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Abstract
Stress research has progressively become more integrative in nature, seeking to unfold cru-

cial relations between the different phenotypic levels of stress manifestations. This study

sought to unravel stress-induced variations in expression of human microRNAs sampled in

peripheral blood mononuclear cells and further assess their relationship with neuronal and

psychological indices.

We obtained blood samples from 49 healthy male participants before and three hours

after performing a social stress task, while undergoing functional magnetic resonance imag-

ing (fMRI). A seed-based functional connectivity (FC) analysis was conducted for the ven-

tro-medial prefrontal cortex (vmPFC), a key area of stress regulation. Out of hundreds of

microRNAs, a specific increase was identified in microRNA-29c (miR-29c) expression, cor-

responding with both the experience of sustained stress via self-reports, and alterations in

vmPFC functional connectivity. Explicitly, miR-29c expression levels corresponded with

both increased connectivity of the vmPFC with the anterior insula (aIns), and decreased

connectivity of the vmPFC with the left dorso-lateral prefrontal cortex (dlPFC). Our findings

further revealed that miR-29c mediates an indirect path linking enhanced vmPFC-aIns con-

nectivity during stress with subsequent experiences of sustained stress. The correlative pat-

terns of miR-29c expression and vmPFC FC, along with the mediating effects on subjective

stress sustainment and the presumed localization of miR-29c in astrocytes, together point

to an intriguing assumption; miR-29c may serve as a biomarker in the blood for stress-

induced functional neural alterations reflecting regulatory processes. Such a multi-level

model may hold the key for future personalized intervention in stress psychopathology.
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Introduction
When confronted with stress a cascade of psychophysiological responses are set in motion,
while adaptive coping and post-stress recovery largely depends on optimal neuronal function-
ing, requiring precise and rapid gene expression changes. This may be achieved through post-
transcriptional regulation via microRNAs (miRNAs) [1], with each miRNA targeting tens to
hundreds of genes, overall regulating approximately half of the transcriptome [2, 3].

Several studies reported miRNA expression changes in the brain upon exposure to stress
[4–7], also with relation to animal behavior [8, 9]. Psychological perturbations induce distinct
gene expression changes also in humans [10]. Additionally, adverse experiences give rise to
gene expression changes in circulating immune cells [11], corresponding with the well-recog-
nized communication between the brain and immune system; peripheral blood mononuclear
cells (PBMCs) share ~80% of the transcriptome with brain tissue [12, 13]. Therefore, miRNA
expression signatures may extend beyond the brain, providing a useful peripheral biomarker of
stress-responsiveness. Rapid expression changes in PBMCs were presented after brief exercise
[14], yoga practice [15] and also after exposure to trauma, accompanying differential clinical
outcomes, potentially harboring valuable prognostic information for identifying the onset of
psychopathology [16–18]. Notably, a recent research demonstrated the feasibility and impor-
tance of unraveling the link between epigenetic regulation tested in blood and behaviorally and
clinically relevant brain function in humans [19]. The intriguing relations between peripheral
molecular changes, behavioral responses and brain function is beginning to be explored.

Brain-imaging studies implicate the medial prefrontal cortex as a core area for processing of
emotional events [20, 21]. Its dorsal portions are involved in explicit appraisal, whereas ventral
portions have a regulatory role. Through its interaction with other prefrontal and subcortical
regions, the ventro-medial prefrontal cortex (vmPFC) plays a critical role in modulating and
integrating physiological and behavioral aspects of stress-responses both in rodents [22, 23]
and humans [24–27]. Indeed, stress-induced gene expression changes were evident particularly
in the vmPFC [28–32]. However, debates continue as to how neurobehavioral changes occur
with respect to genetic regulation.

In our study, we sampled PBMCs before and 3-hours after social-stress induction in the
fMRI-scanner. Neural indications were obtained from a seed-based functional-connectivity
(FC) analysis of the vmPFC. Behavioral indications were based on repeated subjective stress
ratings. We hypothesized that variations in stress-responsive miRNAs, presenting variability in
expression among participants, would correspond with processes of affect regulation mani-
fested in the subjective reports and attributed to the vmPFC connections. Gaining such under-
standing could help reveal indicants of individual susceptibility to stress; providing a
foundation for understanding the link between cellular responses and neural circuit function-
ing underlying neuropsychiatric symptoms.

