
Using a priori knowledge to align sequencing reads
to their exact genomic position
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ABSTRACT

The use of a priori knowledge in the alignment of
targeted sequencing data is investigated using com-
putational experiments. Adapting a Needleman–
Wunsch algorithm to incorporate the genomic
position information from the targeted capture, we
demonstrate that alignment can be done to just the
target region of interest. When in addition use is
made of direct string comparison, an improvement
of up to a factor of 8 in alignment speed compared
to the fastest conventional aligner (Bowtie) is
obtained. This results in a total alignment time in
targeted sequencing of around 7 min for aligning
approximately 56 million captured reads. For con-
ventional aligners such as Bowtie, BWA or MAQ,
alignment to just the target region is not feasible
as experiments show that this leads to an additional
88% SNP calls, the vast majority of which are false
positives (�92%).

INTRODUCTION

Since the introduction of so-called next-generation
sequencing in 2005, developments in the field of DNA
sequencing proceed at a very rapid pace (1). Initially, in
the newer sequencing technologies based on massively
parallel sequencing (2), the time required to complete a
sequencing study was around three weeks, equally
divided among sample preparation, the actual sequencing
and the bioinformatics analysis. New sequencing tech-
nologies are emerging, which promise to reduce the
actual sequencing time from the present one week to
much shorter. Ultimately, nanopore-based sequencing
methods may reduce sequencing run time to matters of
seconds (3). Hence, it would be desirable to speed up

also the time required in the sample preparation as well
as the bioinformatics analysis.
Sequence alignment is a challenge in biology since the

first DNA sequences have been determined in the 1970s,
with the earliest approaches utilizing dot plots to compute
the optimal alignment of the sequences (4). Because of
their complexity, dot plots were replaced by the dynamic
programming (DP) approach developed by Bellman and
Viterbi, first implemented for biological use by Needleman
and Wunsch (5,6). Since then, the Needleman–Wunsch
algorithm has been modified several times to adapt it to
other problems and to improve its performance (7,8).
Nevertheless, DP requires too much computation time
and space to handle the increasing amount of sequencing
data. Therefore, heuristic approaches for searching
sequence databases such as BLAST and FASTA were de-
veloped to overcome this problem (9,10). Though these
programs and their successors are still commonly used,
the upcoming of next-generation sequencing requires
new software (11) to process the immense amount of
short reads created, which lead to the development of
hash table based aligners, as for example ELAND and
MAQ (12,13). Since then, considerable further effort has
been made to reduce the alignment time. One of the most
succesful ones is the implementation of a Burrows–
Wheeler transform to index the genome and speed up
the alignment (14). Common examples of aligners utilizing
the Burrows–Wheeler transform are Bowtie and BWA
(15,16).
In many branches of electronic data processing the use

of a priori information is a proven method to improve
data analysis. Thus far such an approach has not been
adopted in the field of DNA sequencing, although it is
conceivable that information arising from so-called
targeted sequencing (17–19) could be used to this effect.
Typically in targeted sequencing using on-array hybridiza-
tion (17,18), the fragments of the DNA sample are
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hybridized to a microarray with probes designed to
capture the fragments of interest. After washing away
any non-bound fragments, the DNA fragments of
interest for the biological or clinical question at hand
are eluted from the array and are further processed to
be sequenced. In current practice the resulting eluate is a
random mixture of the captured DNA fragments.
Moreover, the subsequent alignment of the sequencing
reads is done to the whole genome as, at the current spe-
cificity of the enrichment methods, aligning to just the
target region introduces an unacceptably high error rate,
as we will show. In targeted sequencing, one in principle
can retain the capture probe information of the
micro-genomic selection array, for instance by conducting
the sequencing step directly on the capture spot (20) or by
using labeled capture beads. Specifically, the very recently
proposed oligonucleotide-selective sequencing (OS-Seq)
by Myllykangas et al. (20) enables this approach. In this
method of targeted resequencing target-specific oligo-
nucleotides are used to create ‘primer-probes’. These
primer-probes are immobilized on the surface of a flow
cell and serve both as capture probes and sequencing
primers i.e. after capturing the complementary targets
from the library, these primer probes are extended.
Subsequently, bridge PCR cluster formation is performed.
These clusters can be sequenced twice to determine the
captured target and subsequently the OS-Seq primer
probe sequence (20). This enables the identification of
the exact OS-Seq primer that mediated the targeting.
Myllykangas et al. (20) have used this approach to facili-
tate the assessment of the performance of individual
primer probes.
Here, we would like to investigate the potential benefit

