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ABSTRACT

Background: Environmental enteric dysfunction (EED) is common in low- and middle-income
countries and associated with childhood undernutrition. The composition of gut microbiota has
been implicated in the pathogenesis of EED. Our aim was to assess the associations between gut
microbiota and EED biomarkers in rural Malawian children. We hypothesized that there would
be an inverse association between microbiota maturity and diversity and fecal concentrations of
EED biomarkers.
Methods: We used data from fecal samples collected at 6, 18 and 30 months from 611 children who
were followed up during a nutrition intervention trial. The primary time point for analysis was
18 months. Microbiota data were obtained through 16S rRNA sequencing and variables included
microbiota maturity and diversity, phylogenetic dissimilarity and relative abundances of individual
taxa. EED biomarkers included calprotectin (marker of inflammation), alpha-1 antitrypsin (intestinal
permeability) and REG1B (intestinal damage).
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Results: There was an inverse association between microbiota maturity and diversity and fecal concentra-
tions of all 3 EED biomarkers at 18 months (p�0.001). The results were similar at 30 months, while at
6 months inverse associations were found only with calprotectin and alpha-1 antitrypsin concentrations. At
18 months, EED biomarkers were not associated with phylogenetic dissimilarity, but at 6 and 30 months
several associations were observed. Individual taxa predicting EED biomarker concentrations at 18 months
included several Bifidobacterium and Enterobacteriaceae taxa as well as potentially displaced oral taxa.
Conclusions: Our findings support the hypothesis of an inverse association between microbiota
maturity and diversity and EED in rural Malawian children.

LAY SUMMARY

Chronic childhood undernutrition is an important public health concern that affects about 150 mil-
lion children, mostly in low- and middle-income countries. Undernutrition is caused by insufficient
nutrient intake and frequent infections, but there are also other underlying factors. One of these is a
condition called environmental enteric dysfunction (EED), which is characterized by intestinal in-
flammation and damage without apparent clinical symptoms. EED is thought to be caused by the in-
gestion of pathogenic bacteria that leads to changes in the intestine such as increased permeability
and decreased absorptive capacity. This might make the intestinal wall vulnerable to bacterial inva-
sion and reduce the absorption of nutrients. Besides potentially pathogenic bacteria, there are many
commensal bacteria in the gastrointestinal tract that have beneficial functions and that interact with
the immune system. The aim of our study was to assess the associations between all these bacteria,
that is the intestinal microbiota and biomarkers of EED. We used data from fecal samples collected
from young children participating in a nutrition intervention trial in rural Malawi. Our findings sup-
port an inverse association between the diversity and maturity of the intestinal microbiota and bio-
markers of EED. Additionally, we identified the differences at the level of individual bacterial taxa
(groups of bacteria defined by genetic similarity) between participants with different levels of EED
biomarkers. Due to the type of study, we cannot determine whether the observed associations repre-
sent a causal relationship between the intestinal microbiota and EED. This as well as the exact mech-
anisms behind these associations should be assessed in further studies.

K E Y W O R D S : gastrointestinal microbiome, environmental enteric dysfunction, child health, leuko-
cyte L1 antigen complex, REG1B, alpha 1-antitrypsin

I N T R O D U C T I O N
Several studies have focused on environmental enter-
ic dysfunction (EED) as a potential underlying factor
of childhood undernutrition [1–5]. In EED, a high
pathogen load caused by fecal–oral contamination is
thought to lead to intestinal damage and permeabil-
ity, bacterial translocation and intestinal and systemic
inflammation, ultimately contributing to impaired
growth and development [6–10]. The exact mecha-
nisms are unclear, and more insights into the deter-
minants and consequences of EED are needed to
improve child health outcomes in low-income set-
tings, in which children are at a high risk for under-
nutrition [11].

Recent studies suggest that intestinal microbiota
composition, which has been linked with undernutri-
tion, may be associated with EED [12, 13]. Based on
experimental studies in rodents, ingested pathogens

could directly cause EED and a relative reduction in
anti-inflammatory intestinal bacteria could aggravate
the condition [14, 15]. On the other hand, EED
could alter the microbiota composition, for example
through immune activation [16]. However, few stud-
ies have investigated the associations between EED
and microbiota in humans [15, 17].

