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ABSTRACT
◥

Cancer immunotherapy is predominantly based on T cell–
centric approaches. At the same time, the adaptive immune
response in the tumor environment also includes clonally produced
immunoglobulins and clonal effector/memory B cells that partic-
ipate in antigen-specific decisions through their interactions with T
cells. Here, we investigated the role of infiltrating B cells in bladder
cancer via patient dataset analysis of intratumoral immunoglob-
ulin repertoires. We showed that the IgG1/IgA ratio is a prog-
nostic indicator for several subtypes of bladder cancer and for the
whole IMVigor210 anti–PD-L1 immunotherapy study cohort. A
high IgG1/IgA ratio associated with the prominence of a cyto-
toxic gene signature, T-cell receptor signaling, and IL21-medi-
ated signaling. Immunoglobulin repertoire analysis indicated
that effector B-cell function, rather than clonally produced
antibodies, was involved in antitumor responses. From the T-

cell side, we normalized a cytotoxic signature against the extent of
immune cell infiltration to neutralize the artificial sampling-
based variability in immune gene expression. Resulting metrics
reflected proportion of cytotoxic cells among tumor-infiltrating
immune cells and improved prediction of anti–PD-L1 responses.
At the same time, the IgG1/IgA ratio remained an independent
prognostic factor. Integration of the B-cell, natural killer cell, and
T-cell signatures allowed for the most accurate prediction of
anti–PD-L1 therapy responses. On the basis of these findings, we
developed a predictor called PRedIctive MolecUlar Signature
(PRIMUS), which outperformed PD-L1 expression scores and
known gene signatures. Overall, PRIMUS allows for reliable
identification of responders among patients with muscle-
invasive urothelial carcinoma, including the subcohort with the
low-infiltrated “desert” tumor phenotype.

Introduction
Tumor-infiltrating B cells and intratumorally produced immu-

noglobulins (Ig) play important roles in the tumor microenviron-
ment (TME) and response to immunotherapy (1–5). IgG antibodies
produced by intratumoral B cells may drive antibody-dependent
cellular cytotoxicity (ADCC) and enhance antigen presentation by
dendritic cells (6–8). B cells are efficient antigen-specific antigen
presenters that modulate the behavior of Th cells (9–11). Data on
the role of B cells in the bladder cancer TME remain somewhat
contradictory and indicate that B-cell infiltration may be associated
with not only increased tumor invasiveness (12), but also with

increased T-cell infiltration, colocalization of CD4þ T cells and B
cells, and antigen presentation (13). The complexity of interpreting
these findings arises from the fact that the roles of different clonal B-
cell populations may differ in terms of their antigen specificity,
propensity to produce clonal antibodies or present antigens, and,
interactions with T cells, which may have immunosuppressive or
cytotoxicity-inducing features (5).

The functionality of antibodies, determined by their isotype, can
also affect antitumor responses, including potential immunosuppres-
sive effects (14) and inflammatory processes promoted by immune
complexes (5, 15). For instance, high intratumoral IgA in bladder
cancer associates with shorter patient survival (16). The relative
prevalence of antibodies with a certain isotype may also reflect
the cytokine milieu in the ongoing antitumor response, as well as the
general polarization of B cells (3). In melanoma, a high IgG1/IgA
ratio (IgG1/IgA1þA2 gene expression ratio) and large IgG1 clonal
expansions [which mainly reflect the presence of clonal IgG1-pro-
ducing plasma cells in RNA sequencing (RNA-seq) data] associate
with a favorable prognosis (17). This suggests that cytotoxic, tumor-
specific antibody production is one of the major mechanisms
of melanoma immune surveillance via ADCC and antibody-
dependent cellular phagocytosis (7, 18). In contrast, forKRAS-mutated
lung adenocarcinoma, where a high IgG1/IgA ratio also associates with
better prognosis, high clonality of the IgG1 repertoire does not
associate with longer survival (19). These observations suggest the
existence of alternative explanations for the association of a better
prognosis with a high IgG1/IgA ratio, such as B cell–mediated antigen
presentation (9–11) or direct B-cell cytotoxicity (20). Alternatively,
because a lower IgG1/IgA ratio also implies relatively higher abun-
dance of IgA antibodies, the negative immunosuppressive (14) or pro-
inflammatory (15) roles of the latter immunoglobulin isotype could
contribute to a better prognosis for patients with a high intratumoral
IgG1/IgA ratio.
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Here, we investigated the architecture of the intratumoral immu-
noglobulin repertoire in distinct subcohorts of patients with bladder
cancer. We showed that a high IgG1/IgA ratio associated with longer
patient survival, response to anti–PD-L1 therapy, higher prevalence of
cytotoxic processes among infiltrating immune cells, increased T-cell
receptor (TCR) signaling, and a more prominent IL21-mediated
signaling signature. The IgG1/IgA ratio was an independent prognos-
tic factor, suggesting an active role for tumor-infiltrating B cells.
Because IgG1/IgA is a ratio of immune gene expression, this metric
does not depend on tissue sampling nor the extent of tumor infiltration
and reflects the proportion of IgG1- versus IgA-switched B cells and
plasma cells in the sample. We further normalized a CD8þ effector T-
cell gene signature against CD45-correlated pan-leukocyte genes. The
resulting metric reflected the relative activity of cytotoxic processes
among tumor-infiltrating immune cells, rather than the extent of
tumor infiltration by immune cells. Similar to the IgG1/IgA ratio,
this metric does not depend on tissue sampling. The normalization
increased the prognostic and predictive power of CD8þ effector T-cell
gene signature. We next integrated the B-cell, natural killer (NK) cell,
and T-cell signatures and developed a tumor RNA-seq–based predic-
tor of anti–PD-L1 therapy responses in muscle-invasive urothelial
carcinoma. The resulting predictor achieved superior sensitivity com-
pared with PD-L1 expression scores or existing gene signatures,
allowing for reliable identification of responders even within the
“desert” patient subcohort, which we analyzed as a holdout dataset.
Feature interaction analysis further supported an important role for
interaction between T and B cells in response to anti–PD-L1 immu-
notherapy. General relevance of the model was validated in an
independent, non-immunotherapy treated The Cancer Genome Atlas
(TCGA) bladder cancer cohort (BLCA). Altogether, our results
revealed an unrealized potential for the rational prediction of response
to cancer immunotherapy.

