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Abstract

Introduction

Early diagnosis of sepsis and bacterial infection is imperative as treatment relies on early

antibiotic administration. There is a need to develop new biomarkers to detect patients with

sepsis and bacterial infection as early as possible, thereby enabling prompt antibiotic treat-

ment and improving the survival rate.

Methods

Fifty-one adult patients with suspected bacterial sepsis on admission to the Emergency

Department (ED) of a teaching hospital were included into the study. All relevant cultures

and serology tests were performed. Serum levels for Group II Secretory Phospholipase A2

(sPLA2-IIA) and CD64 were subsequently analyzed.

Results and Discussion

Sepsis was confirmed in 42 patients from a total of 51 recruited subjects. Twenty-one

patients had culture-confirmed bacterial infections. Both biomarkers were shown to be good

in distinguishing sepsis from non-sepsis groups. CD64 and sPLA2-IIA also demonstrated a

strong correlation with early sepsis diagnosis in adults. The area under the curve (AUC) of

both Receiver Operating Characteristic curves showed that sPLA2-IIA was better than

CD64 (AUC = 0.93, 95% confidence interval (CI) = 0.83–0.97 and AUC = 0.88, 95% CI =

0.82–0.99, respectively). The optimum cutoff value was 2.13μg/l for sPLA2-IIA (sensitivity =

91%, specificity = 78%) and 45 antigen bound cell (abc) for CD64 (sensitivity = 81%, speci-

ficity = 89%). In diagnosing bacterial infections, sPLA2-IIA showed superiority over CD64
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(AUC = 0.97, 95% CI = 0.85–0.96, and AUC = 0.95, 95% CI = 0.93–1.00, respectively). The

optimum cutoff value for bacterial infection was 5.63μg/l for sPLA2-IIA (sensitivity = 94%,

specificity = 94%) and 46abc for CD64 (sensitivity = 94%, specificity = 83%).

Conclusions

sPLA2-IIA showed superior performance in sepsis and bacterial infection diagnosis com-

pared to CD64. sPLA2-IIA appears to be an excellent biomarker for sepsis screening and

for diagnosing bacterial infections, whereas CD64 could be used for screening bacterial

infections. Both biomarkers either alone or in combination with other markers may assist in

decision making for early antimicrobial administration. We recommend incorporating

sPLA2-IIA and CD64 into the diagnostic algorithm of sepsis in ED.

Introduction
Sepsis is a condition in which patients develop systemic inflammatory response syndrome
(SIRS) associated with infection [1]. Sepsis results in 14000 estimated cases annually in the
Emergency Department (ED) of Universiti Kebangsaan Malaysia Medical Centre (UKMMC),
a tertiary teaching hospital. Our hospital’s prevalence of sepsis is 25–35% based on our yearly
census from the year 2013 to 2014. The annual mortality of sepsis is 13–16%. The diagnosis of
sepsis is a challenge, as there is no single reliable test for its early confirmation or exclusion.
The ability to perform risk stratification early in the patient’s course of illness may guide physi-
cians to a more effective management, improve patient outcome and reduce the mortality and
morbidity of sepsis [2].

Blood culture has been the gold standard to detect bacterial infections. However, it has a
low sensitivity and using it to diagnose bacteraemia has its own set of challenges [3,4]. Further-
more, this procedure requires 48 hours before results are available to indicate bacteraemia.
Other biomarkers that may assist in the diagnosis of sepsis includes serum procalcitonin (PCT)
and C-reactive protein (CRP). PCT has been proposed to be a more specific [5] and better
prognostic [6] marker than CRP. However, both biomarkers have been shown to possess low
specificity and sensitivity [7,8], making the diagnosis of sepsis challenging. Therefore, a contin-
uous search for other candidate biomarkers for sepsis is needed. A recent systematic review
analyzed 178 different biomarkers from 3370 studies involved in sepsis. Out of the 178 bio-
markers, five of these reported sensitivity and specificity of more than 90%; they are IL-12,
Interferon-induced protein 10(IP-10), Group II phospholipase A2 (sPLA2-IIA), neutrophil
CD11b, and CD64 [9]. Among these biomarkers, CD64 and sPLA2-IIA were suggested to be
the best to indicate bacteraemia in sepsis.