The aim of the present study was to investigate
how the gut microbiota is associated with markers of
intestinal inflammation, permeability and damage
(EED biomarkers) in rural Malawian children at 6,
18 and 30 months of age. We used data from 611
children who were followed up during and after a nu-
trition intervention trial (iLiNS-DYAD Malawi,
NCT01239693) [18, 19]. We hypothesized that
there would be an inverse association between
microbiota diversity and maturity and EED bio-
markers [13, 20]. Additionally, we conducted
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secondary exploratory analyses on associations of
beta diversity and taxon-level microbiota compos-
ition with those biomarkers.

M A T E R I A L S A N D M E T H O D S

Study sample
The data for this study were collected during the
iLiNS-DYAD trial, which was a randomized-
controlled nutrition intervention trial conducted in
2011 to 2015 in a mostly rural area in the Mangochi
district in southern Malawi. The main outcome of
the trial was length-for-age Z-score (LAZ) at
18 months on which no positive effect of the inter-
vention was found [18, 19]. There was also no con-
sistent effect of LNS on the gut microbiota or EED,
but LNS was associated with higher microbiota di-
versity at 18 months.(Z. Liu, submitted for publica-
tion and [21]) The trial enrolled 1391 pregnant
women who were randomized to 1 of 2 intervention
groups or a control group. The intervention groups
received either a small-quantity lipid-based nutrient
supplement (LNS) or multiple-micronutrient tablets
(MMN) until 6 months after delivery while the con-
trol group received iron and folic acid during preg-
nancy and placebo for 6 months after delivery. The
first 869 enrolled mother–child dyads were assigned
to a complete follow-up scheme (288 in the LNS,
291 in the MMN and 290 in the control group), in
which they were monitored closely during pregnancy
and the first 18 months after birth and children in
the LNS intervention group received LNS from 6 to
18 months. Most of these participants were addition-
ally followed up until 30 months. The intended sam-
ple size of 864 was calculated based on the assumed
effect size of the main outcome of the trial and an
estimated loss to follow-up of up to 25% [19]. This
sample size gave 72% power to detect a partial cor-
relation of 0.1 for associations between microbiota
maturity and diversity and EED biomarkers with a 2-
sided type 1 error rate of 0.05.

Sample collection and processing
Data from fecal samples collected as described previ-
ously at 6, 18 and 30 months from children in the
complete follow-up group were used for the current
study [22]. Microbiota data were obtained through

16S sequencing of the frozen fecal samples using pre-
viously described methods [13, 23, 24]. Briefly, the
samples were cryo-pulverized using liquid nitrogen,
suspended and shaken in a bead beater (BioSpec
Products, Bartlesville, OK) to mechanically disrupt
bacterial cells. DNA was purified by centrifuging,
precipitation and binding to a silica membrane that
was washed with elution buffer (QIAquick column,
Qiagen, Germantown, MD). The amount of DNA in
all samples was normalized and the 16S V4 region of
the bacterial DNA was amplified by PCR using pri-
mers with a barcode sequence unique to each sample
[25]. After a second normalization step and pooling
and purification of all samples, the amplicons were
sequenced using an Illumina MiSeq instrument (ver-
sion 2 chemistry, Illumina, San Diego, CA). Paired-
end 250 bp reads were trimmed to 200 bp, combined
and clustered according to 97% base pair identity
using QIIME [26]. These clusters were each defined
as an operational taxonomic unit (OTU) and
sequences were aligned with PyNAST. The
Ribosomal Database Project version 2.4 classifier was
trained with a custom dataset of bacterial taxonomy
and OTUs were assigned taxonomy mostly to genus
or species level resolution [23, 27]. The relative
abundance of each OTU in each sample was quanti-
fied by the number of sequence reads assigned to it.
To exclude artefacts, OTUs were filtered with a
threshold of 0.1% of sequencing reads in at least 2
samples. The V4-16S sequence data generated and
analyzed for this study are available through the
European Nucleotide Archive under the study acces-
sion number PRJEB29433.

