-Dipeptide, I-PseAAC and
PseAAC2. Inspired by the long short-term memory

CONTACT Lei Wang 3027630499@qq.com
© 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

BIOENGINEERED, 2018
VOL. 9, NO. 1, 196–202
https://doi.org/10.1080/21655979.2017.1373536

https://crossmark.crossref.org/dialog/?doi=10.1080/21655979.2017.1373536&domain=pdf&date_stamp=2018-02-15
mailto:3027630499@qq.com
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1080/21655979.2017.1373536


with attention mechanism (A-LSTM),18 R-Dipeptide
focuses on using repetitive information. First, the spac-
ing between two windows is set by the user, often to a
small number. In this study, the spacing is one. Then,
two better protein sub-sequences are selected according
to the prediction results and combined. This method
makes up for the lack of extraction of key information
by PseAAC. I-PseAAC computes the impact of each
amino acid residue on the subsequent residues. This
method offers global order information, rather than the
local order information provided by PseAAC.
PseAAC2 focuses on location information. This
method not only offers global order information but
also adds the relative strengths of the residues, whereas
PseAAC lacks information on the relative strengths of
residues.

Material and methods

Dataset

Dataset S, constructed by Shen in establishing Virus-
mPloc, is the benchmark dataset for the study.19 Data-
set S offers three advantages. (1) The dataset is special-
ized for virus proteins. (2) None of the proteins
included in S has � 25% pairwise sequence identity to
any other protein in the same location. (3) The dataset
includes proteins with more than one location and
thus can be utilized to address the subcellular localiza-
tion of multi-site virus proteins.20

Dataset S includes 207 virus protein sequences, of
which 165 belong to one subcellular location, 39 to two
locations, and 3 to three locations.20 The dataset is classi-
fied into 6 subcellular locations,21 as expressed in Eq. 1:

SD S1[ S2[ S3[ S4[ S5[ S6 (1)

where S1 represents the subset for the subcellular loca-
tion “viral capsid”, S2 the subset for “host cell mem-
brane”, and so forth (Table 1), while[ denotes “union”
in set theory.21

Here, the locative protein sequences and different
protein sequences are briefly described as follows. Loc-
ative proteins are described by Eq. 2:

N.locative/DN.different/C
XM
mD 1

.m¡ 1/N.m/ (2)

where N(locative) represents the number of locative
proteins and N(different) represents the number of
different proteins. Here, m is the number of locations
where the specific protein is identified, and N(m) is
the number of proteins that are identified in m
locations.

R-Dipeptide

R-Dipeptide utilizes repetitive information via moving
windows based on a dipeptide pseudo amino acid
composition method.

First, the number of each amino acid residue in
every protein sequence is calculated in Eq. 3. Then,
the number of residues is normalized in Eq. 4.

V D ½v1; v2; v3; :::; vi; :::; v20� (3)

where vi is the number of the i-th type of residue in
every protein sequence.

v�i D
vi ¡m

s
(4)

where v�i is the normalized value of vi, m denotes the
mean of vi, and s represents the standard deviation of vi.

Second, the spacing between two windows is set to
one, and the window size is set to thirty. The sub-
sequence of the first group is {R1,R2,…,R30}, the sub-
sequence of the second group is {R2,R3,…,R31}, and so
forth. For the last residue (RL), L is smaller than the
minimum length of all protein sequences. Then, two
improved protein sub-sequences are combined to cre-
ate a new database based on the prediction results.
The new database contains important repetitive infor-
mation. that contributes to the prediction of subcellu-
lar localization.

Lastly, a dipeptide pseudo amino acid composition
method (Dipeptide) is used for the new database.
Dipeptide will generate 400 components, i.e., AA, AC,
AD, …, YV, YW, and YY. These 400 components are
calculated for every protein sequence and then sub-
jected to a standard conversion.

Table 1. The benchmark dataset S taken from Virus-mPloc21.

Subset Subcellular location Number of proteins

S1 Host viral capsid 8
S2 Host cell membrane 33
S3 Host endoplasmic reticulum 20
S4 Host cytoplasm 87
S5 Host nucleus 84
S6 Secreted 20
Total number of locative proteins 252
Total number of different proteins 207
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I-PseAAC

PseAAC is proposed by Chou and avoids losing the
ordering information of protein sequences.23

A protein (P) including L amino acid residues can
be described by Eq. 5:

PDR1;R2;R3; ::::::;RL (5)

where R1 is the first residue of the protein sequence P,
R2 is the second residue of the protein sequence P, and
so forth.