Materials and Methods
Dataset analysis

Patient data from TCGA BLCA included 412 cases, and RNA-seq
data were available for 408 cases (21). Cases contained data on both
tumor and healthy tissues. For 6 patients, multiple replicates of tumor
samples were present. There were 142 patients with basal squamous,
142 patients with luminal papillary, 78with luminal infiltrated, 26with
luminal, and 20 with neuronal molecular subtypes. We downloaded
FPKM-UQ (fragments per kilobase of transcript per million mapped
reads upper quartile) files from theGDCdata portal (21) for 433 tumor
samples, including replicates, and we used only one randomly selected
replicate for each patient. The data were then transformed to tran-
scripts per million (TPM) according to the formula (22):

TPMi ¼ FPKMiP
j FPKMj

�106

Patient data from the IMVigor210 clinical trial (NCT02108652)
were downloaded from European Genome-Phenome Archive
(accession number EGAS00001002556). This clinical trial consisted
of participants with locally advanced or metastatic urothelial blad-
der cancer who were treatment-na€�ve and ineligible for cisplatin-
containing chemotherapy (n ¼ 119 patients) or participants who
had progressed during or following a prior platinum-based che-
motherapy regimen (n¼ 310 patients) and included RNA-seq tissue
transcriptomic data for 345 patients. Patients were classified into
three immune phenotypes: desert (n ¼ 95), excluded (n ¼ 164), and
inflamed (n ¼ 88). All patients in IMVigor210 cohort had mea-

surable disease at baseline. The SP142 Ventana IHC assay was used
in this trial. The scoring system (ICA) indicates the percentage of
PD-L1þ immune cells in a given tumor area (23, 24): IC0, <1%; IC1,
1%–5%; IC2/3, >5%. RECIST v1.1 was used to assess response to
therapy. Abundances of transcripts from bulk RNA-seq data were
quantified using Kallisto (25).

Normalization on pan-leukocyte genes
Gene expression in both TCGA and IMVigor210 datasets was

normalized similarly to Teltsh and colleagues (26), withmodifications.
We first selected an immune-normalized gene set (INGS): a group of
genes with a Spearman correlation coefficient with PTPRC (CD45)
>0.9. Next, the sample-specific normalization factor (fINGS) was
calculated for each sample as the averaged expression of genes from
INGS, and then the first normalization was performed. The normal-
ization coefficient for genes included in INGS avoided self-
normalization and was calculated as the averaged expression of the
remaining genes. We selected genes from INGS for which the ratio
between the coefficient of variation before and after the first normal-
ization was <0.8 and used those genes as the final INGS. The second
normalization was performed using the final INGS. Final genes for
INGS were selected independently for TCGA and IMVigor210 data-
sets. TCGA final INGS included genes: MPEG1, EVI2B, IL10RA,
GPR65, WDFY4, CD53, ARHGAP9, CD48, CD84, CYTIP, RHOH,
SAMSN1, CD3E, SLAMF6, DOCK2, SLA, ITGB2, SNX20, MNDA,
CYBB, CXorf21, ITGAL, BTK, P2RY10, IL21R, PTPN22, TRAC,
SLAMF1, ITK, LCP2, SPN, SASH3, CD2, PTPRC, NCKAP1L, PTPN7,
SH2D1A, and PLEK. IMVigor210 final INGS included genes:DOCK2,
IRF8, NCKAP1L, ARHGAP15, CD48, ITGAL, SAMSN1, ZC3H12D,
CD226, P2RY10, CD53, WDFY4, IL10RA, PYHIN1, ICOS, ITGA4,
AOAH, PTPN22, TRAC, CYTIP, CD2, INSYN2B, ITK, SPN, SLAMF1,
STAT4, PTPRC, IKZF1, SLFN12L, SLAMF6, CD3E, GPR65.

