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ABSTRACT

Efficient annotation of alterations in binding se-
quences of molecular regulators can help identify
novel candidates for mechanisms study and of-
fer original therapeutic hypotheses. In this work,
we developed Somatic Binding Sequence Annota-
tor (SBSA) as a full-capacity online tool to anno-
tate altered binding motifs/sequences, addressing
diverse types of genomic variants and molecular reg-
ulators. The genomic variants can be somatic muta-
tion, single nucleotide polymorphism, RNA editing,
etc. The binding motifs/sequences involve transcrip-
tion factors (TFs), RNA-binding proteins, miRNA
seeds, miRNA-mRNA 3′-UTR binding target, or can
be any custom motifs/sequences. Compared to sim-
ilar tools, SBSA is the first to support miRNA seeds
and miRNA-mRNA 3′-UTR binding target, and it un-
precedentedly implements a personalized genome
approach that accommodates joint adjacent vari-
ants. SBSA is empowered to support an indefinite
species, including preloaded reference genomes for
SARS-Cov-2 and 25 other common organisms. We
demonstrated SBSA by annotating multi-omics data
from over 30,890 human subjects. Of the millions
of somatic binding sequences identified, many are
with known severe biological repercussions, such
as the somatic mutation in TERT promoter region
which causes a gained binding sequence for E26
transformation-specific factor (ETS1). We further val-
idated the function of this TERT mutation using ex-
perimental data in cancer cells. Availability: http:
//innovebioinfo.com/Annotation/SBSA/SBSA.php.

INTRODUCTION

Nucleic acid sequence altering mechanisms, such as so-
matic mutation, RNA editing, and single nucleotide poly-
morphism (SNP), can have devastating biological conse-
quences, including tumorigenesis, if they alter pivotal bind-
ing sequences for transcription factors (TFs), RNA binding
proteins (RBPs), microRNA (miRNA) seeds and miRNA-
mRNA 3′-UTR binding targets. Somatic mutations are the
acquired mutations and the well-known culprit in tumorige-
nesis. RNA editing refers to the enzymatic modification of
RNA sequence after the genetic code has been transcribed
by the RNA polymerase. Abnormal RNA editing activity,
either increase (1,2) or decrease (3,4), have been identified in
various tumors. SNPs are a representative type of germline
variants that can regulate gene expression and thus affect
disease risk. It has been found that certain SNPs, known
as expression quantitative trait loci (eQTL), regulate gene
expression by affecting regulatory binding sequences (5).
In an extreme scenario, a single SNP can lead to a severe
Mendelian disease.

By binding with certain motifs in their target sequences,
TFs, RBPs and miRNAs work at distinct levels to coordi-
nate a proper, functional cellular transcriptome. Genomic
variants of various types can occur in the binding motifs
for TFs, RBPs, miRNA seeds and miRNA–mRNA 3′-UTR
binding targets. TF is a protein that controls the rate of tran-
scription of genetic information from DNA to mRNA by
binding to a specific motif in regulatory DNA. For exam-
ple, the oncogenic E26 transformation-specific (ETS) factor
may bind with a cryptic binding site triggered by a well-
known somatic mutation in the TERT promoter region.
This mutation creates a binding sequence, TTCCGG, for
ETS proteins and thereby upregulates TERT expression,
which leads to uncontrolled cell proliferation and eventu-
ally results in cancer (6). RBPs are proteins that bind to
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the double or single-stranded RNA sequences to regulate
mRNA turnover or splicing. The impact of RBPs on can-
cer has been well studied (7). On average, RBPs have 3
mutations per Mb in cancers (8), and these immense mu-
tations can cause somatic binding sequence changes and
disrupt regulatory functions of RPBs. MiRNAs are a type
of small non-coding RNAs that regulate the translation of
mRNAs through binding between seed regions (of miR-
NAs) and target sites in mRNA 3′-UTRs. Somatic muta-
tions in the seed regions or target sites of miRNAs can
cause disturbance of the normal miRNA-mRNA binding
relationship, which may lead to a disease. For example,
a mutation in hsa-miR-96 seed region is responsible for
nonsyndromic progressive hearing loss (9). An SNP in the
seed region of human miR-184 causes the EDICT syn-
drome (10). Considerable efforts have been made to cu-
rate somatic mutations in miRNAs and the consequential
impacts (11).