CD64 (FcgRI), is one of the Fc receptors for IgG constitutively present on macrophages,
monocytes, eosinophils, and neutrophils. During an infection, studies have shown that there is
an increased in the CD64 expression in the presence of microbial wall components, complement
split products, and some pro-inflammatory cytokines, such as granulocyte colony-stimulating
factor (G-CSF) and interferon gamma (IFN-Ƴ) [10–12]. On the other hand, the expression is sig-
nificantly decreased when these stimulation factors were removed, resulting in the decline of
CD64 activity within 48 hours and a return to normal baseline levels after 7 days [13].

Apart from tissue injury, cell damage and irritant exposure, infection can also trigger the
inflammation pathway. One of the immediate responses to inflammation is the hydrolysis of the
phospholipid group on the membrane lipids by the enzyme phospholipase A2 (PLA2), which
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belongs to a family of acute phase proteins [14]. Phospholipids such as glycerophospholipid on a
cell membrane consists of 3-carbon chains. Hydrolytic activity of PLA2 (Fig 1) results in the
removal of the fatty acid on carbon 2, which is frequently arachidonic acid [15,16]; leaving
behind lysophosphatidylcholine (LPC) [17,18]. Lysis of LPC in turn will start a cascade of reac-
tion which ultimately leads to not only the inflammation process, but also direct bactericidal
activity in sepsis [17,18]. The metabolism of arachidonic acid leads to the generation of arachi-
donic acid metabolites, catalyzed by various enzymes. All of these metabolites are pro-inflamma-
tory mediators; they include 5-hydroperoxyeicosatetraenoic acid (HPETE, generated by activity
of lipoxygenase) [19,20] and prostaglandin G2 [21,22] (catalyzed by cyclooxygenase). HPETE
can be converted further into leukotrienes [23] and hydroxyicosatetraenoic acid (HETE) [24],
while prostaglandin G2 can be catalyzed further to generate thromboxanes (thromboxane A2
and B2) [25], prostacyclin (PGI2) [26] and various forms of prostaglandins (prostaglandins D2,
E2 and F2α) [27] which will further amplify the inflammation signals [28–31].

Fig 1. Schematic diagram outlining the fate of glycerophospholipid following hydrolysis by sPLA2-IIA. Hydrolysis by sPLA2-IIA results in production
of LPC and AA, which leads to generation of various pro-inflammatory metabolites. Abbrev: LPC, lysophosphotidylcholine; LysoPLD, lysophospholipase D;
LPA, lysophosphatidic acid; COX, cyclooxygenase; PGG2, prostaglandin G2; PGHS, prostaglandin H synthase; PGH2, Prostaglandin H2; PGs,
prostaglandins; PGE2, prostaglandin E2, PGF2α, prostaglandin F2α; PGD2, prostaglandin D2; PGI2, prostaglandin I2 also known as prostacyclin; HPETE,
5-hydroperoxyeicosatetraenoic acid; HETE, Hydroxyicosatetraenoic acid; TXAs, thromboxanes.

doi:10.1371/journal.pone.0152065.g001

CD64 and sPLA2-IIA in Distinguishing Sepsis and Bacterial Infections

PLOS ONE | DOI:10.1371/journal.pone.0152065 March 22, 2016 3 / 14



PLA2 has a number of subfamilies of enzymes, one of which includes secreted PLA2
(sPLA2). sPLA2 exist as ten active isoforms, differing in the source of organisms and sites of
activity [32–36]. One isoform; sPLA2-IIA, has been identified as exhibiting sensitivity and
specificity of more than 90% towards sepsis [9]. Coined as a bactericidal enzyme, the catalytic
activity of sPLA2-IIA is thought to be its prominent role via hydrolysis of bacterial membranes
[37–39]. Interestingly, even when the active site has been mutated, sPLA2-IIA still exhibited
anti-bacterial property [40].