For the measurement of EED biomarker concentra-
tions, fecal samples were homogenized in extraction
buffer and diluted. Calprotectin, alpha-1-antitrypsin
and REG1B concentrations were measured from the
sample supernatants using quantitative enzyme-linked
immunosorbent assays (DH002 Fecal Calprotectin
Assay, Hycult Biotech, Uden, The Netherlands;
Human alpha1-Antitrypsin ELISA Kit, PromoCell
GmbH, Heidelberg, Germany; and REG1B ELISA kit,
TECHLAB, Inc., Blacksburg, VA, USA). For quality
control, the first 100 measurements of calprotectin
and alpha-1-antitrypsin were done in duplicate. All
measurements of REG1B were done in duplicate and
the mean of the 2 values was taken. If a value differed
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from the mean by more than 15%, the measurement
was repeated.

Variables
Microbiota variables included measures of micro-
biota maturity and diversity for primary analyses and
beta diversity and relative abundances of bacterial
taxa for secondary analyses. As a measure of micro-
biota maturity, the microbiota ages of the partici-
pants were estimated using a previously described
Random Forests model [13, 24]. These microbiota
ages were compared to the median of microbiota
ages of an age-matched healthy reference cohort of
Malawian children to obtain microbiota-for-age Z-
scores (MAZ) [24]. For microbiota diversity,
Shannon’s diversity Index was calculated from rare-
fied OTU-counts (rarefied to 5000 reads) using the
R package phyloseq [28]. In addition, weighted and
unweighted UniFrac distances were calculated to as-
sess phylogenetic dissimilarity (beta diversity) be-
tween samples. Relative abundances of individual
bacterial taxa were measured as the number of reads
assigned to each OTU standardized with cumulative
sum-scaling.

Fecal concentrations of EED biomarkers were used
as continuous variables. These included calprotectin
(in mg/g) as a measure of intestinal inflammation.
Calprotectin is an unspecific marker that has been
widely used to diagnose and monitor inflammatory
bowel diseases in children and that has been associated
with geophagy and stunting in the context of EED [8,
29–32]. Alpha-1-antitrypsin (in mg/dl), a serine prote-
ase inhibitor that is excreted in the gut during protein
loss enteropathy, was used as a measure of intestinal
permeability; and REG1B (in mg/g), a gene involved
in the regeneration of intestinal cells, was used as a
measure of intestinal damage [2, 33, 34].

Statistical analysis
Variables that could confound the association be-
tween gut microbiota and EED biomarkers were
included as covariates. These included season of fecal
sample collection, exact age and sex of the child,
delivery mode, maternal education, household-assets
Z-score, ownership of domestic animals, source of
drinking water, type of sanitary facility, randomiza-
tion group and number of sequencing reads.

As primary analyses, we tested hypotheses on the
association between gut microbiota diversity and ma-
turity and markers of intestinal inflammation, perme-
ability and damage. We also conducted exploratory,
secondary analyses of other measures of microbial
community composition. Because the sampling time
points were 12 months apart and microbiota com-
position and levels of EED biomarkers change rapid-
ly at this age, no longitudinal analyses were
conducted. All analyses were cross-sectional (separ-
ate analyses for the 3 time points) and the main time
point was 18 months. At this age, children are rela-
tively mobile and no longer predominantly breast-
fed, which increases potential exposure to pathogens
in the living environment [29]. Analyses with 6 and
30 months data were additionally performed to
examine whether the associations between micro-
biota and EED vary at different ages. At each time
point, all available samples were analyzed and partici-
pants who missed a visit were included in the analy-
ses at other time points.