There has been a plethora of evidence of severe conse-
quences resulting from mutated binding sequences (6,9–
14). Previous studies mostly rely on individualized data
mining techniques to identify candidate somatic binding
sequences; however these fragmented or in-house bioin-
formatics solutions cannot be reutilized by other research
groups. In this work, we developed Somatic Binding Se-
quence Annotator (SBSA) as a full-capacity online tool to
annotate altered binding motifs/sequences, addressing di-
verse types of genomic variants and molecular regulators
(Figure 1). SBSA annotates the precise gain, loss, or dis-
ruption of a binding sequence resulting from an arbitrary
type of genomic variation. SBSA has been used to analyze
multi-omic data from over 30 890 subjects to curate the re-
sults into the database SMDB (15). Here, a detailed proto-
col for SBSA is presented, including software implementa-
tion, input data requirements, and demonstrative analysis
results.

MATERIALS AND METHODS

For a given reference genome, SBSA expects one dataset of
genomic variants and another dataset of motifs, binding se-
quences, or target genomic regions (Figure 1). Depending
on the manifestation format of the input files, SBSA per-
forms a relevant annotation of the input variants in terms
of binding disruption to three types of molecular regula-
tors: TF, RBP and miRNA. SBSA offers a plethora of
variant datasets for user’s exploration, and it also curates
a large collection of binding motifs and binding regions
for TFs, RBPs and miRNAs. Other than these pre-loaded
datasets and libraries, SBSA can also tackle variant files
and motifs/binding sequences that are originally generated
by users. In theory, SBSA can analyze binding sequence
data generated in any organism, as long as the user sup-
plies the reference genome sequence. With pre-loaded ref-
erence genomes, SBSA provides full support for a total of
26 species, covering common mammals (e.g. human and
mouse), vertebrates (e.g. chicken and fugu), insects (e.g. fruit
fly and bee), nematodes, plants, and viruses. In particular,
the reference genome for SARS-CoV-2, with variant infor-
mation from 19 307 variant strains, is also supported by
SBSA.

Binding motifs and sequences

For TFs, we obtained 11 761 distinct binding motifs from
a total of 11 databases (3D-footprint (16), CISBP (17),
HT-SELEX2 (18), humanC2H2ZF-ChIP (19), HumanTF
(20), HumanTF2 (21), JASPAR (22), SMILE-seq (23),
UniPROBE (24), footprintDB (25) and HOCOMOCO
(26)). For RBP, a total of 1,867 binding motifs were down-
loaded from four source databases (ATtRACT (27), OR-
NAment (28), RBPDB (29) and RBPmap (92) (30)). For
miRNA seed information, we parsed human miRNA seed
region files from miRBase v22.1 (31). For miRNA’s 3′-UTR
targets, we imported target sequences from starBase v2.0
(32).

Testing variant data

SBSA is designed to annotate genomic variants of an in-
definite type. That is, SBSA can tackle both point variants
and indels, and can handle all common types of genomic
variants related to SNPs, somatic mutations, and RNA-
editing. To demonstrate SBSA, we obtained the following
five groups of testing variant datasets from diverse sources.
The first and second groups originated from The Cancer
Genome Atlas (TCGA) and International Cancer Genome
Consortium (ICGC), respectively, both relating to somatic
mutations. The TCGA dataset group covered 3,037,744 so-
matic mutations in total, which were identified from 10 182
subjects of 33 cancer types. The ICGC dataset group cov-
ered a total of 80 015 947 somatic mutations sequenced from
19,729 subjects of 57 cancer types compiled by 81 different
projects. The third and fourth groups pertained to germline
mutations, originating from the authoritative SNP source
dbSNP (v152) and eQTL source GTEx (v8), respectively.
The generic SNPs totaled 660 146 174 in the dbSNP dataset
group, and the cis-eQTLs totaled 71 478 479 as combined
from 49 tissue sites. Lastly, SBSA provides a dataset of 4.67
million A-to-I RNA editing events derived from REDIpor-
tal (33). The complete list of cancer names, abbreviations,
tissue names and sample sizes for ICGC, TCGA and GTEx
are available in Supplementary Tables S1, S2 and S3, respec-
tively.

Identifying variant-affected binding sequences

As outlined in Figure 1, SBSA integrates two primary in-
puts with respect to a given reference genome, in order
to identify variant-affected binding sequences for a certain
type of molecular regulators. The GRCh38 human refer-
ence genome was utilized for all demonstrative analyses,
and sequences in this manuscript or in general output are
shown in the 5′ to 3′ orientation.

