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Abstract
Purpose Recently, a large number of patients with acute ischemic stroke benefited from the use of thrombectomy, aminimally
invasive intervention technique for mechanically removing thrombi from the cerebrovasculature. During thrombectomy, 2D
digital subtraction angiography (DSA) image sequences are acquired simultaneously from the posterior-anterior and the lateral
view to control whether thrombus removal was successful, and to possibly detect newly occluded areas caused by thrombus
fragments split from the main thrombus. However, such new occlusions, which would be treatable by thrombectomy, may be
overlooked during the intervention. To prevent this, we developed a deep learning-based approach to automatic classification
of DSA sequences into thrombus-free and non-thrombus-free sequences.
Methods We performed a retrospective study based on the single-center DSA data of thrombectomy patients. For classifying
theDSAsequences,we appliedLongShort-TermMemory orGatedRecurrentUnit networks and combined themwith different
Convolutional Neural Networks used as feature extractor. These network variants were trained on the DSA data by using
five-fold cross-validation. The classification performance was determined on a test data set with respect to the Matthews
correlation coefficient (MCC) and the area under the curve (AUC). Finally, we evaluated our models on patient cases, in
which overlooking thrombi during thrombectomy had happened.
Results Depending on the specificmodel configuration used,we obtained a performance of up to 0.77|0.94 for theMCC|AUC,
respectively. Additionally, overlooking thrombi could have been prevented in the reported patient cases, as our models would
have classified the corresponding DSA sequences correctly.
Conclusion Our deep learning-based approach to thrombus identification in DSA sequences yielded high accuracy on our
single-center test data set. External validation is now required to investigate the generalizability of our method. As demon-
strated, using this new approach may help reduce the incident risk of overlooking thrombi during thrombectomy in the
future.
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Introduction

Medical background

The research towards enhanced treatment of patients with
acute ischemic stroke has considerably improved the out-
come and long-term prognosis for a majority of patients
in the past few years [11]. While the drug-based throm-
bolytic therapy was the standard treatment for more than two
decades [7], the use of thrombectomy, a minimally-invasive
intervention technique for mechanically removing thrombi
from the cerebrovasculature, has led to promising treatment
results in several large clinical trials, recently [1,9,12,30].
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During thrombectomy, the digital subtraction angiogra-
phy (DSA) is used as gold standard to visualize the cerebral
blood perfusion and to control the recanalization after throm-
bus removal. The DSA imaging technique involves the
administration of a contrast agent while simultaneously cap-
turing a sequence of successive fluoroscopic images from
the posterior-anterior (PA) and the lateral (LAT) view, form-
ing a pair of the PA and LAT sequence, with the first shot
image, serving as the mask, being digitally subtracted from
all other images of the sequence. Usually, the thrombus itself
is not directly visible in the images of a DSA sequence, as
the contrast agent stops in front of the thrombus or flows
only partially past the thrombus causing identifiable perfu-
sion abnormalities (Fig. 1).

A serious complication during thrombectomy may be the
thrombus fragmentation [17]. Themain thrombus breaks into
individual fragments that cause new embolisms in distal or
not previously affected intracerebral-arterial areas. Based on
overview DSA sequences showing the whole cerebral per-
fusion territory, such new occlusions can usually be directly
identified and immediately be treated during the intervention.
However, even though these DSA sequences are thoroughly
examined by the neuroradiologists, the risk of intraproce-
durally overlooking a thrombus or an embolus is increased
due to several reasons: The perfusion abnormalities caused
by some thrombi or emboli are difficult to detect, and the
level of experience of the physicians may be relevant in this
context. Furthermore, the neuroradiologists may be focused
predominantly on the image area around the main thrombus.
New emboli in distal intracerebral-arterial areas may there-
fore be missed (seeOnline Resource 3 for illustrative patient
cases).

How often thrombi or emboli are overlooked during
thrombectomy can only be estimated, as no studies have
been published on this topic. However, with rates ranging
from 0% to 11% [3,10], studies report on new intracerebral-
arterial thrombi detected postinterventionally [3,10,22,24].
These could be caused by distally located, intracerebral-
arterial emboli that were considered as not treatable during
the intervention because the risk of injury to the thin-walled
distal arteries when accessing them by a catheter was too
high. However, some of them could have been overlooked
in the DSA sequences due to the reasons given above, as
well.