Differential expression analysis
State-of-the-art methods for differential expression analysis are not

applicable for normalized TPM values used in our work. To perform
differential expression analysis, we were restricted to use a nonpara-
metric approach. Differential expression analysis was performed using
theMann–WhitneyU test to find differentially expressed genes in two
categories of TCGA-BLCApatients: those with high and low IgG1/IgA
ratio tertiles. IgA expressionmeasurements were calculated as a sum of
IGHA1 and IGHA2 genes. The values for low and high IgG1/IgA
tertiles for the basal squamous subcohort (n¼ 47) were 0.52 and 1.35,
respectively, and for the whole TCGA-BLCA cohort (n ¼ 136), the
corresponding values were 0.3 and 0.96. Obtained P values were
adjusted with the Benjamini–Hochberg method (27). Fold change
was calculated for each gene as the ratio of themedian expression in the
two samples. Pathway enrichment analysis was performed using slim-
GO tool with annotation dataset of biological processes (28).

Clonality analysis
We obtained immunoglobulin heavy chain (IGH) complementary-

determining region 3 (CDR) repertoires for TCGA-BLCA and IMVi-
gor210 patients from raw RNA-Seq data using MiXCR 3.0 (29) in
RNA-seq mode. Data were prefiltered on the basis of 15-mer nucle-
otidematches to V/J segments of immune receptors. V and J sequences
of IGH, IGK, IGL,TRA,TRB,TRG, andTRD receptors were taken from
IMGT database, and all possible 15-mers were extracted. Samples with
less than 300 IGHCDR3-related reads were omitted from the analysis.
Included in the analysis were 217 patients from the whole TCGA
cohort, including 89 patients from the basal squamous subcohort, and
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228 patients in the IMVigor210 dataset. Immunoglobulin CDR3
repertoires were downsampled to 300 randomly chosen reads
for normalization purposes. Immunoglobulin clonality was calcu-
lated as (1 � normalized Shannon–Wiener index; ref. 30) using
VDJtools (31) software.

Gene signatures
Gene signatures were calculated for TCGA-BLCA and IMVi-

gor210 patients as the first principal component of principal
component analysis (PCA) performed with z-score–transformed
expression of input genes. Calculations were performed with PCA
from the Python scikit-learn library. Genes included in the CD8
signature (32): CD8A, CXCL10, CXCL9, GZMA, GZMB, IFNG,
PRF1, and TBX21. The refined CD8 signature included: CD8A,
CXCL9, CXCL10, and GZMB. The NK signature included: KLRC2,
KLRC3, and KLRC4.

Random forest model
Random forest modeling, one of the universal machine-learning

algorithms that can model response prediction by fitting training data
based on different input features, was performed with the Random-
ForestClassifier from the Python scikit-learn library. During training,
15% of the IMVIgor210 data (45 patients: 10 responders, 35 non-
responders) were selected as a holdout set, and the remaining 85% (253
patients: 58 responders, 195 nonresponders) were selected as training
data, preserving the proportions of response or non-response to
immunotherapy. Hyperparameters of the model (i.e., maximal
amount of samples in the leaf and tree depth) were optimized with
RandomizedSearchCV and GridSearchCV from the Python scikit-
learn library using 5-fold cross-validation. The number of estimators
in the model was 50. The model was trained using the F1 score as a
measure of quality:

F1 ¼ 2 � precision � recall
precision þ recall

The model performance was evaluated with five-inner/five-outer
nested cross-validations. This approach, unlike regular cross-valida-
tion, assumes to fit the model using two nested loops, where the inner
loop is used for hyperparameter optimization and model selection, as
with regular cross-validation, whereas the outer loop is used to split the
data into training and test datasets to estimate the performance. We
decided to use nested cross-validation because of the small size of the
available data points, unbiased generalization performance estimation,
and prevention of selection bias.

Validation of the PRIMUS model
The performance of our PRedIcitive MolecUlar Signature (PRI-

MUS) model was compared with the support vector machine
(SVM)-based model with a linear kernel trained on the same
training data as PRIMUS. We used SVM realization from the
Python scikit-learn library. PRIMUS is a random forest–based
model which is slightly prone to overfit because the high depth
of decision trees in the ensemble can result in an overcomplicated
model and incur unnecessary variance (33, 34). On the other
hand, SVM with linear kernel is a simple model that is well designed
for discriminating linearly separable data and is unlikely to overfit
complex data due to high variance of the model. The variance of the
PRIMUS model can be interpreted as the difference between
training and test set quality metrics (35). We compared the differ-
ence between training and test set quality metrics for the PRIMUS
and SVM model to detect overfitting of the PRIMUS model.

We also applied PRIMUS to the IMVigor210 data (all patients) to
explore input feature importance and interactions using SHAP (36), a
game theory approach to explain machine-learning model and under-
stand the decision-making process by quantifying the contribution
that each feature brings to the prediction made by the model.