Similar with CD64, sPLA2-IIA expression in humans is also increased during infection
[38]. The inflammatory response results in numerous physiological responses such as vascular
dilatation [41], inhibition of platelet aggregation [15] and chemotaxis [42, 43] (Fig 1). Earlier
studies have suggested that the levels of sPLA2-IIA correlated well with the severity of septic
shock and its outcome. It also reflected the severity of inflammation in infections and non-
infectious inflammatory conditions [44–46]. The levels of sPLA2-IIA appeared useful in mea-
suring the degree of inflammation in various bacteraemic and non-bacteraemic infections [47–
50] and it might also help in distinguishing between bacterial and viral infections [47]. The lev-
els of sPLA2-IIA have been found to be higher in patients with septic shock than in those with-
out [51]. High or persistently elevated levels of sPLA2-IIA have also been shown to be
associated with adverse outcomes in sepsis [48,49]. Intriguingly, a study investigating the effect
of anti-sPLA2-IIA compared to placebo in reducing 28-day mortality in severely septic patients
did not show overall survival benefit [52].

The aim of the present study was to evaluate the performance of CD64 and sPLA2-IIA as
biomarkers in the diagnosis of sepsis, and whether these markers can be used to differentiate
between bacterial and non-bacterial infection.

Methods

Patient Recruitment
The study was conducted over a period of 10 months (March to December 2014), after obtain-
ing approval from Universiti Kebangsaan Malaysia Research Ethics Committee (Ethic code:
FF-2014-150). Written consent was obtained from all subjects. No minor was recruited into
the study; all subjects were 18 years old and above. This single-centered prospective observa-
tional study consisted of consented patients who presented to the ED of UKMMC, which is a
1000-bed urban academic hospital with 72000 ED visits annually. All patients with suspected
sepsis and also those who had a minimum of two SIRS criteria, were consecutively included
into this study [1]. We also included patients with systolic blood pressure (SBP) less than
90mmHg after a minimum of 30ml/kg crystalloid fluid bolus. Exclusion criteria included
patients who have been partially treated with antibiotics for more than 3 days, patients with
ongoing oncology diseases, patients who passed away during the period of recruitment, and
patients who were transferred to other hospitals. Blood samples were collected for CD64 &
sPLA2-IIA measurements. Relevant cultures and serology tests for all patients were carried out.
Bacterial infection was defined as clinical bacterial infection or positive bacterial culture, while
non- bacterial infection was defined as clinical infection with negative bacterial culture or posi-
tive serology test for non-bacterial pathogen. Sepsis was defined as SIRS with clinical suspicion
of infection and positive culture or serology test result.

Determination of CD64 expression
Measurement of neutrophil CD64 expression was done via staining of 50μl whole blood with a
combination of both anti-CD64-PE and anti-CD45-PerCP (Becton-Dickinson, San Jose, CA).
The sample was then left for 60 minutes in the dark and an additional 60 minute incubation to
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reduce non-specific background staining. All samples were analyzed on a FACScan flow
cytometer (Becton-Dickinson), where a threshold of FL-3 was used to identify leucocytes. The
results were expressed as antibodies bound per cell (abc).

Determination of sPLA2-IIA levels
sPLA2-IIA activity in serum was detected by using the sPLA2-IIA (human type IIA) Enzyme
Immunometric Assay Kit (Cayman Chemical, USA) according to manufacturer’s instructions.
sPLA2-IIA levels in serum samples were tested in triplicates and determined against the stan-
dard curve of each EIA assay. All wells were read at a wavelength between 405 and 420nm.

Statistical analyses
Statistical analyses were executed using SPSS softwareTM. Median was determined from the
interquartile range. Mann-Whitney U test was used to test for differences in analyzed parame-
ters between groups. An α value of less than 0.05 for a two-tailed test was considered signifi-
cant. We plotted receiver operating characteristics (ROC) curves and evaluated the area under
the curve (AUC) of each selected variable to measure the power of each assay in discriminating
between sepsis and non-sepsis groups, as well as bacterial and non-bacterial infection. The cut-
off points of each variable were then determined. Accuracy for the parameters was determined
using Cross table for the Accuracy and Kappa agreement test.