One possibility to reduce the rate of such critical inci-
dents could be provided by a software that classifies
DSA sequences into thrombus-free and non-thrombus-free
sequences, termed as thrombus-yes-no-classification in the
following. Such a software could alert neuroradiologists
just in time intraprocedurally if thrombi are identified.
These could then possibly be treated immediately during
thrombectomy in order to improve the patient’s recovery
prospects.

Related work

In contrast to a large number of publications on the auto-
matic detection of aneurysms in DSA images [8,16,23]
and on the thrombus detection in computed tomography
images [2,28], research results towards software-based anal-
ysis of DSA sequences of patients with acute ischemic stroke
have been published only sparsely and mostly in recent
years [20,21,25,26].

In their feasibility study published in 2019, Nielsen et al.
performed a Thrombolysis In Cerebral Infarction (TICI) [14]
classification of DSA sequences by using a slightly modified
ResNet18-based [13]ConvolutionalNeuralNetwork (CNN),
but they achieved only a poor classification performance [20].
In their follow-up publication based on a different DSA
data set, they combined an EfficientNet-B0 [27] as feature
extractor with a Gated Recurrent Unit (GRU) network [6]
and obtained a significantly more accurate (0.95 ± 0.03)
TICI classification compared to a purely EfficientNet-based
approach (0.82 ± 0.02) [21]. In contrast, Schuldhaus et al.
worked on automatically dividing DSA sequences into per-
fusion related different phases [25]. Furthermore, Su et al.
developed an automatic, extendedTICI classification scheme
and reported an average area under the curve (AUC) value of
0.81 [26].However, to the best of our knowledge, no scientific
publication has reported yet on performing a thrombus-yes-
no-classification.

Contribution

Wepresent a new deep learning-based approach to thrombus-
yes-no-classification of DSA image sequences. For this
purpose, we addressed the challenge of automatically iden-
tifying spatio-temporal perfusion abnormalities caused by
thrombi inDSA image sequences of variable sequence length
and conducted a retrospective study based on the single-
centerDSAdata of thrombectomypatients. The study-related
methods, results and discussions are described in the next
sections.

Methods

In the subsequent sections, the details regarding the medical
imaging data and their annotation (“Imaging data and data
annotation” section), the network architecture (“Network
architecture” section), the network training routine (“Train-
ing routine” section) as well as the performed model eval-
uations on the test data (“Model evaluation” section) are
given.
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Fig. 1 Images of DSA
sequences illustrating the
perfusion abnormalities caused
by thrombi at different locations
(proximal thrombus ending
marked with a red +)

Thrombus at distal end of
internal caro�d artery

Thrombus in middle cerebral artery
(M1)

Thrombus in middle cerebral artery
(M2)

+ + +

Imaging data and data annotation

We retrospectively collected single-centerDSA imaging data
of 260 stroke patients (nfemale = 133, nmale = 127, mean
age: 74,5 years) who underwent thrombectomy in the stroke
unit of the district hospital Guenzburg (BV, Germany) in the
time period from January 2018 to July 2019. This resulted
in a total of 1197 single DSA sequences (image resolution:
1024× 1024 pixel, time resolution: 3 images/second, image
sequence length: 13–61,mean: 32). TheDSAsequenceswere
acquired by the Artis zee cone beam CT scanner (Siemens
Healthcare GmbH, Erlangen, BV, Germany).

To get our final data set, we excluded DSA sequences,
when not both the PA and the LAT sequence were available
(n = 8). Furthermore, DSA sequences visualizing only the
perfusion of either the vertebral arteries (n = 103) or the
external carotid artery (n = 18) were excluded, as well. The
remaining 1068 DSA sequences (534 pairs PA + LAT) were
annotated by two experienced neuroradiologists. For each
thrombus, they were asked to mark the proximal thrombus
ending. DSA sequence pairs with no thrombus detected were
classified as thrombus-free (n = 151 pairs). Having detected
a thrombus in either the PA or LAT sequence but not in the
other (n = 16), both the PA and the LAT DSA sequence
were classified as non-thrombus-free. DSA sequences dif-
fering in their classification based on their annotations were
re-annotated jointly by both neuroradiologists to make an
ultimate decision.

Finally, we evaluated our trained models on two addi-
tional patient cases, in which overlooking thrombi during
thrombectomy had happened (Online Resource 3).