Statistical analysis
Survival analysis was performed with the lifelines (37) Python

library. Survival plots were created using the Kaplan–Meier estimator.
Significance of the difference between two survival curves was esti-
mated with a log-rank test. For comparing multiple survival curves,
multivariate log-rank test was used. Cox proportional hazards models
were fitted on either features or features with an interaction value,
which occurred when the effect of an independent variable on a
dependent variable changed, depending on the value of other inde-
pendent variables. The relative reliability of models was estimated by
theAkaike information criterion (38) and concordance index (39). The
Cox area under the receiver operating curve (AUROC) was calculated
with the Python scikit-learn library. For multiple comparisons, cor-
rectionwas performed using the Benjamini–Hochberg procedure (27).
Group comparison in boxplots was performed with the Kruskal–
Wallis test. All statistical calculations were performed using Python.
P < 0.05 was considered statistically significant.

Results
Immunoglobulin isotype composition and clonality

We investigated BLCA patient cohorts from TCGA with distinct
mRNA expression-based molecular subtypes to identify patients more
likely to have a favorable prognosis while exhibiting a high intratu-
moral IgG1/IgA ratio (Fig. 1A; Supplementary Data S1). The basal
squamous and luminal-infiltrated molecular subtypes showed the
most significant correlation with patient survival when stratified on
the basis of IgG1/IgA ratio, with a high IgG1/IgA ratio associated with
better survival versus a low IgG1/IgA ratio (Fig. 1B; Supplementary
Fig. S1). Basal squamous tumors are generally characterized by high
lymphocytic infiltration, including CD8þ T cells (40) and Th1
cells (41). Thus, one of the possible explanations for this result could
be the association of IgG1 isotype switching with a type 1 immune
response (3, 42, 43).

Next, we studied the clonality of IgG repertoires extracted from
BLCA RNA-seq data using MiXCR (29). We observed that high
clonality (i.e., the presence of large clonal immunoglobulin expan-
sions) was not significantly associated with prognosis for all patients,
nor for patients with basal squamous tumors (Supplementary Fig. S2A
and S2B). However, the combination of IgG1/IgA ratio and immu-
noglobulin clonality showed high prognostic value, with the best
prognosis associated with high IgG1/IgA and low immunoglobulin
clonality (Fig. 1C). These results suggest that high clonal antibody
production does not efficiently contribute to immune surveillance of
bladder cancer, which contrasts with melanoma but is similar to
observations in KRAS-mutated lung adenocarcinoma. This observa-
tion, thus, refutes the role of antigen-specific, IgG1-mediatedADCC as
a basis for association of a high IgG1/IgA ratio with longer survival in
basal squamous bladder cancer and indicates that this association is
likely attributable to other B-cell functions.

A high IgG1/IgA expression ratio associates with a cytotoxic
immune signature

Next, we aimed to identify the immune processes associated with a
high IgG1/IgA expression ratio. To this end, we divided patients with
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basal squamous bladder cancer into tertiles based on IgG1/IgA ratio
and compared the differential gene expression in patients from high
versus low IgG1/IgA tertiles. Pathway analysis of the normalized
genes overexpressed in the high IgG1/IgA subcohort showed
enrichment of TCR signaling, CD8þ T-cell activation, NK cell–
mediated cytotoxicity (CXCL9, CXCL10, CD8A, CD8B, GZMA,
GZMB, PRF1, TBX21, IFNG, KLRC2, GNLY), IL21-mediated sig-
naling, immune checkpoints (CTLA4, LAG3, PDCD1), B-cell recep-
tor signaling, phagocytosis, and apoptosis (Supplementary Fig. S3;
Supplementary Table S1 for the full list of positively differentially
expressed genes). The association between a high IgG1/IgA ratio
and increased expression of cytotoxic genes suggests a possible
correlation between the type 1 T-cell responses and IgG1 isotype
switching. IL21 is known to exert an antitumor effect by enhancing
and supporting CD8þ T-cell responses (44), and IL21 produced by
follicular Th cells promotes B-cell proliferation andmaturation (45).
Similar analysis of the full TCGA BLCA patient cohort showed
more cytotoxic genes positively associated with a high IgG1/IgA
ratio, along with more prominent expression of costimulatory
CD80, increased IL21-mediated signaling, checkpoint regulation,
Fcg receptor signaling, and receptor-mediated phagocytosis and
endocytosis (Supplementary Fig. S3).