The hypothesis that there is an inverse association
between the diversity and maturity of fecal micro-
biota and concentrations of EED biomarkers was
tested using linear regression models. Calprotectin,
alpha-1-antitrypsin and REG1B were used as
outcomes and MAZ-score and Shannon Index as
predictors in fully covariate-adjusted models (forced-
entry). Outcome variables were assessed for con-
formance to the normal distribution assumption by
inspecting histograms. For calprotectin and alpha-1-
antitrypsin, log(10)-transformed values were used in
the analyses. Because breast-feeding has been found
to be associated with both microbiota maturity and
diversity and EED biomarkers, a sensitivity analysis
was completed to assess interaction (at p< 0.1 for
the interaction term) or confounding (at >10%
change-in-estimate) by breast-feeding status at
18 months [35]. At 6 months, almost all children in
this population are breast-fed and no data on breast-
feeding were collected at 30 months. We also con-
ducted a sensitivity analysis excluding children whose
mothers were HIV-positive during pregnancy. HIV
tests were not conducted on children.

Secondary analyses on beta diversity between par-
ticipants with different levels of EED biomarkers
assessed differences in weighted and unweighted
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UniFrac distances with permutational analysis of
variance (PERMANOVA). The models included all
covariates aforementioned and assessed the marginal
effect of calprotectin, alpha-1-antitrypsin and REG1B
[36]. Pseudo p values were obtained through 1000
permutations.

To analyze associations at the level of individual
bacterial taxa, Random Forests machine learning re-
gression models were built to estimate how relative
abundances of bacterial OTUs at 18 months predict
the levels of calprotectin, alpha-1-antitrypsin and
REG1B. OTUs were ranked based on their import-
ance, which was measured as the mean decrease in
prediction accuracy if the OTU was excluded from
the model. Only OTUs present in at least 10% of
the samples were included in the models. For the 10
highest ranked OTUs in each of the 3 models, differ-
ences in EED-biomarker abundances between partic-
ipants with relative taxon abundances below and
above median were compared with Mann–Whitney
test and fdr-corrected p values were calculated using
the Benjamini–Hochberg correction.

All analyses were carried out in STATA version
15 and R version 3.5.3.

Ethics approval
The iLiNS-DYAD study was approved by the
College of Medicine Research and Ethics
Committee, Malawi and the ethics committee of the
Pirkanmaa hospital district, Finland. All participants
provided informed consent at enrollment by signing
or thumb printing a consent form.

R E S U L T S
There were 790 live-born children (including 8 sets of
twins, who were excluded from the analyses) in the
complete follow-up scheme, of which 611, 666 and
596 provided a fecal sample at 6, 18 and 30 months,
respectively. Of these, complete data for predictors
and at least 1 EED biomarker were available for 459,
578 and 532 at 6, 18 and 30 months, respectively. A
total of 77 children died between birth and
30 months, 68 were otherwise lost to follow-up and
71 did not consent to additional follow-up beyond
18 months (Fig. 1). Participants included in the ana-
lysis had a median gestational age of 39.7 weeks and a
birth length of 49.8 cm. Thirteen percent had access

to piped water and 10% had improved sanitary facili-
ties. Excluded participants had lower maternal age,
higher maternal education, lower gestational age and
length at birth, and higher socioeconomic status com-
pared to participants who provided microbiota and
EED data (Table 1). The fecal concentrations of all 3
EED biomarkers decreased with age (Fig. 2,
Supplementary Table S1).

Log-transformed concentrations of calprotectin
and alpha-1-antitrypsin and the concentration of
REG1B were inversely associated with MAZ-score
and Shannon Index at 18 months (each p � 0.001;
Table 2 and Fig. 3). The results were similar at
30 months (Supplementary Table S2). At 6 months,
calprotectin was inversely associated with MAZ-
score, alpha-1-antitrypsin was inversely associated
with both MAZ-score and Shannon Index and
REG1B was not associated with either
(Supplementary Table S3). At 18 months, 8% of the
children were no longer breast-fed. When breast-
feeding status was added as an additional covariate
to the models at 18 months, the point estimates
changed by less than 10% and the interaction term
for breast-feeding status was not statistically signifi-
cant in any of the models (p> 0.1). An analysis that
excluded children of HIV-positive mothers gave es-
sentially identical regression coefficients to those in
the main analysis for all outcomes (data not shown).