Network architecture

DSA sequences are a discrete image series D ∈ {t1WxH , ...,

tWxH
N } of temporally successive 2D images tWxH

i of vary-
ing image series length N , equivalent to a video of variable
video length. The goal of the thrombus-yes-no-classification
is to find the correct mapping between a DSA sequence D
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Fig. 2 Processing a DSA sequence consisting ofN single 2D images to
be classified by the network. A CNN such as a ResNet or EfficientNet
was used as feature extractor. The extracted features served as input to
the LSTM or GRU network, which outputted the classification result

and a label ŷ ∈ [0, 1] determining whether the sequence is
thrombus-free (ŷ = 0) or non-thrombus-free (ŷ = 1).

As identifying thrombi in DSA sequences is based on
detecting perfusion abnormalities, the spatio-temporal con-
trast agent perfusion has to be analyzed to perform the
classification. For this purpose, we combined a CNN as
feature extractor with either a Long Short-Term Memory
(LSTM) [15] network or a GRU network, that are both able
to establish spatio-temporal relations between the individual
images of the video sequence (Fig. 2).

To process the DSA sequence, we combined the first three
single-channel grayscale images of the DSA sequence to a
three-channel image, passed it through the network, prepared
the following three grayscale images as next input and iter-
ated in this way over the entire sequence. At the end of
the sequence, the last image was repeatedly appended in
those cases, where the sequence length was not divisible by
three. Based on this approach, we were able to use pretrained
weights for initializing the CNN, but the weights were not
freezed during training. Before using the extracted features of
the CNN as input for the LSTM/GRU network, a normaliza-
tion layer and a LeakyReLu activation function were applied
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Table 1 CNN variants used as
backbones

Network name Source of model/weights Pretrained on Combined with

ResNet18 Torchvision ImageNet GRU

EfficientNet-B0|B1|B2|B3 Torchvision ImageNet GRU

EfficientNet-B0|B1 Torchvision ImageNet LSTM

Tf_EfficientNetV2_S|M GitHub [29] 21k ImageNet GRU

Rw_EfficientNetV2_S GitHub [29] 21k ImageNet GRU

RegNet_y_16gf Torchvision ImageNet GRU

In case of the EfficientNetV2, the original tensorflow implementation (Tf_EfficientNetV2) and a slightly
modified version of it (Rw_EfficientNetV2) were used, both provided by R. Wightman on his GitHub repos-
itory [29]

on the features. The bidirectional configured LSTM/GRU
network consisted of 3 layers with 512 hidden units per layer
and a dropout rate of 0.5 during training.

Table 1 lists the different types of CNN variants and their
combination with the LSTM/GRU network used in our retro-
spective study. Most common, we used the GRU network, as
it required less memory and trained faster compared with the
LSTM network. All CNNs were modified by removing the
final classification layer and adjusting the preceding average
pooling layer in its pooling size such that the number of fea-
tures extracted by the CNN was approximately the same for
all different CNN types.

Training routine

The first 20% of the chronologically ordered data set (“Imag-
ing data and data annotation” section) was reserved as test
data. The rest was used to train and validate the models
by using five-fold cross-validation with a non-randomized
train|validation split of 80%|20% for each fold. PyTorch
served as deep learning library. Before feeding the DSA
sequences into the network, the images were normalized
and uniformly resized to 512 × 512 pixel to prevent out-of-
memory problems on the two 24GBRAMGPUs used during
training (RTX3090 andTitanRTX, both of theNVIDIACor-
poration, Santa Clara, CA, USA). Data augmentation was
dynamically performed during training based on the Albu-
mentations library [4]. The applied augmentations included
vertical flipping, shift-scale-rotate transformations, changing
the contrast of the images, blurring the images, adding noise
and down-scaling the images to the half resolution.

As the PA and the LAT DSA sequence are characterized
by specific perfusion structures, we trained separate mod-
els for both views, but the training routine was the same
for all network variants listed in Table 1. Each model was
trained end-to-end for 130 epochs by using mixed precision
training [19] and binary cross entropy in its default config-
uration as loss function. AdamW served as optimizer [18]
starting with a learning rate of 10−5, a weight decay of 10−2

and standard β1, β2. The batch size was 1, and the learning

rate was reduced on plateau by a factor of 10−1. Unlike the
accuracy or F1-score, the Matthews correlation coefficient
(MCC) [5] does not tend to overestimate the classification
performance especially for an unbalanced binary class dis-
tribution, as it was the case for our DSA data set (72%
positives | 28% negatives). Hence, we chose it as decision
criterion during training and saved the model checkpoint,
which achieved the highest MCC on the validation data. As
we used five-fold cross-validation, we obtained five mod-
els trained on the PA sequences and five models trained on
the LAT sequences (Fig. 3) for each network type listed in
Table 1.