of this approach to improve the speed of sequence align-
ment. To do so we have performed computational experi-
ments to investigate what benefit such an approach of
using a priori information might bring to sequence align-
ment and to see whether this can reduce the still sizeable
part of the time needed to perform DNA analysis. This
investigation has been done by computer-generating a set
of sequencing reads that contain the a priori known
genomic position of their capture probes. These reads
are then aligned with an implementation of the
Needleman–Wunsch algorithm that uses the a priori infor-
mation to map only to the corresponding sequence
fragment. The required alignment time is compared to
the time needed by a number of state-of-the-art aligners,
which do not use this prior knowledge and which align to
the whole genome. Although one could argue that con-
ventional aligners would also be speeded up by aligning
only to the target region, we will first show that this is not
a viable option by analysis of real enrichment sequencing
data, as this yields many false positive SNP calls.

METHODS

Evaluation of the error introduced by alignment to just the
target region by conventional aligners

In targeted sequencing, capture arrays are used to reduce
the total amount of bases to be sequenced. This reduction

is achieved by capturing only the sequences of interest,
known as target region. Since enrichment methods do
not have a specificity of 100% but typically of around
70% (17,18,21), a considerable amount of off-target
reads are generated. Consequently, data from targeted
sequencing are aligned to the whole genome, using
aligners such as Bowtie, BWA or MAQ, and not just to
the target region. To evaluate the error introduced by
aligning only to the target region, data (50 bp reads)
from a previously published study (21) were used.

The sequencing reads were aligned against the whole
genome as well as to the target regions (including 100bp
flanks) to evaluate the errors introduced. Subsequently,
SNP calling was performed using filtering with the follow-
ing criteria:

(1) Positions with lower than 20� and higher than
2000� coverage were excluded.

(2) Bases with quality below 10 were excluded from SNP
calling.

(3) No more than five reads that have identical mapping
position and strand were included.

(4) Each of the non-reference alleles has to be supported
by reads mapping to the forward as well as by reads
mapping to the reverse strand of the reference
genome.

(5) The non-reference allele should be observed in 20%
or more reads covering the polymorphic position.

(6) Sites with more than four alleles were excluded as
representing positions with increased error rate.

Positions that passed this filtering were called as candidate
SNPs (or small indels).

Including a priori knowledge in sequence alignment

As the capture probes of hybridization arrays are designed
to catch specific sequences, their position on the genome
must be known in advance. Therefore, if the location of a
capture probe on the array as well as its position on the
genome are known, the corresponding sequencing read of
the captured fragment can be associated with the sequence
of its expected mapping position within the target region,
provided that this information is retained during the
sequencing process. Hence, the read can be aligned
against this associated ‘reference sequence’ instead of the
whole genome.

To computer-generate reads containing information
about the genomic position of their capture sequence
and their associated reference sequence, first several dif-
ferent target sequences on the genome were selected to
construct a target region of interest (Figure 1). For each
of these target sequences, a number of capture probes is
assumed that would be present on a hybridization array
and act as primers for sequencing. Therefore, the genomic
position of a sequencing read as well as its associated ref-
erence sequence is located behind the capture probe.
To cover the complete target sequence with sequencing
reads, the capture probes need to be shifted along the
genome, which results in the reference sequences being
shifted as well to form a tiling of the target sequence
with a constant offset (Figure 1A). Taking the reference
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sequences as templates, we next introduced errors, SNPs
and Indels to simulate the sequencing reads (Figure 1B).
The resulting reads were used as input for the computa-
tions to determine the speed performance of our approach
compared with a regular alignment. The regular alignment
against the whole genome was performed with Bowtie,
BWA and MAQ (Figure 1C). For the alignment
using the position information, different implementations
of the Needleman–Wunsch algorithm were used
(Figure 1D). These consist of a regular Needleman–
Wunsch (NW) and a pruned version of the Needleman–
Wunsch algorithm following the beam search paradigm
(22). We refer to the latter implementation as ‘banded’
Needleman–Wunsch algorithm (NWB). Additionally,
both algorithms were implemented using exact matching
prior to the alignment to increase the computation speed
(NWem and NWBem), as we describe further in the
following section.