Results
FromMarch to Dec 2014, we screened a total of 1320 patients who presented to the ED with
SIRS. With the study’s strict recruitment criteria, only a total of 69 patients were eligible for the
study, of which 51 patients were selected for analysis after exclusion. A total of 18 patients were
excluded for various reasons (eight of them have been partially treated with antibiotic; four of
them had malignancy; four of them had concurrent viral and bacterial co-infection; one patient
had end-stage renal failure and one had ongoing myocardiac infarction). Among these
recruited patients, 42 of them presented with sepsis while 21 of them had culture-confirmed
bacterial infections. Demographic data of the recruited patients is shown in Table 1. Bacterial
aetiology as detected by cultivation is shown in Table 2.

CD64 levels of both sepsis and bacterial infection groups had non-parametric distributions.
Median for CD64 levels (93 ± 122abc) were significantly higher in the sepsis group compared
to the non-sepsis group (p = 0.001, Mann-Whitney U test) (Fig 2). With the cutoff point of 45
abc, CD64 was able to distinguish between sepsis from non-sepsis group. It had a specificity of
89% and sensitivity of 81%. The positive predictive value was 97% and the negative predictive
value was 50%, making it a very good biomarker for sepsis (ROC, AUC = 0.88, 95% confidence
interval (CI) = 0.82–0.99, Accuracy = 0.82, Kappa = 0.54) (Table 3). CD64 levels
(median = 167 ± 121abc) for both bacterial and non-bacterial infection groups showed statisti-
cal significance (p = 0.001, Mann-Whitney U test) (Fig 3). We suggest that at the cutoff point
of 46abc, CD64 was able to diagnose bacterial infection. Sensitivity and specificity were 94%
and 83%, respectively; while the positive and negative predictive values were 91% and 88%,
respectively. CD64 was found to have excellent accuracy in diagnosing bacterial infection
(ROC, AUC = 0.95, 95%CI = 0.93–1.00, Accuracy = 0.90, Kappa = 0.78).

Interestingly, sPLA2-IIA levels also demonstrated a strong correlation with early sepsis
diagnosis in adults (median 14.5 ± 12.8μg/l, p = 0.001, Mann-Whitney U test) (Fig 4). A cut off
level of 2.13μg/l was able to distinguish the sepsis group from non-sepsis group (sensitiv-
ity = 91%; specificity = 78%; positive predictive value = 95%; negative predictive value = 64%).
sPLA2-IIA was able to accurately diagnose sepsis in adults (ROC, AUC = 0.93, 95%CI = 0.83–
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Table 2. Bacterial aetiology as detected via Cultivation.

Cultured Organisms Frequency

Escherichia coli 5

Escherichia coli ESBLa 2

Staphylococcus pyogenes 2

Aeromonas hydrophila 1

Bacteroides fragilis 1

Enterobacter cloacae 1

Enterobacter species 1

Klebsiella pneumoniae 1

Klebsiella species ESBL 1

Methicillin-Resistant Staphylococcus aureus 1

Proteus species 1

Pseudomonas aeruginosa 1

Staphylococcus aureus 1

Streptococcus Group B 1

Streptococcus viridans 1

a Extended-spectrum beta-lactamases

doi:10.1371/journal.pone.0152065.t002

Table 1. Demographic data of recruited patients.