Prognostic value of a normalized CD8þ effector T-cell signature
and IgG1/IgA ratio

A study has proposed a CD8þ effector T cell–associated gene
signature for tumors with an inflamed histologic phenotype that
associates with response to anti–PD-L1 immunotherapy. The genes
for this signature include CD8A, CXCL9, CXCL10, GZMA, GZMB,
IFNG, PRF1, and TBX21 (32). When we applied this raw CD8þ T-cell
signature to the basal squamous TCGA BLCA subcohort, high expres-
sion of the signature associated with better patient survival (Fig. 1D).
We hypothesized that the relative activity of distinct processes among
tumor-infiltrating immune cells may prevail over the infiltration level
per se in terms of prognostic and predictive value. We also reasoned
that the estimation of relative activity of immune processes would
neutralize the artificial variability in immune gene expression resulting
from random tissue sampling. To estimate the relative activity of
distinct processes in tumor-infiltrating immune cells independently of
both the extent of tumor infiltration and of the sampling randomness,
we normalized gene expression against CD45-correlated pan-
leukocyte genes, similar to the previously reported immFocus
approach (26). Using this normalized CD8þ T-cell signature resulted
in a more accurate association with prognosis (Fig. 1E). The combi-
nation of the IgG1/IgA ratio and normalized CD8þ T-cell signature

Figure 1.

Immunoglobulin repertoire features and the normalized CD8þ T-cell signature predict survival in basal squamous BLCA-TCGA patients. A, Relative overlap of the
histologic (papillary, n¼ 132 patients); (non-papillary, n¼ 271 patients) andmRNAexpression-basedmolecular subtypes of bladder cancer fromTCGA.B–F,Kaplan–
Meier curves showing overall survival for TCGApatientswith basal squamous bladder cancerwith high and low IgG1/IgA expression ratio (B); a combination of high or
low IgG1/IgA expression ratio and high or low Ig clonality (high clonality-high ratio vs. high clonality-low ratio: P¼0.16; high clonality-high ratio vs. low clonality-high
ratio: P¼0.07; high clonality-high ratio vs. low clonality-low ratio:P¼0.63; high clonality-low ratio vs. low clonality-high ratio:P¼0.004; high clonality-low ratio vs.
low clonality-low ratio: P ¼ 0.35; low clonality-high ratio vs. low clonality-low ratio: P ¼ 0.04, log-rank test; C); high or low CD8þ T-cell signature (raw; D);
high or low normalized CD8þ T-cell signature (normalization against pan-leukocyte genes; E); and a combination of high and low IgG1/IgA expression
ratios and normalized CD8þ T-cell signature (high signature-high ratio vs. high signature-low ratio: P ¼ 0.26; high signature-high ratio vs. low signature-high
ratio: P ¼ 0.27; high signature-high ratio vs. low signature-low ratio: P¼ 5� 10�5; high signature-low ratio vs. low signature-high ratio: P ¼ 1.0; high signature-
low ratio vs. low signature-low ratio: P ¼ 0.02; low signature-high ratio vs. low signature-low ratio: P ¼ 0.03, log-rank test; F). Patient cohorts are divided on
the basis of median, with total number of patients shown in parentheses.
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had greater prognostic value comparedwith the CD8þT-cell signature
alone, with the best prognosis associated with a high IgG1/IgA ratio
and high normalized CD8þ signature (Fig. 1F). This observation
suggests that the IgG1/IgA isotype ratio has independent prognostic
value and is not merely a passive biomarker of type 1 T-cell responses.
Multivariate Cox proportional hazards regression analysis confirmed
the independent contribution of the IgG1/IgA ratio to predicting

overall survival of patients with basal squamous bladder cancer
(Supplementary Table S2).

Predicting survival and response to immunotherapy
We next evaluated the applicability of the normalized CD8þ T-cell

signature and IgG1/IgA ratio to predict the individual responses to
anti–PD-L1 immunotherapy using data from the IMVigor210 phase II

Figure 2.