As one primary input to SBSA, a variant can be either a
single nucleotide variant or an indel, and can fall into but
is not limited to the following categories: somatic mutation,
RNA editing event, and SNP. As the other primary input to
SBSA, a target motif or binding sequence refers to consecu-
tive nucleotides forming a short sequence (<25 nt) that can
be potentially recognized and bound by a molecular regu-
lator. Anchoring at the variant site, SBSA extracts a short
sequence from the reference genome by extending symmet-
rically in both 5′- and 3′-directions. This extended sequence
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Figure 1. Somatic binding sequence annotator (SBSA) annotates genomic variants with respect to binding motifs of molecular regulators. Of the three
inputs, variant specification file is mandatory, while the other two can be preloaded datasets. SBSA supports 26 reference genomes and harbors abundant
motifs/binding sequences for three major types of transcription regulators: TFs, RBPs, and microRNAs. Depending on the type and specification of inputs,
SBSA performs a relevant annotation of the input variants and generates a corresponding output. For TF/RBPs, gain or loss of binding motifs is affirmed
by either FIMO or an intuitive Exact match method; for microRNA seeds or microRNA binding targets, the affected genomic regions are identified; in
the simplest work mode, somatic sequences centered upon the input variants are generated. TF, transcription factor; RBP, RNA-binding protein; FIMO,
the bioinformatics algorithm Find Individual Motif Occurrences; FASTA, the sequence file format for Fast Adaptive Shrinkage/Thresholding Algorithm;
PWM, Position-Weight Matrix.

is of the same length as the target motif to be compared to.
A ‘reference sequence’ is the target motif sequence without
any sequence change, and a ‘somatic sequence’ refers to the
mutated motif sequence including the concerned variant.

A binding motif/sequence is commonly represented in a
Position-Weight Matrix (PWM). In such cases, the key is to
comparing the derived somatic sequence against the PWM
in terms of sequence similarity. Several methods, such as
FIMO (34), motifbreakR (35) and RSAT (36), were pre-
viously developed for estimating the binding potential be-
tween a sequence and a motif. SBSA implemented FIMO
for this PWM-sequence similarity assessment, and also de-
veloped an Exact match method as an alternative approach.
With FIMO, if the binding potential P-value decreases from
the reference sequence to the somatic sequence (binding
propensity increases), we term that the variant causes a
Gain of this binding motif; conversely, when the binding po-
tential P-value increases from the reference sequence to the
somatic sequence (binding propensity decreases), we term
that the variant causes a Loss of this binding motif. The
new Exact match method uses a simple yet intuitive strat-
egy. Given the PWM of a binding motif, we approve all nu-
cleotides at each individual position that exceed the mini-
mum background probability threshold (default: 0.25), and
generate all combinatorial binding sequences by stringing
these position-wise nucleotides (Figure 2A). The pair of ref-
erence sequence and somatic sequence are checked against
all motif-derived binding sequences. If exact match occurs
between a binding sequence and the reference sequence, yet
not between a binding sequence and the somatic sequence,
a Loss of the binding motif is asserted; conversely, if exact
match occurs between a binding sequence and the somatic

sequence, yet not between a binding sequence and the ref-
erence sequence, a Gain of the binding motif is asserted.

Of note, SBSA applied different strandedness strategies
with respect to different types of molecular regulators. For
TF, sequence matching is sought from both the sense and
antisense strands; for RBP, miRNA seeds and miRNA-
mRNA 3′-UTR targets, only the sense strand is interro-
gated.

Personalized genome approach

SBSA allows an input file containing different types of vari-
ants,. The input file can include hundreds or thousands
rows (truncated to the first 25 000 rows for certain intensive
calculations). By default, these variants are treated mutu-
ally independently, leading to somatic sequences that each
incorporates a single variant. Nevertheless, SBSA offers
an optional Personalized Genome approach to analyze so-
matic sequences, where multiple variants in close vicinity
are jointly accommodated in one somatic sequence (Figure
2B). Indels are considered as well as point variants. With
the Personalized Genome approach, SBSA derives 2k – 1
somatic sequences for k adjacent variants, with each repre-
senting one combination of these adjacent mutations. After
enumerating all possible somatic sequences, Gain or Loss
of the target motif is inferred by comparing the reference
sequence against the group of somatic sequences. As the
term implies, Personalized Genome approach attempts to
accommodate multiple adjacent variants manifested in an
individualized genome, so it is only valid when the input
variant file is summarized from a single subject (rather than
from a cohort).
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Figure 2. Exact match and personalized genome approaches of SBSA. (A) The exact match approach with which SBSA compares variant-derived sequences
against a target motif (BRCA1′s motif is used as an example here). The focal variant is rs10007915, which leads to a pair of a reference sequence and a
somatic sequence that differs precisely at chr4:105144151 (G > C variant). Given the Position-Weight Matrix (PWM) of BRCA1, traditional motif similarity
algorithms, such as FIMO, RSAT, and motifbreakR, assesses the fitness of the reference/somatic sequence to the PWM, and all of them predict that a
binding relationship retain for the somatic sequence, despite a diminishment of the statistical significance. With the Exact match approach, SBSA derives
all likely target sequences (blue-arrow-connected paths) based on a position-wise probability threshold (default at 0.25), and seeks exact matching of the
reference/somatic sequence with any derived target sequence. In this example, the reference sequence finds a hit within the group of target sequences
whereas the somatic sequence does not, so the Exact match method concludes a Loss of the binding motif in the somatic sequence. (B) Illustration of the
Personal Genome approach to generating combinatorial somatic sequences. A subject in TCGA (TCGA-BF-AAP1-01A) carries two adjacent variants on
chromosome 18, one being a single nucleotide variant and the other a deletion. For this genomic segment, three (3 = 22 – 1) somatic sequences can be
generated for analysis by Exact match or FIMO.