The sequence order information can be represented
by Eq. 6.

du D
XL¡ u

iD 1

V.Ri;RiC u/=.L¡ u/; .uD 1; 2; . . . ; n and n< L/

(6)
where du is the u-th correlation factor, which provides
the sequence order information between the u most con-
tiguous residues.V(Ri, RiC1) can be described by Eq. 7:

V.Ri;RiC 1/D 1
6

½H1.Rj/¡H1.Ri/�2 C ½H2.Rj/
�

¡H2.Ri/�2 C ½Pk1.Rj/¡ Pk1.Ri/�2

C ½Pk2.Rj/¡ Pk2.Ri/�2 C ½PI.Rj/

¡ PI.Ri/�2 C ½M.Rj/¡M.Ri/�2g (7)

where H1(Ri), H2(Ri), Pk1(Ri), Pk2(Ri), PI(Ri), and M(Ri)
denote the hydrophobicity value, the hydrophilicity
value, Pk1(-COOH), Pk2(-NH3), PI, and the mass value
of the amino acid residue Ri, respectively.

All physicochemical properties should be normal-
ized before being used in the calculation of Eq. 7.

In contrast to PseAAC, I-PseAAC utilizes the impact
of each residue on the subsequent residues. I-PseAAC
is described in Fig. 1(a), Fig. 1(b) and Fig. 1(c).

Fig. 1(a), Fig. 1(b) and Fig. 1(c) show the process of
I-PseAAC. PseAAC calculates the order information for
(R1,R2), (R2,R3), (R3,R4) and so forth, while I-PseAAC
calculates the or information for (R1,R2), (R1,R3),(R1,R4)
and so forth. The details are shown in Fig. 1(a), Fig. 1
(b) and Fig. 1(c). In .Ri;Rj/, j is greater than i.

PseAAC2

In contrast to PseAAC and I-PseAAC, PseAAC2 pro-
vides a different kind of local information to reflect
the strength of the physicochemical properties of

residues, as described in Eq. 8 and Eq. 9:

V.Ri/D 1
6
½H1.Ri/

2 CH2.Ri/
2C Pk1.Ri/

2

C Pk2.Ri/
2 C PI.Ri/

2 CM.Ri/
2� (8)

V.Ri;Rj/DV.Ri/ � R.Rj/ (9)

MLKNN

MLKNN is a multi-label classifier that utilizes the k-
nearest neighbor algorithm to collect the category tag
information of neighbor samples and exploits the
principle of maximum posterior probability to infer
the “no example of label” set.21,24 MLKNN can be
described by Eq. 10 and Eq. 11:

CjD
X

.x;Y/2N.x/

yj 2 Y
� �

(10)

where Cj represents the number of neighbors of x
belonging to class N(x).21

h.x/D yj

���� P.Hj jCj/

P.H : j jCj/
> 0:5; 1� j� q

� �
(11)

where Hj denotes the event of x including the category
yj. P(Hjjyj) denotes the posterior probability set Hj that
N(x) contains the number Cj in the category yj.

Figure 1. (a) The impact of each residue on the subsequent resi-
dues. Fig. 1(b). The impact of each residue on the subsequent res-
idues. Fig. 1(c). The impact of each residue on the subsequent
residues.
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Evaluation

To provide a more intuitive and easier-to-understand
measurement, a new scale, the so-called “absolute
true” overall accuracy,20 reflecting the accuracy of a
predictor, is given in Eq. 12:

LD
XN

iD 1
D.i/

N
(12)

where L represents the absolute true rate, N represents
the number of total proteins investigated, and D(i) D
1 or D(i) D 0.

All subcellular locations of the i-th protein will be
tested. If every subcellular location of the i-th protein
is correctly predicted, D(i) D 1; otherwise,D(i) D 0.

Therefore, the absolute true scale is much stricter than
the scale used previously to measure the overall accuracy.

In addition, a series of other evaluation functions
are applied to evaluate the prediction performance.22

HammingLoss:

HammingLoss.h/D 1
N

XN
iD 1

1
C

��h.xi/Dyi�� (13)

HammingLoss is utilized to calculate how many times
a label is misclassified. A lower value of HammingLoss
represents better algorithm performance.

RankingLoss:

RankingLoss.h/D 1
N

XN
iD 1

1

jCi j jCi j
� .y1; y2/

��h.xi; y1/� h.xi; y2/
� �

(14)

Ci is the collection of labels with a value of one,
denoted by labels-one. Ci is the collection of labels
with a value of zero, denoted by labels-zero. If the pre-
dictive labels of an instance are completely correct, the

output value of labels-one should be higher than the
output value in labels-zero. RankingLoss is utilized to
calculate how many times the output lacks an appro-
priate comparison. A lower value of RankingLoss indi-
cates better algorithm performance.