In secondary analyses on beta diversity, phylogen-
etic distance measured as UniFrac distance was not
associated with any EED biomarker at 18 months
(pseudo p values> 0.05). At 30 months both
unweighted and weighted UniFrac distances were
associated with all EED biomarkers with R2 values
ranging from 0.8% to 3.9%. At 6 months unweighted
UniFrac distances were associated with concentra-
tions of all EED biomarkers and weighted UniFrac
distances were associated with calprotectin and
alpha-1-antitrypsin concentration with R2 values be-
tween 0.4% and 6% (Fig. 4).

Random Forests models on individual bacterial
taxa (OTUs) predicting the concentration of EED
biomarkers at 18 months explained 24.6%, 27.7%
and 24.5% of the variation in the concentrations of
calprotectin, alpha-1-antitrypsin and REG1B, re-
spectively. Taxa that were among the 10 highest
ranked predictors in at least 1 of the models included
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OTUs assigned to the bacterial orders of
Actinomycetales, Bifidobacteriales, Bacteroidales,
Clostridiales, Lactobacillales, Enterobacteriales and

Pasteurellales. Out of all Bifidobacteriales taxa pre-
sent at 18 months, 42% (5/12) were among the
highest ranked predictors of EED biomarker

FIG. 1. Participant flow.
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TABLE 1. Characteristics of included and excluded participants, median (inter-quartile range) or
percentage

Characteristic Included Excluded
Participants, n 610 180 p value

Maternal age at enrollment, years 24.9 (20.4; 29.5) 23.0 (19.3; 28.1) 0.02
Maternal education completed, years 3 (0; 6) 4 (1; 7) 0.03
Positive malaria RDT of the mother at

enrollment
23% 23% 1.0

Mother HIV-positive at enrollment 12% 12% 0.82
Gestational age at birth, weeks 39.7 (38.7; 40.7) 39.2 (37.6; 40.3) <0.001
Length at birth, cm 49.8 (48.5; 51.3) 49.0 (47.6; 50.3) <0.001
LAZ at birth �0.9 (�1.6; �0.3) �1.4 (�2.2; �0.7) <0.001
Household assets Z-score �0.4 (�0.7; 0.1) 0.2 (�0.7; 0.8) 0.001
Source of drinking water is borehole, well,

river, or lake (vs. piped)
87% 75% <0.001

Type of sanitary facility is none or regular
pit latrine (vs. ventilation improved pit
latrine or water closet)

90% 91% 0.62

LAZ: length-for-age Z-score; RDT: rapid diagnostic test.
Included participants are those who had data on calprotectin and microbiota maturity and diversity available at 18 months. p values are obtained from
Mann–Whitney test (continuous variables) or chi-square test (proportions).

FIG. 2. Distribution of microbiota maturity and diversity variables and EED biomarkers.
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TABLE 2. The association of microbiota maturity and diversity variables with fecal calprotectin,
alpha-1-antitrypsin and REG1B at 18 months.

Association between predictor and outcome variable, adjusted for covariatesa

Log(calprotectin) Log(alpha-1-antitrypsin) REG1B

Predictor
variable

Regression
coefficient
(95% CI)

p value n Regression
coefficient
(95% CI)

p value n Regression
coefficient
(95% CI)

p value n

MAZ-
score

�0.07 <0.001 578 �0.08 <0.001 547 �25.14 <0.001 558
(�0.09,
�0.05)

(�0.1, �0.06) (�31.75, �18.52)

Shannon
Index

�0.12 <0.001 578 �0.16 <0.001 547 �71.96 <0.001 558
(�0.18,
�0.05)

(�0.22, �0.11) (�91.22, �52.70)

Results from multivariable analysis. CI: confidence interval; MAZ: microbiota-for-age Z-score.
aAdjusted for education level of the mother, household assets index, water source, sanitary facility, domestic animals, season, sex of the child, delivery
mode, exact age, randomization group, sample processing pool and sequencing depth.

FIG. 3. The association of microbiota maturity and diversity variables with fecal calprotectin, alpha-1-antitrypsin and
REG1B at 18 months. Scatterplots of MAZ-score (microbiota-for-age Z-score) (A–C) or Shannon Index (D–F) and
EED biomarkers at 18 months with fitted (unadjusted) linear regression lines.