TERT mutation in vivo experiment

To validate the gain-of-function phenotype of the muta-
tions in the TERT gene promoter, we used luciferase re-
porter plasmids (i.e. pGL4.0-TERT-wt and pGL4.0-TERT-
mutant) in which the reporter gene is linked with either
a wild-type (WT) or mutant TERT promoter fragment
(G228A), as described in the previous study (14). The re-
porter plasmid (90 ng) was mixed with pRLCMV (renilla
control) and transfected into A375 melanoma cells, using
the XtremeGene-HP (Roche) transfection reagent. Trans-
fected cells were incubated for 24 h and the luciferase ac-

tivity (normalized by renilla) was measured using the Dual-
Luciferase Reporter assay system (Promega). Experiments
were repeated three times independently, with three techni-
cal repeats in each experiment.

RESULTS

Online application implementation

Research on somatic mutations in binding sequences has
been accelerated since high-throughput sequencing technol-
ogy became available. However, the research field still lacks
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a tool that focuses on genome-wide variants in important
gene regulatory sequences for TFs, RBPs and miRNAs. To
promote the identification of functional variants in these
binding sequences, we developed SBSA to enable fast and
easy detection of somatic binding sequences at the genome-
scale. The core program of SBSA is developed in Python,
and the web interface is designed in PHP and Javascript.
SBSA provides online service at http://innovebioinfo.com/
Annotation/SBSA/SBSA.php. The overview of SBSA is
displayed in Figure 1. SBSA annotates common genomic
variants such as single nucleotide substitutions and indels
in the binding motifs of important transcription regulators:
TFs, RBPs, miRNA seeds, and miRNA-mRNA targets.

The primary input to SBSA is a file containing numerous
genomic variants. As explained in the Materials and Meth-
ods above, SBSA treats variants that are not limited in form
(either single nucleotide variants or indels) or type (SNPs,
RNA editing events, or somatic mutations). This variant
file can use either a standard Variant Call Format (v4.0)
or a special Comma-Separated-Values format with specified
chromosome positions and variant alleles. Along with the
variant file, the user needs to inform SBSA on the species
of the investigated biological sample. In the background,
reference genomes for 26 species are pre-installed. Users
must make sure the chromosome names in the variant file
are of the same form as those of the background reference
genome file (a list of standard chromosome names of all pre-
installed genomes is provided as a reference). SBSA com-
bines the variant specification and the reference genome to
derive a pair of somatic sequence and reference sequence,
which carries and lacks the specified variant, respectively.

The other input to SBSA defines the concerned binding
target(s). This input can be provided by the user ab ini-
tio, or be chosen from built-in libraries. User-provided in-
formation can take the form of nucleotide sequences (in
FASTA format), PWMs in format of Multiple Em for Motif
Elicitation, or merely genomic intervals (start and end po-
sitions on chromosomes). By design, inputting a genomic
interval invalidates a sequence similarity search, so SBSA
does not invoke either FIMO or exact match in this sce-
nario; instead, it seeks any overlapping between the variant-
derived somatic sequences and the target genomic inter-
vals, and annotates overlaid miRNA seeds if there are any.
For user’s convenience, SBSA has built in a diverse col-
lection of motifs/binding sequences and accredited bind-
ing regions, which relate to TFs, RBPs, miRNA seeds,
and miRNA-mRNA 3′-UTR targets. More details on these
built-in motif/region datasets are provided in Materials and
Methods.