One_error:

One error.h/D 1
N

XN
iD 1

argmax
y2Y

h.xi; y/

� �
=2 Yi

� �

(15)
One_error calculates how many times the top label is
not in the appropriate label sets. A lower value of
One_error represents better algorithm performance.

Coverage:

Coverage.h/D 1
N

XN
iD 1

maxrankh.xi; y/¡ 1
C

(16)

Coverage is utilized to calculate how far down the
label set of an instance it is necessary to go. A lower
value of Coverage indicates better algorithm
performance.

Average_Precision:

Average_Precision is utilized to calculate the aver-
age fraction of labels ranked. A higher value of Avera-
ge_Precision represents better algorithm performance.

Results

In this study, the spacing between two windows is set
to 1, and the window size is set to 30. The database is
divided into 24 groups: (0,30) is the first group, (1,30)
is the second group, and so forth. The number of each
amino acid residue in every group is calculated in
Eq. 3. and Eq. 4. The overall accuracy of each group is
shown in Table 2.

Average Precision.h/D 1
N

XN
iD 1

1
jCi j

X
y2Ci

��� y0 2 Ci j rankh.xi; y0/� rankh .xi; y/
� ����

rankh.xi; y/
(17)

Table 2. Sorting signals of database.

(0,30) (1,30) (2,30) (3,30) (4,30) (5,30) (6,30) (7,30)
50% 45.63% 50% 54.76% 57.54% 53.57% 57.54% 47.22%
(8,30) (9,30) (10,30) (11,30) (12,30) (13,30) (14,30) (15,30)
55.56% 46.43% 44.05% 41.27% 49.21% 50% 43.25% 50.79%
(16,30) (17,30) (18,30) (19,30) (20,30) (21,30) (22,30) (23,30)
50.79% 51.98% 55.56% 56.35% 46.83% 46.03% 46.03% 44.05%
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The overall accuracy of the original database is
55.16%, while the best overall accuracy of the groups
is 57.54%. Table 2 demonstrates the effect of the sort-
ing-signal method. Group 5 and group 7 are combined
to create a new database. For example, group 5
{ACDVY} and group 7 {DVYWY} are converted to
the new database {ACDVYDVYWY}. The important
repetitive information is {DVY}. If both group 5 and

group 7 show good performance, we believe that the
two groups share important information {DVY} for
the prediction of subcellular localization.

As shown in Table 3, the two methods AAC and
Dipeptide give better results when applied to the new
database than when applied to the original database.
The original database contains redundant informa-
tion. Therefore, the methods cannot obtain better per-
formance when applied to the original database. The
new database utilizes the repetitive information from
sub-sequences. This approach is equivalent to increas-
ing the weight of key residues.

Six physicochemical properties are used in the
PseAAC2 and I-PseAAC methods: the hydrophobic-
ity, hydrophilicity, Pk1(-COOH), Pk2(-NH3), PI and
mass values of each amino acid residue, as described
in Table 4.

The three novel feature extraction methods are
compared with PseAAC.23 Group 5 and group 7
are combined to create a new database, and four
feature extraction methods are used in the new
database to identify the subcellular localization of
multi-site virus proteins by MLKNN. The results of
the PseAAC method are obtained via a web server
called PseAAC at http://www.csbio.sjtu.edu.cn/bio
inf/PseAAC/#. The weight factor is 0.05, and the
Lambda parameter is 40.

As shown in Table 5, the three novel feature extrac-
tion methods show superior performance, achieving
59.92%, 59.13%, and 57.94% accuracy for the MLKNN
algorithm. The PseAAC method shows 57.14% accu-
racy for MLKNN algorithm. Thus, the three novel fea-
ture extraction methods improve the performance of
multi-site prediction.

As shown in Table 6, the number of correct predic-
tions of every subcellular location is calculated by
Eq. 12. The overall accuracy is the sum of the correct
predictions.

Table 3. Application of two methods to original database and
new database.

AAC in original dataset R-AAC Dipeptide in original dataset R-Dipeptide

55.16% 58.33% 54.76% 59.92%

Table 4. Six physicochemical properties.