Predictive and prognostic role of different immune features in anti–PD-L1 immunotherapy of bladder cancer for the IMVigor210 cohort. A–D, Predictive and
prognostic role of the IgG1/IgA ratio and immunoglobulin clonality. D, High clonality-high ratio versus high clonality-low ratio: P ¼ 0.16; high clonality-high ratio
versus low clonality-high ratio: P¼ 0.17; high clonality-high ratio versus low clonality-low ratio: P¼ 0.4; high clonality-low ratio versus low clonality-high ratio: P¼
0.01; high clonality-low ratio versus low clonality-low ratio: P¼ 0.53; low clonality-high ratio versus low clonality-low ratio: P¼ 0.02, log-rank test. E–H, Predictive
and prognostic role of the raw CD8þ T-cell signature. H, High signature-high ratio versus high signature-low ratio: P ¼ 0.004; high signature-high ratio versus low
signature-high ratio: P¼ 0.11; high signature-high ratio versus low signature-low ratio: P¼ 0.005; high signature-low ratio versus low signature-high ratio: P¼ 0.32;
high signature-low ratio versus low signature-low ratio: P¼ 0.56; low signature-high ratio versus low signature-low ratio: P¼ 0.55, log-rank test. I–L, Predictive and
prognostic role of the normalizedCD8þT-cell signature (normalization against pan-leukocyte genes).L,high signature-high ratio versus high signature-low ratio:P¼
0.28; high signature-high ratio versus low signature-high ratio: P ¼ 0.02; high signature-high ratio versus low signature-low ratio: P < 1 � 10�5; high signature-low
ratio versus low signature-high ratio: P¼0.21; high signature-low ratio versus low signature-low ratio: P¼0.0006; low signature-high ratio versus low signature-low
ratio: P¼0.03, log-rank test. Boxplots inA, E, and I show associationswith response to anti–PD-L1 immunotherapy for different tumor immune phenotypes. Median,
bottomquartile, top quartile, and interquartile range are shown. �,P<0.05; ��,P<0.01; ��� ,P <0.001; and ���� ,P <0.0001. Kaplan–Meier plots showoverall survival of
patients with different immune features either alone (B, C, F, and J) or in combination (D, H, and L). G and K, AUROC showing discriminative ability of the raw and
normalized CD8þ T-cell signature to diagnose patients who would benefit from atezolizumab immunotherapy. Total number of patients shown in parentheses. ns,
non-significant. Except for C, data are shown for the whole IMVigor210 cohort. AUC, area under the curve.
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clinical trial of atezolizumab (anti–PD-L1) in muscle-invasive urothe-
lial carcinoma (32). This cohort includes patients with distinct
immune phenotypes that can be distinguished on the basis of biopsy
histology. The “inflamed” phenotype is characterized by the abundant
infiltration of CD4þ and CD8þ T cells into the tumor parenchyma,
often accompanied by other immune cells, including immunosup-
pressive subtypes. The “excluded” phenotype is characterized by the
localization of multitudes of immune cells in the tumor stroma
surrounding nests of tumor cells. Finally, the “desert” phenotype is
characterized by a non-inflamed TME, with few or no T cells in either
the parenchyma or stroma regions of the tumor (46, 47). The IgG1/
IgA ratio alone had significant predictive value for response to
atezolizumab only for the excluded immune phenotype (Fig. 2A),
and significant prognostic value for overall survival of treated
patients for the whole IMVigor210 cohort (Fig. 2B). A significant
association of high immunoglobulin clonality with negative prog-
nosis was seen for the basal squamous subcohort of treated patients
(Fig. 2C; ref. 48). Low immunoglobulin clonality combined with a
high IgG1/IgA ratio associated with the best prognosis for the whole
IMVigor210 cohort (Fig. 2D), as was seen for the basal squamous
subset of TCGA patients (Fig. 1C).

The raw CD8þ T-cell signature was poorly predictive of response
(Fig. 2E–H), but normalization against pan-leukocyte genes improved
predictive power (Fig. 2I–K). The combination of the normalized
CD8þ T-cell signature with IgG1/IgA ratio yielded the best prognostic
value (Fig. 2L). Multivariate Cox proportional hazards regression
analysis again showed a prominent and independent contribution of
the IgG1/IgA ratio and normalized CD8 signature to the prognosis for
ImVigor210 patients (Supplementary Table S2).

Integrative predictive modeling of response to anti–PD-L1
immunotherapy

IHC measurement of PD-L1 expression in tumor samples is
currently used to identify patients who may have a higher chance
of responding to immunotherapy. The IMVigor210 trial measured
PD-L1 using antibodies to the PD-L1 C-terminus, and the scoring
system (ICA) was calculated as the percentage of PD-L1þ immune
cells in a given tumor area (23, 24). The cutoff for first-line therapy is

5% (IC2/3), but the predictive value of the PD-L1 scoring was relatively
low (Fig. 3; refs. 49–51).

To develop an improved gene expression–based predictor for
rational patient stratification, we used a random forest model, with
the performance evaluated via a nested cross-validation approach
(Fig. 4; ref. 52). This approach allowed us to overcome the overly
optimistic evaluation of the model performance introduced by hyper-
parameter optimization during themodel selection procedure. First, to
set a baseline for ourmodel’s performance to comparewith subsequent
iterations during the refinement process, the model was trained using
the raw CD8þ T-cell signature. The resulting AUROC, representing
the accuracy of predictive modeling of response, was similar to the one
built on the signature values (compare Fig. 2G with Fig. 4A), which
did not differ from random patient selection. The mean nested cross-
validation F1 score (reflects the balance between precision and recall,
whereby values closer to 1 are better), was 0.344 � 0.06. Next, we
trained the model using the normalized CD8þ T-cell signature. The
AUROC was greater than the AUROC for the raw signature, and
similar to the AUROC of the normalized signature used without the
model (compare Fig. 2K with Fig. 4D). The mean nested cross-
validation F1 score was 0.465 � 0.05.

Before selecting the final set of input features, we further refined
the normalized CD8þ T-cell signature by fitting the model for each
signature gene separately rather than in combination. On the basis of
feature importance for the resulting model, four genes were selected:
CXCL9, CXCL10, CD8A, GZMB. To appropriately estimate feature
importance, we also analyzed them for the presence of multicollinear-
ity. For each variable, we calculated a variance inflation factor (esti-
mates how much each predictor’s variance is inflated under a multi-
collinearity condition) of <5, which indicates that we had no multi-
collinear input parameters. We also excluded several parameters that
demonstrated no significant predictive value, including immunoglob-
ulin clonality, IL21R, and CD80.