While SBSA is capable of annotating thousands of input
variants against thousands of regulators’ motifs in a sin-
gle session, we understand that users can be overwhelmed
by an exceedingly large amount of results. To increase the
manageability and validity of our annotation results, we im-
plemented functional impact inference for variants, contex-
tual expression quantification for TFs/RBPs, and conser-
vation categorization for miRNAs. For input variants, we
leveraged mature algorithms including SIFT (37), CADD
(38) and MetaSVM (39) to assess the functional impact
severity of the input variants. For TFs/RBPs, we obtained
transcriptomes of GTEx tissues and sorted the expressed

genes by their expression values, thereby returning the ex-
pression ranks of the associated molecular regulators. For
miRNAs, we categorized them into four conservation cate-
gories (broadly conserved, conserved, poorly conserved, or
‘other’) according to the annotation done by TargetScan
(40). In addition, from GTEx we downloaded fine-mapping
results done by CAVIAR (41), CaVeMaN (42) and DAP-
G (43), and annotated such posterior probability data for
eQTL variants. Last but not the least, we leveraged the pow-
erful tool ANNOVAR (44) to furnish the input variants
with the most basic annotations. All such auxiliary anno-
tation information can help guide a validity or creditability
based prioritization of the immense annotation results.

The primary output from SBSA analysis takes the form
of a comma-separated spreadsheet, where each row repre-
sents one somatic sequence of potential regulator-binding
disruption. For each record, certain fields pertain to the so-
matic sequence only, such as variant location (chromosome,
position), reference/somatic sequence, genomic features of
the variant (host gene and the alteration effect to gene cod-
ing), and inferred functional impact significance. A partic-
ular set of fields are devoted to the coupling between the so-
matic sequence and the fetched molecular regulator, which
includes the binary disruption effect (Gain/Loss), strand-
edness of the sequence matching, and sequence-motif simi-
larity P-value (when FIMO is invoked). The last set of fields
inform on identification of the plausible regulator (motif
ID and gene symbol), contextual expression (for TFs/RBPs
only), and conservation category (for miRNAs only).

In the simplest work mode, SBSA allows null input for
motif/binding sequence specification, and consequentially
outputs all somatic sequences derived from the input vari-
ants. For certain analysis scenarios, SBSA enables a sec-
ondary output file consisting of PWMs in format of Multi-
ple Em for Motif Elicitation. To guard against a prolonged
standby waiting time, we allow the user to leave an email
address to receive a download link to the analysis result.
Because SBSA performs diverse annotation modules for di-
verse types of input (Figure 1), which might entail distinct
sets of parameters, the input files and advanced parameters
are fed in a step-by-step gradient, and dynamic inactivation
of irrelevant parameters is rendered based on the inputs at
prior steps. To demonstrate major application contexts and
output templates, we provide a few input examples with dis-
crete sets of pre-populated inputs and parameters, so that
demonstrative analyses can be readily exerted and repre-
sentative results can be generated momentarily. Lastly, we
rendered a comprehensive documentation that provides a
detailed manual of all inputs and outputs.

Comparison with other tools

Many tools and studies have been dedicated to analyz-
ing binding sequences of TFs. However, they are not pur-
ported for straightforward annotation. For example, FIMO
(34) fits a PWM to a DNA/protein sequence through dy-
namic programming or alike techniques to obtain a P-
value for assessing the TF’s binding propensity to the con-
cerned sequence. The input for FIMO comprises one part
for DNA/Protein sequences and the other part for motifs.
The output of FIMO is the location of likely binding sites

http://innovebioinfo.com/Annotation/SBSA/SBSA.php
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within the input sequences. Jayaram et al. (45) comprehen-
sively evaluated ten prediction methods concerning tran-
scription factor binding sites and four motif discovery tools.
For motif discovery tools, the input comprises ChIP-seq
data, and the output is a consensus PWM. For the tran-
scription factor binding site prediction tools, the input is
a ChIP-seq-derived PWM, and the output consists of the
candidate transcription factor binding sites. Lee et al. (46)
devised a computational model gkm-SVM to evaluate the
impact of regulatory variants in DNA sequences. Similarly,
another tool GERV (47) evaluates the effect of regulatory
variants for transcription factor binding, tackling input of
ChiP-seq data. In yet another work, Reshef et al. (48) pro-
posed to investigate the signed effect of a SNP on transcrip-
tion factor binding with the concept of polygenic disease
risk.