Different alignment approaches

The first implementation of alignment using position
information was realized through a regular Needleman–
Wunsch algorithm (NW), which aligns each read to its
associated reference sequence. Since the reads are
expected to be very similar to the reference sequence, we
realized that a direct string comparison might be applicable
to skip the alignment for exactly matching sequences. This
insight led to a second implementation (NWem), which
performs the alignment in two steps. First, the informa-
tion included in the header of each read is used to look up
and identify the reference sequence associated to the read
being processed, and subsequently the aligner checks
whether the compared sequences match exactly. If so,
the maximum alignment score is assigned; otherwise, a
regular alignment is performed for the two sequences (as
has been described in (10,22); allowing up to two Indels
for the beam search approach). Since the Needleman–
Wunsch algorithm can be optimized for similar sequences,

a banded version was also implemented (NWB, as
described in the previous section) and exact matching
was added (NWBem), which works similarly to NWem.
To compare the new approaches with established align-

ment methods, the reads were also aligned against the
whole human reference genome using Bowtie (0.12.7),
BWA (0.5.9-r16) and MAQ (0.7.1). Default settings were
used for MAQ (map) and BWA (aln & samse). Bowtie was
run using ‘-a -n 2 -q –solexa1.3-quals – quiet’ settings. The
calculations were executed on a grid of 1648 cores divided
over 206 Dell PowerEdge M600 blade servers, each
utilizing two Intel Xeon L5420 Quadcore CPUs
@ 2.5Ghz with 16, 32 or 64 GB of random access
memory (BiG Grid, see www.biggrid.nl).

Generation of sequencing data

The data necessary to determine the gain of the new align-
ment approach by comparison to the regular aligments
was obtained from reference human genome GRCh37
and a recent gene annnotation (Ensembl database,
release 62; http://www.ensembl.org) (23). In total, 7368
exons were chosen as the target region, representing
approximately 3 million bases (Mb) based on previous
microarray genomic enrichment experiments (21). Exons
originating from the X and Y chromosomes as well as
extrachromosomal DNA were excluded. A subset of the
chosen exons was taken to create also a 300 kb target
region (784 exons), while a 30Mb target region was also
assembled to compare the performance for larger data sets
(72 943 exons).
Figure 2 shows the principle of the data generation

based on the captured sequences (dark green) which are
complementary to the capture probes present for instance
on a hybridization array. The capture probes would be
designed in such a way that the reference sequences
(light green) following the captured sequences form a
tiling of the target sequence (continuous black). This
target sequence is a part of the target region, and might

A B

C

D

Figure 1. Overview of the workflow. (A) A target region was chosen from which the reference sequences were created. (B) Each reference sequence
was then used to create the associated reads. To simulate realistic data, errors, SNPs and Indels were introduced. The resulting reads were then
aligned to the whole genome (C) or to their associated reference sequence (D).
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be an exon of interest. To generate the sequencing data,
each associated reference sequence was created by select-
ing a substring from the target sequence, while the
starting base of the next reference sequence was shifted
by an offset of 10 bases, covering the target sequence in
the process (Figure 2A). This procedure was repeated
until the remaining target sequence was too small
to create a new reference sequence with the required
length.
The associated reads were then created from their

associated reference sequences, with a number of copies
referred to as the read redundancy (Figure 2B).
As indicated in red in Figure 2, sequencing errors and
incorrectly captured reads were introduced into the data
set. SNPs and Indels were additionally introduced to the
sequencing data with probabilities corresponding to
typical occurences mentioned in literature (24). After
the read sequence was prepared, the assembly of the
read was finished by including the genomic position
information.
In the above approach, the length of the reference

sequences influences the number of total reference
sequences and associated reads, as with increasing length
of the reference sequences, fewer complete sequences
can be fitted into the target sequences, e.g. the exons
chosen. As shown in Table 1, the number of reference
sequences decreases for each step of 25 bases. To deter-
mine the number of sequencing reads for each combin-
ation of target region and read length, the number of
reference sequences has to be multiplied by the read
redundancy.