Model evaluation

We evaluated each network variant (Table 1) regarding two
aspects:

1. The single classification performance, i.e. classifying
either the PA or the LAT DSA sequences separately, as
illustrated in Fig. 3.

2. The paired classification performance, i.e. classifying
DSA sequence pairs (PA + LAT) as a unit.

Furthermore,we systematically analyzedwhich combination
of four different network variants, two for each view, resulted
in the best achievable performance. Since accuracy, precision
and recall used as classification metrics tend to overestimate
the classification performance especially for an unbalanced
binary class distribution, as it was the case for our DSA data
set, we quantified the performance in terms of classification
MCC (range: [-1,1]) and AUC based on the test data set.
The mathematical definitions of the performance metrics are
provided inOnline Resource 1. As the test data set contained
seven pairs of DSA sequences, which were subject to high
annotation uncertainty due to inconspicuous, distally located,
intracerebral-arterial perfusion abnormalities not treatable by
thrombectomy (see example inOnline Resource 2), we report
the performance results on two variants: For test data set 1,
those seven pairs were excluded, whereas they were included
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Fig. 3 Ensembling methods
used to determine the single and
the paired classification
performance. In both cases, the
predictions were equally
weighted when calculating the
mean
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Table 2 Single and paired
classification performance on
test data set 1

Network PA LAT PA + LAT

MCC AUC MCC AUC MCC AUC

ResNet18 + GRU 0.58 0.90 0.54 0.88 0.58 0.92

EfficientNet-B0 + GRU 0.47 0.88 0.60 0.86 0.63 0.91

EfficientNet-B0 + LSTM 0.64 0.91 0.68 0.89 0.73 0.94

EfficientNet-B1 + GRU 0.37 0.80 0.66 0.87 0.64 0.87

EfficientNet-B1 + LSTM 0.50 0.82 0.66 0.88 0.60 0.87

EfficientNet-B2 + GRU 0.64 0.89 0.66 0.93 0.66 0.94

EfficientNet-B3 + GRU 0.38 0.86 0.61 0.90 0.64 0.91

Tf_EfficientNetV2_S + GRU 0.65 0.91 0.66 0.91 0.66 0.92

Tf_EfficientNetV2_M + GRU 0.50 0.87 0.58 0.89 0.63 0.91

Rw_EfficientNetV2_S + GRU 0.37 0.83 0.48 0.89 0.55 0.89

RegNet_y_16gf + GRU 0.59 0.89 0.44 0.84 0.49 0.90

Statistics of test data set 1: n = 102; number positives (non-thrombus-free) = 72; number negatives (thrombus-
free) = 30

for test data set 2. In this way, we show how annotations
that are subject to high uncertainty affect the classification
performance.

Results

The results of the single and paired classification perfor-
mance of all network variants are listed in Table 2. The max-
imumMCC|AUC were found to be 0.65|0.91, 0.68|0.93 and
0.73|0.94 for the classification of the single PA sequences, the
single LAT sequences and the pair of PA + LAT sequences,
respectively.

The best classification performance with MCC|AUC val-
ues of up to 0.77|0.94 and 0.69|0.91 for test data set 1 and 2,
respectively, was achieved based on a paired classification
by equally ensembling four different network variants, two
for each view. In this case, classifying the PA sequences
was based on the combination of the ResNet18 + GRU

network and the Tf_EfficientNetV2_S + GRU network,
whereas classifying the LAT sequences was performed by
the EfficientNet-B0 + GRU network and the EfficientNet-
B0 + LSTM network. The corresponding confusion matrices
of this model ensemble with respect to the performance on
test data set 1 and 2 are given in Fig. 4. It should be noted
that this model configuration would have correctly classified
the two reported patient cases (Online Resource 3).

Figure 5 shows the receiver operating characteristics
(ROC) curves of selected network variants. The maximum
AUC value of 0.94 was reached only when performing a
paired classification. All further performance results on test
data set 2 are provided in Online Resource 2.