Given the survey of related works above, we found three
tools were most related to SBSA, namely SNP2TFBS (49),
motifbreakR (35) and RSAT (36). SNP2TFBS is a database
of SNPs that affect TF binding sequences. It does not en-
able novel discovery. motifbreakR can be used as a mo-
tif annotation tool, but the applicable variants are lim-
ited to only one type, namely SNP (identified with Ref-
SNP ID). RSAT is a multi-function genome analysis suite;
when its two specific functions are performed sequentially,
the user can achieve annotation of variants with respect
to motifs. The detailed comparison of the functionalities
between SBSA and related tools is made in Table 1. For
the purpose of annotating variants with respect to bind-
ing motifs/sequences incorporating variants, SBSA pro-
vides the most flexible and complete functionalities. With
37 source TF databases, RSAT supports the most abundant
TF binding motifs; however, a large portion of the TF mo-
tifs are found exclusively in plant species. By contrast, SBSA
supports 11 non-plant TF databases. The major advantage
of SBSA lies in the support for miRNA seeds and miRNA-
mRNA 3′-UTR binding targets, and the novel Personalized
Genome approach (Figure 2B).

Runtime

The runtime of SBSA can range from seconds to minutes,
and it scales with two parameters: number of variants and
number of binding sequences. Processing 50 000 variants
against the 2297 RBP binding sequences from ATtRACT
took ∼20 minutes’ runtime. Due to the potential long run-
time, users can choose to be notified of the result download
link via email. An overall evaluation of SBSA web server
runtime can be seen in Supplementary Figure S1.

SBSA annotation demonstration

To demonstrate SBSA, we conducted analyses with the fol-
lowing five datasets (accessible on the SBSA website): (i)
somatic mutation data from 10 182 subjects of 33 can-
cer types from TCGA, consisting of 33 variant files; (ii)
somatic mutation data from 19 729 subjects of 57 cancer
types from 81 projects within The ICGC, consisting of 81
variant files; (iii) 4.67 million A-to I RNA editing events
in REDIportal, consisting of one variant file; (iv) 660.15

million SNPs in dbSNP 152 and (v) 71 478 479 cis-eQTL
data from 980 subjects of 49 tissue sites in Genotype-Tissue
Expression (GTEx), consisting of 49 variant files. Thor-
ough analyses of these data using SBSA identified 1 255
503 863 consequential somatic binding sequences. All these
identified mutations have been curated into our companion
database SMDB (15) and can be queried and downloaded
freely. Table 2 illustrates a few output examples of SBSA
analysis using RNA editing from TCGA’s BRCA cohort
(Number of subjects: 942) against the four built-in RBP
databases.

High-frequency annotation examples

Our annotation identified many known somatic binding se-
quences and many high-frequency novel results. The best
proof-of-concept example is the well-established TERT
promoter mutation that creates a new ETS1 protein bind-
ing motif. From the ICGC skin cancer (Australia) cohort,
SBSA identified the somatic mutation C→T in TERT pro-
moter at chromosome 5 position 1 295 135 with a frequency
of 11.48%, which causes a gain of ETS1 binding sequence
TTCCGG (Figure 3A). The function of this mutation in
driving TERT expression has been studied in human cancer
cell lines (6,12,13). We also conducted our own luciferase re-
porter experiment in melanoma cells to further validate the
functional impact of this TERT mutation. Our data shows
a roughly 7-fold increase in the promoter activity with the
G228A mutation identified in TERT promoter relative to
wild-type TERT (Figure 3B). This observation is consistent
with previously published data (14) and suggests that the
gain of an ETS binding site in the mutant promoter acti-
vates TERT gene expression.

Another similar yet novel example is the mutation
C→T in RPS20 promoter on chromosome 8 at position
56,074,582, with a frequency of 14.75% in the ICGC skin
cancer (Australia) cohort. This mutation also potentially
causes a gain of ETS1 binding sequence TTCCGG (Fig-
ure 3C). It is currently unknown whether this mutation has
a similar functional effect on RPS20 as the analogous mu-
tation on TERT.