Parameter space

To evaluate the influence of various parameters on the
alignment time, we varied the values of five parameters:

. the size of the target region (0.3, 3 and 30 Mb),

. the length of the reads (25, 50, 75, 100 bases),

. the percentage of sequencing error per base (0.5%,
1%, 2%),

. the read redundancy (1, 2, 5, 10, 20) and

. the percentage of reads off-target but still captured
and sequenced (0, 5, 10, 20, 40%).

RESULTS AND DISCUSSION

Introduction of errors by aligning solely to the
target region

As mentioned, the alignment speed of conventional
aligners in targeted sequencing could perhaps be
improved by aligning just to the target region instead of
to the whole genome, which is the current practice (21),
because this could seriously reduce the computational
effort. To test whether this is a viable option, we first
examined the effectiveness of sequence alignment to just
the target region, using conventional aligners. Sequencing
data from a previous experiment (21) was used for this
study.

When using common enrichment methods, two classes
of reads are generated, the first one consisting of all reads
that originate inside the target region (referred to as ITR)
and the second one comprising all reads that originate
outside of the target region (referred to as OTR). When
all these reads are aligned solely to the target region, two
possible errors may occur that influence subsequent
analysis (e.g. SNP calling). Firstly, OTRs that now align
uniquely inside the target region are falsely classified as
uniquely matching reads (UMRs) to the target, as they
align at a position from which they do not originate
(Type 1 error). Secondly, all reads (ITR and OTR) that
align uniquely inside the target region, but would also
align one or more times outside the target region [known
as multiple matching reads (MMR)] and that would
normally be excluded from analysis, are falsely classified
as UMRs as well (Type 2 error).

A B

Figure 2. Principle of data generation. (A) Captured sequences (dark green) are complementary to the designed capture probes present on the array.
These probes are designed in such a way that the following reference sequences (light green) form a tiling of the target sequence (continuous black)
with a constant offset. Each reference sequence is therefore directly created from the target sequence. (B) For each reference sequence a number of
associated reads (blue) is created, introducing different errors (red) in the process. The number of created reads per reference sequence is referred to
as read redundancy (two in this example).

Table 1. Number of reference sequences for the different target

regions, depending on the length of each reference sequence (as

described in the section Generating of sequencing data)

Target region 25 base
sequences

50 base
sequences

75 base
sequences

100 base
sequences

0.3Mb 28 163 26 218 24 243 22 298
3Mb 283 042 2 64 616 246 202 227 776
30Mb 2 857 844 2 676 092 2 493 129 2 311 377

The decrease in number is due to the fact that fewer complete
sequences cover the same target if the length of each generated
sequence is increased.
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We compared mapping strategies where reads were
aligned to the full genome reference or only to the
target. The previously published set (21) features 13.24
million mapped reads of which 8.36 million were
uniquely mapped to the target region of genome reference
NCBI36. Using the same analysis methods as described in
(21), but mapping only against the target region, 8.48
million UMRs were obtained. From these, 0.78% were
uniquely mapped to a different location (Type 1 error)
and 0.83% were originally MMRs (Type 2 error) when
the whole genome was used as a reference.

Subsequently, we evaluated the number of mismatches
that were observed in reads that map consistently and in
those that correspond to erroneous mappings. The result
of this analysis is given in Figure 3. The data show that
reads that erroneously map to the target region typically
have several mismatches, while the vast majority of con-
sistently mapped reads contains one or no mismatches
with the target sequences. However, the distributions
overlap and cannot be distinguished easily. For instance,
accepting only reads with at most two mismatches to
capture most of the consistently mapped reads, would
still result in the inclusion of about half the erroneously
mapped reads. Setting the threshold to 1 or 0 would on
the other hand greatly reduce the information needed for
SNP calling. Moreover, the use of a lower threshold to
reduce type 1 and 2 errors is not feasible, since an analysis
of the distance between SNPs (i.e. SNPs called when
mapped against the full reference genome) showed that a
third of all SNPs have neighboring SNPs not further than
50 bases apart (see Figure 3). Hence we conclude that
allowing fewer than two mismatches per read would
reduce the reliability of SNP calling for a substantial
part of the exome.