Total patients (n = 51)

Age (years; mean ± SD) 53.7 ± 20.8

Gender

Male 26(54%)

Female 25(46%)

Clinical Characteristic

Systolic Blood pressure 130 ± 34

Diastolic Blood Pressure 75 ± 21

Heart Rate (per minute) 110 ± 22

Respiratory Rate (per minute) 26 ± 9

Temperature (° Celsius) 38.3 ± 1.0

Total White Cell Count (x 109) 12.0 ± 8.0

Sepsis 42 (82.4%)

Non-sepsis 9 (17.6%)

Source of infection

Respiratory 12 (23.5%)

Musculoskeletal 2 (3.9%)

Urinary 5 (9.8%)

Dengue infection 6 (11.8%)

Gastrointestinal 8 (15.7%)

Blood/Catheter related 3 (5.9%)

Central Nervous 1 (2.0%)

Bacterial Blood Culture, Positive 13(25.5%)

Bacterial Culture, Positive 8 (15.7%)

Dengue Serology, Positive 6 (11.8%)

doi:10.1371/journal.pone.0152065.t001
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0.97, Accuracy = 0.88, Kappa = 0.63) (Table 3). From this interim analysis, we discovered that
sPLA2-IIA showed a positive statistical correlation in diagnosing bacterial infection
(median = 20.67 ± 11.79 μg/l, p = 0.001, Mann-Whitney U test) (Fig 5). The cutoff level of
sPLA2-IIA was higher in diagnosing bacterial infection compared to sepsis. This makes
sPLA2-IIA a highly accurate biomarker for both screening and diagnosing bacterial infection
(ROC, AUC = 0.97, 95% CI = 0.85–0.96, Accuracy = 0.94, Kappa = 0.87). Sensitivity and speci-
ficity were 94% and 94%, respectively; while the positive predictive value and negative predic-
tive values were 97% and 90%, respectively. Figs 6 and 7 show ROC curves for both CD64 and
sPLA2-IIA levels according to sepsis and bacterial infection diagnoses.

Discussion
In this study, CD64 showed high specificity and positive predictive value in distinguishing sep-
sis from non-sepsis groups, making it an accurate biomarker for this purpose. A recent meta-

Fig 2. Box-plot for CD64 levels in sepsis and non-sepsis diagnosis. abc = antigen bound cell. Boxes
show the 25th-75th centiles, while whiskers indicate the 10th and 90th centiles. Horizontal lines within the
boxes indicate the median. Outliers are shown as circles.

doi:10.1371/journal.pone.0152065.g002

Table 3. CD64 and sPLA2-IIA expression for recruited patients. sPLA2-IIA = Group IIA secretory phospholipase A2; abc = antigen bound cell;
AUC = area under the curve; Sn = Sensitivity; Sp = Specificity; PPV = positive predictive value; NPV = negative predictive value; CI = Confidence Interval.

8Biomarkers AUC
(CI = 95%)

Cut-off
point

Sn (%)
(CI = 95%)

Sp (%)
(CI = 95%)

PPV (%)
(CI = 95%)

NPV (%)
(CI = 95%)

Accuracy Kappa,
κ

Sepsis versus non-sepsis patients

CD64 (abc) 0.88 (0.82–
0.99)

45 81 (66–91) 89 (52–100) 97 (85–100) 50 (25–75) 82 0.54

sPLA2-IIA
(μg/l)

0.93 (0.83–
0.97)

2.13 91 (77–97) 78 (40–98) 95 (83–99) 64 (31–89) 88 0.63

Bacterial infection versus non-bacterial infection patients

CD64 (abc) 0.95 (0.93–
1.00)

46 94 (80–99) 83 (59–96) 91 (76–98) 88 (64–99) 90 0.78

sPLA2-IIA
(μg/l)

0.97 (0.85–
0.96)

5.63 94 (79–99) 94 (72–100) 97 (84–100) 90 (67–99) 94 0.87

doi:10.1371/journal.pone.0152065.t003
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analysis was done in year 2010 to evaluate the diagnostic precision of neutrophil CD64 expres-
sion in identifying bacterial infection, which showed a pooled sensitivity of 0.79 and pooled
specificity of 0.91 [13]. Shan li et al. (2013) repeated similar neutrophil CD64 expression meta-
analysis with a larger sample size estimate pooled 0.76 (95% CI 0.74–0.78) for sensitivity and
0.85 (95% CI 0.83–0.86) for specificity [53]. However, as both meta-analysis involved various
methods, this may have contributed to the poor sensitivity of their analysis. In contrast, our
study showed that CD64 demonstrated a higher sensitivity as compared to specificity in