Regarding RBP regulation disruption, an excellent exam-
ple entails the insertion of TT in ANKRD33B on chromo-
some 5 at position 10,634,463, with a frequency of 11.94%
in the ICGC leiomyosarcoma (French) cohort. This mu-
tation potentially causes a gain of PTBP1′s binding se-
quence (Figure 3D). PTBP1 is a well-known cancer-related
RBP (50). For example, PTBP1 was observed to pro-
mote breast cancer cell growth by downregulating PKM1,
a cancer suppressor (51). The SBSA-identified somatic
sequence suggests potentially unexplored functional ef-
fects of ANKRD33B. As another example of RBP reg-
ulation disruption, the RNA editing event occurring in
POLR1E on chromosome 9 at position 37 503 395 po-
tentially causes a gain of ESRP2′s binding sequence (Fig-
ure 3E). This particular RNA editing event is ubiqui-
tously observed in human cancers. For example, in TCGA’s
breast invasive carcinoma cohort, 941 of the 942 subjects
tested have this RNA editing. ESRP2 is another cancer-
related RBP (50) with known functionality such as sup-
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Table 1. Functionality comparison between SBSA and similar tools

Reference
Work
mode Organism

TF
database

RBP
database

miRNA
database

Custom
motif

sequence
Variant

Type
Personalized

Genome Primary purpose

FIMO [1] offline any NA NA NA NA NA NA Estimation of binding potential
between a sequence and a motif

Jayaram et al [2] offline 1 NA NA NA NA NA NA Detecting new TFs
deltaSVM [3] offline 2 NA NA NA NA any X Estimating variant impact on

binding sequence
SNP2TFBS [4] online 1 1 NA NA X SNP X Annotation of SNP affected motif
GERV [5] offline 2 NA NA NA NA NA NA Estimating SNP impact on TF

binding sequence
Reshef et al [6] offline 1 NA NA NA TF NA NA Estimating SNP impact on TF

binding sequence
motifbreakR [7] offline 31 8 0 0

√
SNP X Annotation of SNP affected motif

RSAT [8] online 72 37 2 0
√

any X Multiple functions. Can annotate
any variants in any motifs

SBSA online any (26 pre
loaded)

11 4 2
√

any
√

Annotation of any variants in any
motifs/sequences

NA (not applicable) indicates the tool is not equipped with the referred functionality. For example, FIMO aims to compute the binding potential between a sequence and a
motif, and it is not populated with a TF database. The

√
sign denotes the support of the functionality. X sign denotes that the functionality is not supported.

Table 2. Example output from SBSA annotation results of altered RBP binding sequence resulting from RNA editing

Chr1 Location2 Gene3 RBP4 Edit5 Reference6 P ref7 Alternative8 P alt9 Effect10 Region11

chr13 52629800 HNRNPA1L2 ZFP36 A > G aagaaagaAag 7.82 × 10−6 aagaaagaGag >10−5 Loss intronic
chr3 139355363 MRPS22 SNRPA A > G Aggaatgctg >10−5 Gggaatgctg 2.10 × 10−6 Gain intronic
chr6 43618165 POLH ELAVL2 A > G attAtttttttttg 6.65 × 10−7 attGtttttttttg >10−5 Loss UTR3
chr8 42287647 IKBKB SNRPA A > G Aatacctgcta >10−5 Gatacctgcta 9.98 × 10−7 Gain intronic
chrX 48575833 RBM3 SFRS1 A > G cAgacagagc >10−5 cGgacagagc 9.82 × 10−6 Gain intronic
chr17 43028783 RND2 HNRNPA1 A > G tAgggcaggc 6.13 × 10−7 tGgggcaggc 3.63 × 10−6 Loss UTR3
chr14 23325660 PABPN1 SFPQ A > G tggAaggac 3.31 × 10−6 tggGaggac 6.03 × 10−6 Loss UTR3

The input for this analysis is the RNA editing information from TCGA’s BRCA cohort (N = 942) against the four RBP databases. 1 Chromosome. 2 Chromosome coordinate
position of the RNA editing event in GRCh38. 3 The host gene whose body encloses or approximates the RNA editing event. 4 The RBP whose binding sequence is disrupted by
the RNA editing event. 5 Nucleotide alteration (A > G RNA editing). 6 Reference sequence surrounding the variant location reflecting the reference genome. 7P-value for the
approximity between reference sequence and the RBP’s motif. 8 Altered sequence in parallel to Reference Sequence reflecting the variant in question (distinguished in uppercase).
9P-value for the approximity between altered sequence and the RBP’s motif. 10 Gain or loss of the plausible binding sequence resulting from the variant. 11 Classification of the
genomic region enclosing the variant.

pressing cell motility in head and neck carcinoma cell lines
(52) and driving alternative splicing patterns in prostate
cancer (53).