To test the effect of the additional 1.61% UMRs
generated, supposedly uniquely mapping to the target
region, on genomic analysis, SNP calling was performed

[in the same way as done in (21)]. A direct comparison was
made for sets mapped against the full genome reference
and only to the target region. A total of 1886 SNPs were
found in both sets, while an additional 1651 SNPs were
specific to the set where mapping was done solely against
the target region. Thus aligning to just the target
region produces an additional 88% SNPs. The same
analysis using 35 bp reads (20) yields similar results and
a slightly higher overall false-positive rate (52 versus
47%), indicating that read length has an influence, but
will unlikely solve the problem of mismapping. These
two different SNP sets exhibit different overlap with a
known SNP database: 78.8 and 8.4%, respectively (exact
numbers: 1486 and 138, source Ensembl database v.54).
The latter percentage implies that nearly 92% of these
additionally found SNPs are false positives. In addition,
both SNP sets have dissimilar distributions of percentage
of non-reference calls, which are given in Figure 4.
Figure 4A shows the histogram of the non-reference fre-
quency for the overlapping SNPs in both data sets, while
in Figure 4B this histogram is given for the SNPs that are
unique to the mapping to the target only. The histogram
in Figure 4A exhibits the expected profile with a peak at
100 (homozygous SNPs) and a secondary maximum a bit
<50% expected for heterozygous SNPs. Interestingly the
frequency spectrum in Figure 4B exhibits a 1/f trend with
the frequency, f, which is indicative of noise (25) and
suggests—in line with the low overlap with the SNPs
known in Ensembl database—that nearly all of these
SNPs are false positives. Therefore we conclude that,
despite the small proportion of reads with ‘paralogous
origin’ (1.61%) by mapping just to the target region,
they are more divergent from the target sequences and
therefore can have a significant contribution to false
positive SNP calls when detecting sequence variants, in
an enrichment experiment when aligning just to the
target region.

A B

Figure 3. (A) Number of mismatches that were observed in reads that map consistently and in those that correspond to erroneous mappings. Reads
which erroneously map to the target region typically have several mismatches, while the vast majority of consistently mapped reads have one or no
mismatches with target sequences. (B) Distribution of distances between neighboring SNPs that map to the same target region of exome. Percentage
of between-SNP ranges (Y-axis) that are below a certain distance (base pairs, X-axis) shows that one third of the between-SNP distances are 50 bp or
less.
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Consequently, this validates the practice in targeted
sequencing to perform whole genome alignment to avoid
introducing additional errors during alignment. Thus,
comparisons to determine the gain in alignment speed
using a priori knowledge will be made by comparing the
alignment speed of implementations of the Needleman–
Wunsch algorithm, which align to just the target region,
to the speed of conventional aligners (Bowtie, BWA,
MAQ), which align to the whole genome.

Comparison of alignment speed

To evaluate the alignment speed of the new approach, the
computation times required for aligning targeted
sequencing experiments were compared to the perform-
ance of regular aligners (Bowtie, BWA and MAQ).
These latter aligners do not use any a priori genome
position information and align to the whole genome.
Figure 5 shows the results of such a comparison for a 3
Mb target region, a read length of 75 bases, a sequencing
error of 1% and with 10% reads off-target. These settings
correspond to a total of 246202 reference sequences. Four
different implementations of the Needleman–Wunsch
algorithm (NW, NWem, NWB and NWBem, see
Section Different alignment approaches) were used.
As can be seen, MAQ (red) is the slowest of the aligners

used in this comparison, with its computation time
ranging from 8713 s up to 69768 s depending on the read
redundancy. The two Burrows–Wheeler transform-based
aligners perform the same calculations much faster,
requiring 661–9419 s (BWA, violet; �6.86� faster than
MAQ) and 159–2791 s (Bowtie, black; �22.9� faster
than MAQ) respectively. These results confirm previous
observations concerning the alignment speed of Burrow–
Wheeler transform-based aligners (15,16). Nevertheless,
the Needleman–Wunsch algorithms using position infor-
mation lead to considerably shorter alignment times.
Compared to Bowtie, the computation time is decreased
by a factor of �1.4 for NW (blue; 106–1949 s), while