8 � Associations between Gut Microbiota and EED



concentrations. Differences in EED biomarker con-
centrations by relative taxon abundance are shown in
Fig. 5.

D I S C U S S I O N
The aim of this study was to investigate the associa-
tions between biomarkers of EED and gut micro-
biota composition in rural Malawian children. Our
findings support the hypothesis of an inverse associ-
ation between the biomarkers calprotectin, alpha-1
antitrypsin and REG1B, and microbiota maturity and
diversity at 18 months of age. The findings were
similar in children aged 6 and 30 months. In second-
ary analyses, levels of EED biomarkers were associ-
ated with microbial beta-diversity measured as

UniFrac distances at 6 and 30, but not at 18 months.
In addition, we identified bacterial taxa that pre-
dicted the levels of EED biomarkers, including sev-
eral Bifidobacterium, Enterobacteriacea, Dorea
formicigenerans and Haemophilus taxa positively
correlated and Prevotella and Oscillibacter taxa in-
versely correlated with EED biomarkers.

Our study is limited by the use of microbiota data
from fecal samples as a proxy for gut microbiota
composition, because EED is a condition of the small
intestine and the microbiota composition changes
along the gastrointestinal tract [37]. In our study
population of relatively healthy children, it would
not have been feasible nor ethical to perform endos-
copies to obtain samples from the small intestine
[38]. Even though previous studies with sampling
from the small intestine found the differences be-
tween small intestinal and fecal microbiota, in those
studies many bacterial taxa from the small intestine
were also detected in feces and disease-associated
changes occurred in both small intestinal and fecal
microbiota [15, 37]. Thus, the observed differences
in microbiota composition likely reflect EED-
associated intestinal dysbiosis, but we cannot infer
whether these differences are causally related to
EED.

Further, we did not collect detailed information
on nutrient or breast-milk intake at all time points
[39, 40]. However, sensitivity analyses did not sug-
gest confounding or interaction by breast-feeding
status at 18 months and previous studies in this
population have revealed relatively homogenous
breast-feeding and complementary feeding practices
[41, 42]. Therefore, we do not expect our conclu-
sions to be significantly biased by differences in feed-
ing patterns. Participants who were lost to follow-up
and did not provide data for these analyses had on
average lower gestational age and length at birth and
a higher socioeconomic status than included study
participants. Theoretically, this may reduce the exter-
nal validity of our results. However, although the dif-
ferences were statistically significant, they were very
small and clinically probably insignificant. Therefore,
we believe that the included study participants are
representative of the study population. Finally, we
used only calprotectin as a marker of intestinal in-
flammation and did not analyze other established

FIG. 4. Associations between EED biomarkers and
phylogenetic dissimilarity. Bar chart of R2 values from
covariate-adjusted PERMANOVA models. Pseudo p
values were obtained through 1000 permutations.
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markers such as myeloperoxidase, which might have
limited our ability to detect the differences in micro-
biota composition related to intestinal inflammation
[43, 44].

The presented findings are mostly consistent with
reports from the previous studies. A recent study
found an inverse association between microbiota di-
versity and fecal neopterin concentration [45].
Otherwise, the association between microbiota diver-
sity and maturity and EED biomarkers has not been

described before, but reduced microbiota diversity
and maturity have been associated with malnutrition
and reduced diversity has been associated with dis-
ease severity in patients with Crohn’s disease [13,
20, 46, 47]. One smaller study on EED conducted in
Malawi measured the lactulose to mannitol ratio in
young children and did not find associations with
microbiota diversity. Further, the study reported the
differences in relative abundances of bacterial taxa
that where not found to predict EED biomarkers in

FIG. 5. Differences in EED biomarker concentrations by relative taxon abundance at 18 months. Box plots of (log-
transformed) concentrations of calprotectin, alpha-1-antitrypsin and REG1B at 18 months over relative abundances of
bacterial taxa (taxon abundance below or at median vs. above median). Taxa that were among the 10 most important
OTUs in predicting EED biomarker concentrations at 18 months in Random Forests models are listed. (A) shows taxa
that were ranked highest in predicting calprotectin concentration, (B) shows taxa that were ranked highest in predicting
alpha-1-antitrypsin concentration and (C) shows taxa that were ranked highest in predicting REG1B concentration.
Taxa in frames were among the highest ranked taxa in 2 of the 3 models. q values are fdr-corrected p values from
Mann–Whitney test.
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our study [17]. This discrepancy could be due to dif-
ferent sample processing and analysis methods, but
it is also possible that the biomarkers used in our
study capture different aspects of EED than the lac-
tulose to mannitol ratio.