Regarding repercussions in miRNA binding targets, a
representative example entails the insertion of TC in the 3′-
UTR of SRSF7 on chromosome 2 at position 38 744 499,
with a frequency of 26.87% in the ICGC leiomyosarcoma
(French) cohort. This mutation causes an altered binding
sequence for miR-409-3p (Figure 3F). Regarding conse-
quential variants in miRNA seeds, a representative exam-
ple entails the RNA editing in miR-4477b’s seed on chro-
mosome 9 at position 63 819 626. This RNA-editing event
leads to an altered miRNA seed (Figure 3G), and it occurs
at a high population frequency––134 of the 154 (87.01%)
subjects of Glioblastoma Multiforme cohort in TCGA were
observed with this variant. Based on TargetScan (40) pre-
diction, ∼66% mRNA targets of miR-4477b is susceptible
to this altered seed. On average, the mRNA targets sus-
ceptible to variant-altered miRNA seeds account for 70%
(ICGC) or 72% (TCGA) original mRNA targets. These re-
sults show that somatic mutations in miRNA seeds can lead
to a substantial mRNA target shift. The biological effects
of such mRNA target alterations have been demonstrated
previously (9,10).

DISCUSSION

Identification of binding motifs for transcriptional regula-
tors has been a fundamentally important topic in molecu-
lar biology, and for this sake numerous computational algo-
rithms have been continually developed in the past several
decades. The abundant algorithms were based on a variety
of statistical frameworks, including dynamic programming
(34), hidden Markov chain (54), deep learning (55), etc. Our
web server SBSA does not aim to innovate in the method-
ological aspect of this important topic; rather, we developed
SBSA as an easy-to-use online tool that streamlines large-
scaled motif alteration annotations for genomic variants,
leveraging a mature motif scanning approach FIMO or an
intuitive exact sequence matching method. The identifica-
tion of altered binding motifs resulting from major vari-
ant types such as somatic mutation and RNA editing has
imminent scientific benefits. A myriad of studies have been
conducted based on independent cases of such altered bind-
ing motifs/sequences (6,9–14). The cascading biological ef-
fects resulting from gain of an important binding sequence
are relatively easier to observe than the effects of loss of
a binding sequence. Because a binding sequence may have
many targets, losing one may not cause a strong detrimental
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Figure 3. High-frequency examples from SBSA demonstrative analysis. Plus (+) and minus (–) signs denote the forward strand and the reverse strand of
the GRCh38 reference genome, respectively. Blue and red nucleotide strings denote the non-altered reference sequences and the altered somatic sequences,
respectively. (A) Example of TF ETS1 binding sequence formed by somatic mutation in TERT promoter region. (B) In-vivo experiments validated the
expression activation function caused by the cryptic mutation G228A in TERT promoter. (C) Gain of ETS1 binding sequence due to somatic mutation
in RPS20 promoter region. (D) Gain of PTBP1 binding sequence due to insertion in ANKRD33B. (E) Gain of ESRP2 binding sequence due to RNA
editing in POLR1E. (F) hsa-miR-409–3p’s binding sequence in 3′-UTR of SRSF7 mRNA is affected by an insertion. (G) Alteration of miRNA seed of
hsa-miRNA-4477b due to RNA editing.

effect. However, some transcriptional effects can still be de-
tected. For example, somatic mutations in the SDHD pro-
motor region disrupted a ETS1 binding motif and signifi-
cantly reduced SDHD gene expression (56). Using SBSA,
we identified this motif loss in SDHD, with a frequency of
1.64% in the ICGC skin cancer (Australia) cohort. Anno-
tation of variants using real somatic mutation, RNA edit-
ing, and SNP data from large consortiums revealed well-
known somatic motifs as well as novel ones. Many of the
novel altered motifs/sequences are of high frequencies, war-
ranting follow-up studies to examine functional mecha-
nisms in more detail. Furthermore, SBSA annotation of
cis-eQTLs helps to explain the regulation mechanism of
eQTLs. In our demonstrative analysis results, among the 1
875 338 cis-eQTLs, 1 354 071 (72.20%) caused at least one
altered motif/sequence in miRNA seed regions and target
sequences of TFs, RPBs, and miRNAs. These identified al-
tered motifs/sequences might primarily or partially explain
the eQTL regulation mechanisms.

SBSA has an enormous online calculation capability of
analyzing genome-scaled input variants against vast motifs
in a single session. SBSA also provides secondary functional
annotations to enhance manageability and validity of the
annotation results, which include functional impact infer-
ence for variants, contextual expression quantification for
TFs/RBPs, fine-mapping information for eQTLs, and con-
servation categorization for miRNAs. Overall, we demon-
strated the effectiveness of SBSA, a powerful tool that em-
powers the researchers to interrogate the functional effects
of variants on binding motifs/ sequences in a wide range of
species.
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The Python source code of SBSA is available at https://
github.com/Limin-Jiang/SBSA.
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