NWem (light blue; 73–1244 s) even gains a factor of
�2.2. This gain increases further for NWB (dark green;
32–491 s or �5.7� faster than Bowtie) and NWBem
(green; 30–430 s or �6.6� faster than Bowtie).
Concluding, the total computation time for approximately
49.2 million reads of 75 bases length can be reduced from
46.5 to �7 min when adapting a pruned Needleman–
Wunsch algorithm to use the a priori information and
comparing to the fastest regular aligner Bowtie.

Figures 6–8 show a more extensive comparison of
computational experiments, regarding only two of
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the Needleman–Wunsch implementations (NW and
NWBem) with a sequencing error of 1% per base in
Figures 6 and 7, as well as 2% in Figure 8, respectively.
Figure 5 is a subplot of Figure 6 and can be found in the
second row and the third column. When investigating over
a broader range of conditions, Bowtie (black) shows to be
the fastest of the tested common aligners, outperforming
MAQ (red) and BWA (violet) in every tested parameter
combination. Though the use of the position information
still leads to a considerable reduction in alignment time,
NW shows limitations for longer reads lengths (due to the
time complexity of the regular Needleman–Wunsch algo-
rithm being Oðmaxðn;mÞ2Þ), which are overcome by
NWBem by pruning the alignment matrix.

For example, in Figure 6, at a length of 100 bases and
40% reads off-target, Bowtie (164–2765 s) and NW
(158–2750) compute at comparable speeds, while
NWBem outperforms both (32–447 s). When considering
shorter reads of 25 bases, both NW (42–583 s) and
NWBem (29–396 s) are able to outperform Bowtie
(106–1856 s). Concerning the amount of reads off-target,
the exact matching shortcut of NWBem is skipped less
often at 0% reads off-target and therefore fewer reads
have to be aligned regularly (since NW performs no

preselection, it is not influenced by this). Still the overall
influence on computation time is only marginal, reducing
alignment time to 32–445s.
We also investigated the performance of the aligners for

the 3 Mb target region (Figure 7) as well as the 300 kb
target region (data not shown), which resulted in similar
outcomes. In case of the 3 Mb target region, the perform-
ance gain varies between a factor of �1.0 to �4.3 for NW
(average: 2.2±1.2) and a factor of �5.0 to �7.7 for
NWBem (average: 6.8±0.8) when comparing to Bowtie.
Similar results were observed for the 300 kb target region
(NW: 2±0.9; NWBem: 6.5±1.1).
When investigating the influence of 2% sequencing

error per base for the 30 Mb target region at a length of
100 bases and 40% reads off-target, the results are con-
sistent to previous observations (Figure 8). Compared to
1% sequencing error (see Figure 6 and above), NW
(158–2758 s) and NWBem (33–460s) alignment times
seem largely unchanged, while Bowtie (196–3311s)
requires �20% more computation time. Hence, for
2% sequencing error and the 30 Mb target region, the
average gain for NWBem increases to 7.8±0.8
compared to Bowtie, whereas for the 3 Mb target region
it even reaches a factor of 8±0.8. Also compared to
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(violet) and Bowtie (black) aligned against the whole genome, NW (blue) and NWBem (green) used the position information to align to the
associated reference sequence. Settings: target size 30 Mb, 1% sequencing error.
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Bowtie, BWA exhibited a similar behaviour, while MAQ’s
performance remained stable.
As expected, the amount of reads processed has the