Regarding differences in bacterial taxon abundan-
ces, the finding of a positive association between sev-
eral Bifidobacterium taxa and all 3 EED biomarkers
is unexpected, because Bifidobacterium species have
previously been associated with probiotic and anti-
inflammatory properties [20, 48, 49]. However, the
relative abundance of Bifidobacteria also decreases
significantly with age and a higher abundance can
thus reflect an EED-associated immaturity of the
microbiota [24, 50]. This has previously been in-
versely associated with ponderal growth and might
be attributed to a reduced fitness of certain
Bifidobacteria strains [51, 52]. Our finding of a posi-
tive association between Enterobacteriaceae and cal-
protectin is in line with several studies linking
Enterobacteriaceae with intestinal inflammation as
well as HIV, which often leads to a form of enterop-
athy [20, 53–56]. We found both positive and nega-
tive associations between Clostridium taxa and EED
biomarkers, in agreement with several studies report-
ing opposing functions of different Clostridium spe-
cies [57]. Haemophilus, Streptococcus and Rothia
mucilaginosa, which were positively associated with
calprotectin and REG1B, are part of the oral micro-
biota [58, 59]. Decompartmentalization of the
microbiota, that is oral taxa present in the distal
gastrointestinal tract, has been associated with in-
flammation and stunting [15, 37, 53].

There are several plausible mechanisms by which
the gut microbiota could cause or influence EED or
by which EED could lead to changes in microbiota
composition. Pathogenic bacteria could directly
cause EED through mucosal damage or enteroinva-
sion and intestinal inflammation [60–62]. Though
we could not directly assess the associations between
pathogenic bacteria and EED biomarkers due to in-
sufficient taxonomic resolution at species level, sev-
eral EED-associated taxa were assigned to the family
of Enterobacteriaceae, which includes pathogenic
Escherichia coli and Shigella species [63]. Further,
members of the intestinal microbiota could indirectly
alleviate or aggravate EED through interactions with

the immune system. Potential mechanisms include
production of anti-inflammatory short-chain fatty
acids, strengthening of the epithelial barrier, and in-
duction of immune cells [53, 64–67]. On the other
hand, antimicrobial peptides and immunoglobulin A
secreted by epithelial cells after sensing of bacteria
can affect the microbiota composition [16, 68]. Of
the EED biomarkers used in this study, calprotectin
and alpha-1 antitrypsin have known antibacterial
properties and REG1B is thought to be antibacterial
based on similarities with other antimicrobial pepti-
des, implying that these biomarkers could directly af-
fect microbiota composition [34, 69–73]. Finally,
changes in bile-acid metabolism have been described
in EED and these changes could mediate influences
of the gut microbiota on host metabolism [74, 75].
Thus, intestinal dysbiosis could be either a cause or a
consequence of EED. It is also conceivable that
EED-associated changes in microbiota composition
constitute beneficial adaptations that mitigate the
negative effects of the disease [76, 77].

Our findings support the hypothesis of an associ-
ation between the gut microbiota composition and
EED assessed by the biomarkers calprotectin, alpha-
1 antitrypsin and REG1B in rural Malawian children.
EED was found to be associated with reduced micro-
biota diversity and maturity and relative abundances
of potentially pathogenic and oral bacterial taxa.
However, the etiology of EED may vary in different
settings and microbiota composition has been shown
to differ by geographic location [78]. Therefore, the
findings of our study are likely not generalizable to
other regions. To advance the prevention and treat-
ment of EED, further studies are needed to establish
whether these associations are causal and whether
similar patterns occur in different populations.
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