Finally, we integrated the refined normalized CD8þT-cell signature
(CXCL9, CXCL10, CD8A, GZMB), the IgG1/IgA isotype ratio, and
features associated with a high IgG1/IgA ratio for TCGA-BLCA
patients that included the KLRC (killer cell lectin-like receptor)-NK
signature (KLRC2, KLRC3, KLRC4), IL21 and GNLY expression (all

Figure 3.

Prognostic value of IHC PD-L1 measurements among tumor-infiltrating immune cells in the IMVigor210 cohort. A, Percentage of responders and nonresponders
among IMvigor210 patients, divided on the basis of the abundance of PD-L1þ immune cells. Responders/nonresponders ratio: IC0 13/70, IC1 20/92, IC2þ 35/66.
B, ROC representing the discriminative ability of PD-L1þ immune cell counts in biopsies to identify patients who would benefit from atezolizumab
immunotherapy. AUC, area under the curve. C, Kaplan–Meier survival plots for patients with different counts of PD-L1þ immune cells. IC2þ versus IC1:
P ¼ 0.02; IC2þ versus IC0: P ¼ 0.0007; IC1 versus IC0: P ¼ 0.27, log-rank test. D, Kaplan–Meier survival plots for patients divided according to predicted
probability of response by PRIMUS. Patients were divided into tertiles (quantile1/2/3). Q3 versus Q2: P¼ 6� 10�5; Q3 versus Q1: P < 1� 10�5; Q2 versus Q1: P¼
0.008, log-rank test. This panel formally includes the data used for training the model. C and D, Total number of patients shown in parentheses.
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normalized against pan-leukocyte genes), as well as non-normalized
TGFB1 expression (45). The performance of the resulting PRIMUS
model (see Materials and Methods), which had a mean nested cross-
validation F1 score 0.495 � 0.05, was superior to that of the model
trained on the normalized CD8þ T-cell signature (Fig. 4D–I). PRI-
MUS allowed for superior prediction of response and yielded greater
prognostic value compared with PD-L1 IHC (Fig. 3B–D; Fig. 4G).
PRIMUS also outperformed prognoses based on the normalizedCD8þ

T-cell signature or the combination of high/low IgG1/IgA isotype ratio
and normalized signature (compare Fig. 2I–L with Fig. 3D). To
confirm the validity of our model, we compared the performance of
PRIMUS with another machine-learning algorithm, the SVM-based
model with a linear kernel. The results of the SMV model were

comparable with those obtained with PRIMUS, with a mean nested
cross-validation F1 score of 0.45 � 0.05. The difference between
training and test set quality metrics for PRIMUS and SVM-based
models were: AUROC: 0.034 and 0.057 and F1: 0.071 and 0.01,
respectively. This indicated that the PRIMUSmodel was not overfitted.

Feature importance and interaction analysis
We next applied PRIMUS to the IMVigor210 data to explore the

importance of, and interactions between, input features using
SHAP (36). First, we compared the contribution of our input variables
to randomly generated numbers.We expected features selected for the
final iteration of PRIMUS to have higher feature importance for
response compared with randomly generated numbers. Indeed, each

Figure 4.

Predictive value of the rawand normalizedCD8þT-cell signatures and the integrative random forestmodel on the IMVigor210 cohort.A–C,RawCD8þT-cell signature
based on expression of CD8A, CXCL10, CXCL9, GZMA, GZMB, IFNG, PRF1, TBX21. D–F, Normalized CD8þ T-cell signature. G–I, Model based on a refined normalized
CD8þT-cell signature combinedwith thenormalizedKLRC-NK signature, normalized IL21, andGNLYexpression. AUROC (A,D, andG) shows thediscriminative ability
of the signature to identify patients who would benefit from atezolizumab immunotherapy. Waterfall charts show distributions of responders and nonresponders
according to corresponding ranked feature values for holdout sets (B,E, andH) and thewhole patient cohort (C,F, and I). I formally includes data used for training the
model.
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PRIMUS variable showed higher feature importance versus randomly
generated numbers, with the normalizedCD8þT-cell signature having
themost significant associationwith response (Fig. 5A andB).We also
identified interactions between the variables. Specifically, a high IgG1/
IgA ratio was more predictive of response combined to high IL21
expression (Fig. 5C), supporting the importance of B-cell differenti-
ation and isotype switching to IgG1 for patient responses. An inter-
action between high expression of the CD8þ T-cell signature and
high IL21 expression was observed (Fig. 5D). We also observed that
IgG1/IgA ratio was efficient for response prediction only at the highest
values, in contrast to the CD8þ T-cell signatures, which showed
significant discriminative power across all values (Fig. 5A; Supple-
mentary Fig. S4).