biggest impact on the computation time for all of the
aligners, with our new approach showing a behavior
similar to Bowtie and BWA. The percentage of sequencing
error (in our tests up to 2%) influences the computation
time of the common aligners (except for MAQ), while it
has only a minor effect on the computation time of both
NW and NWBem. Nevertheless, this gain in speed is sen-
sitive to the similarity of the aligned sequences to the
expected sequences, as it influences the number of
exactly matching sequences. Therefore, both implementa-
tions using preselection by exact matching (NWem and
NWBem) will benefit from a high specificity in enrichment
and a low sequencing error.
Concerning the amount of reads off-target, Figure 6

shows that variations in the percentage influence the com-
putation time of both implementations (NW and NWBem)
only marginally, with NWBem having the performance of
NWB as an upper limit for the computation time when all
of the reads need to be aligned in case no exact matches are
found (compare Figure 5). This can be understood as for
NW, no preselection is performed and therefore all reads

are aligned regardless of their origin, while for NWBem the
biggest gain in computation time is achieved due to the use
of the pruned Needleman–Wunsch algorithm.

Implementation aspects

To investigate whether there is room to improve NW even
further, the time consumption of different parts of the
Needleman–Wunsch implementations were analyzed. As
shown in Table 2, I/O makes up a major part of the total
computation time, up to a fraction of 83.3%. Improve-
ments should be possible by using a binary data format
instead of the text format used in this study. In summary
it can be said that our approach generally benefits from
short reads with high quality, as the alignment time for
dynamic programming implementations increases with
the length of the reads. Furthermore, high-quality reads
that match perfectly do not need to be aligned at all.

We next note that BWA and Bowtie benefit from using
multiple computer cores, as they can perform their com-
putations multithreaded. MAQ as well as the presented
Needleman–Wunsch aligners are not implemented in a
multithreaded form (yet) and therefore did not gain
from multiple cores.
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Figure 7. Comparison of different aligners for different read lengths, percentages of reads off-target and read redundancies. MAQ (red), BWA
(violet) and Bowtie (black) aligned against the whole genome, NW (blue) and NWBem (green) used the position information to align to the
associated reference sequence. Settings: target size 3 Mb, 1% sequencing error.
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Furthermore, the memory requirements for the differ-
ent aligners vary, making great amounts of RAM advan-
tageous or in case of MAQ necessary for the regular
aligners when aligning large numbers of reads. As shown
in Table 3, NW and NWBem require only a fraction
(7.5–16.6%) of the memory necessary for the other
aligners to perform the calculations when aligning
approximately 5 million reads from a 3Mb target
region. These low hardware requirements combined with
the overall speed of the computations would allow one to
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Figure 8. Comparison of different aligners for different read lengths, percentages of reads off-target and read redundancies. MAQ (red), BWA
(violet) and Bowtie (black) aligned against the whole genome, NW (blue) and NWBem (green) used the position information to align to the
associated reference sequence. Settings: target size 30 Mb, 2% sequencing error.

Table 2. Time consumption of alignment and input/output of the NW and NWBem aligners, for different read redundancies

Program part 1�, n(%) 2�, n(%) 5�, n(%) 10�, n(%) 20�, n(%)

NW—alignment 3.8 (60.7) 7.92 (66.4) 19.07 (68.9) 39.93 (70.84) 75.75 (69.82)
NW—I/O 2.47 (39.3) 3.99 (33.6) 8.61 (31.1) 16.43 (29.16) 32.75 (30.18)
NWBem—alignment 0.47 (16.71) 0.92 (19.32) 2.28 (21.83) 4.7 (23.15) 9.03 (22.7)
NWBem—I/O 2.33 (83.29) 3.85 (80.68) 8.15 (78.17) 15.59 (76.85) 30.77 (77.3)

The time was measured in seconds, percentages resemble the fraction of total computation time per program part. Settings: target size 3 Mb, read
length 50 bases, 1% sequencing error, 10% reads off-target.

Table 3. RAM requirements (MB) of the different aligners when

aligning approximately 5 million reads

Aligner/algorithm NW NWBem Bowtie BWA MAQ

Virtual memory required 200 200 1202 2333 2666
Physical memory required 145 145 904 2322 2654

Physical memory required is part of the whole virtual memory required
by the program. Settings: target size 3 Mb, 20� read redundancy, read
length 50 bases, 1% sequencing error, 10% reads off-target.
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include the alignment within the sequencing device,
making this kind of post-processing of the sequencing
data obsolete in clinical applications.