hydrophobicity hydrophilicity Pk1 Pk2 PI mass

0.62 ¡0.5 2.35 9.87 6.11 15
0.29 ¡1 1.71 10.78 5.02 47
¡0.9 3 1.88 9.6 2.98 59
¡0.74 3 2.19 9.67 3.08 73
1.19 ¡2.5 2.58 9.24 5.91 91
0.48 0 2.34 9.6 6.06 1
¡0.4 ¡0.5 1.78 8.97 7.64 82
1.38 ¡1.8 2.32 9.76 6.04 57
¡1.5 3 2.2 8.9 9.47 73
1.06 ¡1.8 2.36 9.6 6.04 57
0.64 ¡1.3 2.28 9.21 5.74 75
¡0.78 0.2 2.18 9.09 10.76 58
0.12 0 1.99 10.6 6.3 42
¡0.85 0.2 2.17 9.13 5.65 72
¡2.53 3 2.18 9.09 10.76 101
¡0.18 0.3 2.21 9.15 5.68 31
¡0.05 ¡0.4 2.15 9.12 5.6 45
1.08 ¡1.5 2.29 9.74 6.02 43
0.81 ¡3.4 2.38 9.39 5.88 130
0.26 ¡2.3 2.2 9.11 5.63 107

Table 6. Overall accuracy of R-Dipeptide, I-PseAAC, and PseAAC2.

Overall accuracy

Subcellular location R-Dipeptide I-PseAAC PseAAC2

Viral capsid 7/8 D 87.5% 7/8 D 87.5% 7/8 D 87.5%
Host cell membrane 12/33 D 36.36% 13/33D 39.39% 13/33 D 39.39%
Host endoplasmic reticulum 11/20 D 55% 11/20 D 55% 10/20 D 50%
Host cytoplasm 49/87 D 56.32% 52/87D 59.77% 51/87 D 58.62%
Host nucleus 59/84 D 70.24% 51/84D 60.71% 52/84D 61.9%
Secreted 13/20 D 65% 15/20 D 75% 13/20 D 65%
Overall accuracy 151/252 D 59.92% 149/252 D 59.13% 146/252 D 57.94%

Table 5. Application of PseAAC, R-Dipeptide, I-PseAAC and
PseAAC2 to the new database.

PseAAC R-Dipeptide I-PseAAC PseAAC2

57.14% 59.92% 59.13% 57.94%
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To simplify the representation of the evaluation
functions, Average_Precision is denoted by A, Cover-
age is denoted by C, HammingLoss is denoted by H,
One_error is denoted by O, and RankingLoss is
denoted by R. The calculation details of the five evalu-
ation functions are described in Eq. 13-17. The feature
extraction method is denoted by FEM.

As shown in Table 7, R-Dipeptide, I-PseAAC,
PseAAC2 all show better performance than PseAAC
in general.

Conclusion and discussion

In this study, three novel feature extraction methods
are proposed to improve the performance of multi-
site prediction. In experimental comparisons, the R-
Dipeptide, I-PseAAC, and PseAAC2 methods achieve
higher accuracy rates for the MLKNN algorithm than
does the PseAAC method. Thus, repetitive informa-
tion, the impact of each residue on subsequent resi-
dues, and local information are critical for the
performance of multi-site prediction. The advantage
of R-Dipeptide is the extraction of key information
using the repetitive information method. We are
accustomed to extracting key information by weight
adjustment of the algorithm. For a large-scale dataset,
weight adjustment is an effective method for the
extraction of key information. However, if the dataset
is limited in scale, the repetitive information method
is better than the weight adjustment method. The
advantage of I-PseAAC is that it can reflect the differ-
ence in physicochemical properties between each
amino acid residue and the subsequent residues. In
addition, I-PseAAC provides global information on
the residues. The disadvantage is that the difference
between the i-th residue and the j-th residue may be
the same as the difference between the i-th residue
and the k-th residue. For example, two kinds of
physicochemical properties are denoted by A and B,
respectively. The difference in A between the i-th
residue and the subsequent j-th residue is 0.2, and

the difference in B is ¡0.2. The difference between
the i-th residue and the subsequent k-th residue in A
is 0.3, and the difference in B is ¡0.3. Thus, there is
no difference between the j-th residue and the k-th
residue. The advantage is that PseAAC2 amplifies
the differences in the physicochemical properties of
different residues by providing another source of
local information about protein sequences. The disad-
vantage is how to choose a set of representative
physicochemical properties. If the values of the physi-
cochemical properties of different residues are
different, this kind of physicochemical property is
representative. If some of the residues have the same
physicochemical property values, the performance of
PseAAC2 will decline.

The three novel feature extraction methods have
shown good performance but can still be improved.
The first question is how to set an appropriate window
size and spacing between two windows. If the window
is too small, important information will be lost and a
large number of groups will be generated. If the win-
dow is too large, too much redundant information
will be generated. If the spacing between two windows
is too large, repeat information will be lost. In addi-
tion, groups can be combined in a variety of ways,
such as adjacent groups (group 4, group 5), interval
groups (group 4, group 7), or more than two groups
(group 4, group 5, group 7). Our future studies will
focus on these questions with regard to subcellular
localization.
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