An integrative predictor demonstrates high efficiency for the
“desert” phenotype

Among the three tumor immune phenotypes (inflamed, excluded,
and desert), treatment response is especially difficult to predict in the
“desert” subgroup (53). A CD8þ T-cell signature, TGFb response
signature, and tumor mutational burden all fail to predict response in
patients with this immune phenotype in the IMVigor210 study (32). In
contrast, PRIMUS predicted responses in immune “desert” patients
from the IMVigor210 trial (Fig. 6A). However, we recognize a caveat
with these data—although our model was generally protected against
overfitting, this analysis formally included data used for model

training. To further verify that the PRIMUS model could efficiently
predict response among “desert” tumor phenotypes, we trained
PRIMUS using the IMVigor210 cohort, with 41 patients with a
“desert” phenotype designated as a holdout set. PRIMUS success-
fully predicted response for these patients (Fig. 6B), thus, demon-
strating the utility of PRIMUS for predicting the response to anti–
PD-L1/PD1 immunotherapy.

Model validation in an independent dataset
Independent, publicly available datasets that provide transcrip-

tional profiles of patients treated with atezolizumab or other anti–
PD-L1 drugs along with relevant clinical data are difficult to
acquire. It can be assumed that factors influencing the survival of
patients after immunotherapy partially overlap with immune-
related parameters that determine the ability of the immune system
to control tumor development (54). From this perspective, the
assessment of PRIMUS’s ability to predict overall survival in
cohorts of patients with bladder cancer who did not receive
immunotherapy could alternatively be used to indirectly confirm
the model’s performance. On the basis of this logic, we verified the
model on the BLCA-TCGA dataset. We performed quantile nor-
malization of the combined dataset, retrained PRIMUS on the
normalized data from the IMVigor210 cohort, and then applied
the resulting model to the normalized TCGA data. A significant
association between the output score of the algorithm and patient

Figure 5.

PRIMUS feature importance and interactions. A and B, PRIMUS feature importance compared with randomly generated numbers estimated with SHAP. C, Impact of
the interaction between IgG1/IgA ratio and IL21 expression estimated with SHAP.D, Impact of the interaction between refined normalized CD8þ T-cell signature and
normalized IL21 expression estimated with SHAP.
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survival was seen for basal squamous subcohort and also for the full
TCGA cohort (Supplementary Fig. S5), which confirmed the gen-
eral relevance of the model for bladder cancer.

Discussion
Several efforts are underway to develop rational prognostic and

predictive signatures for patients with BLCA based on the analysis of
differentially expressed genes (55–58) or IHC-based classification
systems (59). However, most do not take into account the stochastic
aspects of tumor sampling. Any tumor sample from a given patient will
most likely not fully represent the entirety of the heterogeneous tumor
tissue (60, 61). From this point of view, the accuracy of an immune
gene signature calculation is intrinsically limited by the stochastic
nature of tissue sampling, where the observed variability in immune
gene expression results from the abundance of immune cells that
infiltrate the particular tissue fragment being sampled. There are few
studies of specific biological processes that might be involved in
survival and immunotherapy response for patients with bladder cancer
that could help in developing rational prediction algorithms (62).

There is supported rationale for using CD8þ T cell–specific gene
expression (63) and IHC (64) features to predict treatment response.
However, an effective predictor of response should take into account
diverse components of the immune system, and that such predictors
may differ for different types of cancer (65). Multiple studies have
demonstrated substantial involvement of CD4þ T cells (66, 67), NK
cells (68), and B cells (1–5) in cancer immunosurveillance and
immunotherapy responses (1, 2). In our approach, we combined
T-cell, NK-cell, and B-cell parameters of the TME and accounted for
the relative representation of various immune processes. Normaliza-
tion of the CD8þ T-cell signature against pan-leukocyte genes led to
improvement in predicting treatment responses and survival after
immunotherapy. In parallel, the IgG1/IgA ratio, a parameter that also
does not depend on the extent of tumor infiltration and reflects B-cell
behavior, independently and prominently improved the prognostic
utility of our approach.

By combining rationally preselected parameters, including the nor-
malized CD8þ T-cell signature, IgG1/IgA ratio, and a limited number
of genes involved in NK-cell responses and T-cell/B-cell interactions,
we were able to develop PRIMUS, a model that efficiently predicted
response to anti–PD-L1 immunotherapy in muscle-invasive urothelial
carcinoma, including tumors with the immune “desert” phenotype.
Pending further validation, we hope to pursue clinical implementation
of our approach and its derivatives in the near future.

Our results demonstrate the potential for predicting responses to
immunotherapy using transcriptomic data. By building on a deeper
understanding of the immune processes underlying an effective
antitumor response and using relevant statistical approaches, we can
make further progress in developing predictors of response to a given
therapy or combinations thereof.
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Figure 6.

Performance of PRIMUS for patients with an
immune “desert” phenotype, IMVigor210 cohort. A,
Boxplots show probability of response to anti–PD-L1
immunotherapy for different tumor histologic immune
phenotypes, whole IMVigor210 cohort. Median, bottom
quartile, top quartile, and interquartile range are shown.
���� , P < 0.0001. Plotted data include those used for
training the model. B, Predicted probability of response
in a desert holdout set of 41 patients divided by median.
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