Outlook

Thus far our work has been focused on methods where the
enrichment step and the sequencing are combined in what
can be called embedded enrichment, such as in OS-Seq (20).
However, our method for mapping targeted sequences
could be exploited in studies that use other enrichment
strategies such as long-range PCR or selector probes
(26). One could envision that the high specificity that
these methods offer could warrant confining the alignment
just to the target region. However, this is not done in
practice to avoid generating false SNPs, as even with
98–99% specificity, 1–2% of the amplicons may be
misaligned to the target region, if alignment is restricted
to this (M. Nilsson, personal communication). Fur-
thermore, as has been shown in the first results section,
the vast majority of any additional SNPs generated will be
false positives. PCR- and selector-based methods do not
necessarily retain a direct link between a probe and the
corresponding sequence read through a positional depend-
ence. However, for the selector approach to targeted
resequencing (26) a link to the capture probe can be
made as the hybridization probes are somewhere in the
captured fragment to be read. If these are read as well,
the read alignment could proceed by combining this infor-
mation (giving the expected genomic location) and the
read. In the work done by Johansson et al. (26) this was
not done and alignment was performed against the full
genome reference (M. Nilsson personal communication).
However, if in between the two selector hybridization
probes a specific label is incorporated, which upon
sequencing indicates that adjacent to this site both hybrid-
ization probes are to be found, then upon the random
rolling circle amplification-based multiple displacement
amplification the hybridization probes can be easily
found in the sequence. Consequently, the genomic
location of the fragments would be known and alignment
can be done just to the target location in the manner
described in this article. For PCR-based enrichment
methods the oligonucleotide primers, designed to flank
the amplicons, could in principle also be used in the
read alignment as a priori information. However, in this
case new methods would still have to be developed to
ensure that the primer information is retained through
the concatamerization and/or shearing process, typically
applied in the resulting next-generation sequencing library
preparation as the PCR-products are longer than the cur-
rently typical read length. Thus, as the hybridization
probe information can more readily be retained in the
selector approach (26), in the latter target enrichment
technique our method for targeted alignment might be
more readily adopted.

CONCLUSION

In this article we have investigated the use of a priori
information in sequence alignment, based on a new

implementation of current enrichment methods for
targeted sequencing. For this purpose, sequencing reads
were computer generated from the human genome while
varying five parameters to evaluate their impact on align-
ment time. The presented alignment algorithms are based
on straightforward dynamic programming and use a priori
knowledge to map each read to the expected part of the
genome. These implementations prove to be faster than
Bowtie, BWA and MAQ. The latter three algorithms
align against the whole human genome, since alignment
solely to the target region using conventional aligners
introduces falsely classified UMRs. We investigated this
and found that 1.61% of a total of 8.48 million of the
UMRs were incorrectly classified as UMR by aligning
just to the target region. This seemingly small percentage
of incorrectly classified UMR leads to a significant
increase of around 88% more SNP calls, close to 92%
of which are false positives.

The gain in computation speed was investigated for a
total of 900 parameter variations and was observed to
range from an average of 6.2±0.8 for a 30 Mb target
region to an average of 8±0.8 for a 3Mb target region
when comparing the fastest Needleman–Wunsch imple-
mentation (NWBem) to Bowtie. As the alignment itself
consumes only a fraction of the total computation time,
using a binary format to process the reads should give
additional benefits. For example, speeding up the I/O
by a factor of 3 would decrease the alignment time from
�40 s to �20 s for the �5 million reads of a 3 Mb target at
20� read redundancy, which is �16� faster than Bowtie.
Furthermore, since the alignment algorithm can be
exchanged easily and the computations do not require
sophisticated hardware, using a priori information
proves from a bioinformatics point of view to be a
flexible and efficient approach to minimize alignment
efforts in targeted sequencing and to enable a clinical
use of sequencing information without the necessity of
large computing facilities. Finally, the alignment time of
around 7 min or less for a targeted resequencing run of
approximately 49 million reads would be very attractive
for clinical use.
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