Discussion

Acute ischemic stroke highly affects the patient’s health,
but the use of thrombectomy has led to promising treat-

123



1638 International Journal of Computer Assisted Radiology and Surgery (2022) 17:1633–1641

Fig. 4 Confusion matrices
corresponding to the best
achievable paired classification
performance on test data set 1
and 2. The corresponding MCC
and AUC values are given in the
text. As described above, these
results were achieved by
ensembling four networks, two
for each view
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Fig. 5 a ROC curves of the
three network variants with the
highest MCC in case of the
paired classification
performance. b ROC curve of
the model achieving the best
paired classification
performance and consisting of
four ensembled network
variants. For each variant, the
corresponding ROC curve is
given, as well

ment results, recently. During thrombectomy, DSA image
sequences are acquired to possibly detect newly occluded
areas caused by thrombus fragments split from the main
thrombus. However, such new occlusions may be overlooked
during the intervention. To prevent this, we developed a new
deep learning-based approach to automatic thrombus-yes-
no-classification of DSA sequences and found out that we
could classify DSA sequences with an MCC|AUC of up to
0.77|0.94, respectively. Notably, these results were obtained
on a data set with a considerably unbalanced class distri-
bution and the ability of the networks to differentiate well
between the two classes is assumed to be very good.

The observedminor drop of the classification performance
in case of test data set 2 (Fig. 4)was causedby the additionally
included seven pairs of DSA sequences that were subject to
high annotation uncertainty. They were mostly misclassified
as thrombus-free (false negative), even though they contained
small, inconspicuous, distally located, intracerebral-arterial
perfusion abnormalities, which, however, would not be treat-
able by thrombectomy or thrombolysis.

Nielsen et al. [20] reported an accuracy of 0.89 for classi-
fying DSA sequences into the TICI 0 and TICI 3 class. To a
limited extend, thismay be regarded as equivalent to our clas-
sification performance, but we would like to point out that,
contrarily to Nielsen et al. [21] we did not exclusively use
DSA sequences with thrombi in the middle cerebral artery.
Instead, our DSA sequences included thrombi at various

locations inside the whole perfusion territory of the inter-
nal carotid artery as well as sequences with imaging artifacts.
This diversity of affected brain regions reflects the commonly
observed variety of ischemic strokes treated in stroke units,
even though classifying these correctly should be regarded a
challenging task.

As our retrospective study was based on single-center
DSA imaging data, the trained neural networks could be less
generalizable with respect to DSA data of other stroke units.
Nevertheless, it is worth to note that the DSA data of the case
reports (Online Resource 3) had a different image and time
resolution comparedwith the trainingDSAdata set, but these
case report DSA sequences were classified correctly by the
neural networks, too.

To further help theneuroradiologists in localizing thrombi,
that are hard to detect, a next step to be investigated could
be the thrombus detection. However, even though the anno-
tations of our DSA data set already contained the thrombus
positions, the task of automatically detecting thrombi in the
DSA images should not be underestimated. In particular, this
is related to the high interobserver variability of the throm-
bus position annotation, which was 23 ± 28 image pixels
(i.e., 2% ± 3% of image width) for our DSA data set. Due to
this annotation variability, it could be difficult to objectively
assess the ability of a neural network to detect thrombi by
using commonly evaluationmetrics such as themeanaverage
precision, as for this, the network predictions must be clearly
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categorized into right and false. Prospective studies should
therefore determine how to best deal with high annotation
variability and which evaluation metrics are most suitable
for the thrombus detection problem.

Fromamedical perspective, the reached classification per-
formance may seem acceptable, but only a prospective study
can analyze how the trained neural networks will perform in
clinical practice. To improve the classification performance
and the generalizability, a substantially larger amount of
multi-center training data would be required. Additionally,
using transformer-based neural networks could be an option
for improving classification performance, aswell. As demon-
strated by our final evaluation test on two patient cases, our
deep learning-based approach could have prevented over-
looking thrombi during thrombectomy. Thus, the goal of
minimizing the risk of this incident may be fulfilled.

Conclusion

Our deep learning-based approach to thrombus identification
inDSA sequences yielded high accuracy on our single-center
test data set. External validation is now required to investi-
gate the generalizability of our method. As demonstrated,
using this new approach may help reduce the incident risk of
overlooking thrombi during thrombectomy in the future.
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