Fig 3. Box-plot for CD64 levels in bacterial and non-bacterial infection diagnosis. abc = antigen bound
cell. Boxes show the 25th-75th centiles, while whiskers indicate the 10th and 90th centiles. Horizontal lines
within the boxes indicate the median. Outliers are shown as circles and stars.

doi:10.1371/journal.pone.0152065.g003

Fig 4. Box-plot for sPLA2-IIA levels in sepsis and non-sepsis diagnosis. Boxes show the 25th-75th

centiles, while whiskers indicate the 10th and 90th centiles. Horizontal lines within the boxes indicate the
median. Outliers are shown as circles.

doi:10.1371/journal.pone.0152065.g004

CD64 and sPLA2-IIA in Distinguishing Sepsis and Bacterial Infections

PLOS ONE | DOI:10.1371/journal.pone.0152065 March 22, 2016 8 / 14



screening and diagnosing bacterial infection; this is most probably due to the strict adherence
of our patient recruitment protocol. We found neutrophil CD64 expression to have a good
overall diagnostic performance, and that this biomarker could be a promising and evocative
biomarker to screen for bacterial infection in ED [53–57].

Results from our study also demonstrated sPLA2-IIA as an excellent screening biomarker
for sepsis, with high sensitivity and specificity to diagnose bacterial infection. This biomarker is
highly accurate and it might be a promising tool to be used in ED to facilitate early diagnosis of
sepsis and bacterial infection. This present study is in agreement with Rintala et al. [58] that
sPLA2-IIA expression correlated well with sepsis severity and was able to indicate bacterial

Fig 5. Box-plot for sPLA2-IIA levels in bacterial and non-bacterial infection diagnosis. Boxes show the
25th-75th centiles, while whiskers indicate the 10th and 90th centiles. Horizontal lines within the boxes indicate
the median. Outliers are shown as circles.

doi:10.1371/journal.pone.0152065.g005

Fig 6. ROC curves for CD64 and sPLA2-IIA in sepsis diagnosis. abc = antigen bound cell.

doi:10.1371/journal.pone.0152065.g006
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infection. The lower median of sPLA2-IIA found in our study may be due to our larger sample
size compared to Rintala’s study. In 2001, Rintala et al.[59] repeated the study done in 1993 in
patients who presented to the hospital in less than 24 hours, and demonstrated that sPLA2-IIA
had similar sensitivity and specificity of 80% and an AUC of 0.84. Comparatively, we found
that sPLA2-IIA had much better and a higher sensitivity of 94% and specificity of 94% within
the 1st hour of ED visit for sepsis and bacterial infection diagnosis.

In comparison with CD64, sPLA2-IIA showed better performance and higher accuracy in
diagnosing both sepsis and bacterial infection. In the acute phase of the host inflammatory
response during sepsis, sPLA2 enzymes, including sPLA2-IIA is mostly associated with high-
density lipoproteins (HDL) [60], which are the major source of phospholipids in plasma. Inter-
estingly, these sPLA2- modified HDL shows potent anti-inflammatory activities [61,62], where
they activate neutrophils and trigger the whole anti-inflammatory cascade. We suspect
sPLA2-IIa is the initiator molecule in this cascade and plays a crucial part in the host response
towards containing sepsis; therefore, whilst the sPLA2-IIA could be used as a potent biomarker
for sepsis diagnosis, anti-sPLA2-IIA was not found to provide survival benefit in septic patients
[52].

Conclusion
Taking it all together, sPLA2-IIA showed superior overall performance compared to CD64 in
diagnosing sepsis and bacterial infection, and could be used as a good biomarker for this pur-
pose, either singly or in combination with other biomarkers. It may assist clinicians in their
decision making for early antimicrobial administration, enable risk stratification and expedite
the execution of sepsis bundle. We recommend that future studies with larger sample size for
these two promising biomarkers be carried out to validate their diagnostic performance, and to
determine if they should be included in the diagnostic algorithm of sepsis management in ED.
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