Materials and Methods

Participants
The study was approved by the Tel Aviv Sourasky Medical Center (TASMC) ethical commit-
tee. 61 healthy male IDF soldiers (age 19–22) from the same unit, amidst the same military
course, and before operational deployment participated in the study. All participants had nor-
mal or corrected-to-normal vision and provided written informed consent, approved by the
ethical committee and conformed to the Code of Ethics of the World Medical Association
(Helsinki Declaration). Molecular data was acquired from 49 participants, for which sufficient
RNA samples were obtained. 4 participants were excluded from the fMRI data analysis due to
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signal artifacts (final sample N = 45). Participants had no reported history of psychiatric or
neurological disorders, no current use of psychoactive drugs, no family history of major psychi-
atric disorders, and no previous exposure to abuse during childhood and/or potentially trau-
matic events before entering the study.

Experimental Procedure
The protocol consisted of 4 phases: acclimation (15-min), 1st MRI scanning session (65-min),
intermission (90-min) and a 2nd MRI session (60-min). During acclimation, participants were
given a 15-min resting period, were introduced to the experimental procedure and their first
blood sample for miRNA profiling was drawn. The second blood sample was obtained at the
end of the experiment. MRI testing, in the 1st scanning session, included two 'rest' scans (5 min
each) interspersed by a control task and an arithmetic social stress task. During 'rest' conditions
participants were instructed to stare at a fixation point. The 2nd MRI session included a 'rest'
scan and memory task.

Stress elicitation task
Stress was induced using a serial subtraction arithmetic task [33–35]. Participants were
instructed to continuously subtract 13 from 1022 for a period of 6 min, and respond verbally,
while the experimenters monitored and communicated with each subject on-line, constantly
demanding faster and more accurate performance. A timer appeared at the top left corner of
the screen to indicate to the participant how much time had elapsed. The stress task was pre-
ceded by a non-stressful condition- backward counting from 1000 for a period of 6 min, with-
out external monitoring.

Behavioral and physiological data collection
The psychological effect was evaluated through repeated self-reports of stress (on a 9 point
Likert scale, marked as R); physiological effects were evaluated via continuous heart-rate mea-
sure and salivary cortisol (marked as S). Subjective stress and cortisol were sampled at 4 time
points: after the first 'rest' scan [R1/S1], after the control task [R2/S2], after the stress task [R3/
S3] and 20-min following a second 'rest' scan and an anatomical scan [R4/S4] (Fig 1, top
panel).

To evaluate traces of stress observed in the self-reports, we calculated changes in the ratings
20-min after stress induction ended (R4), as compared to the ratings obtained immediately
after the stress task (R3). We speculated that a decrease in the reported post-stress experience
indicated more effective emotion regulation processing. Thus, participants were divided into
two groups—recovery of subjective stress, presenting a reduction in stress ratings; and sustain-
ment of subjective stress, presenting a lack of reduction (Δ> = 0).

Endocrine Data Analysis
Salivary cortisol levels were assayed using Coat-A-Count radioimmunoassay (Siemens, Los
Angeles, CA), inter- and intra-assay coefficient of variation (CV) 14.4%, 8.9%, respectively.
Inter-assay % CVs of less than 15 and intra-assay % CVs of less than 10 are considered to indi-
cate assays with good and reliable performance.

Electrophysiological data collection and analysis
Electrocardiography (ECG) was recorded continuously via a BrainAmp ExGMRI-compatible
system (BrainProducts, Munich, Germany). The sampling rate was 5000 Hz. Bipolar Ag/AgCl
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electrodes were attached to the sides of the chest. Preprocessing and RR-interval analysis
included gradient artifacts removal using FASTR algorithm [36], implemented in FMRIB plug-
in for EEGLAB [37]. R-peaks were detected using FMRIB toolbox, and corrected for misdetec-
tion (maximum correction rate across participants was 5.95%) and presence of ectopic beats.
Finally, RR-intervals were used to derive a beats-per-minute index. Due to motion artifacts, 44
participants were included in the final heart-rate analysis, for which a reliable R-peak signal
was detected.

Fig 1. Experimental design, psychological and physiological responses to stress. Following the acclimation phase and the first blood sample drawn for
miRNA expression, participants underwent a scanning session that included control (backward counting) and stress (serial subtraction) tasks; 3-hours
following stress induction blood was drawn again. Elicitation of stress is shown by repeated subjective reports of stress levels (R1-4), heart-rate records and
salivary cortisol samples (S1-4); for the whole cohort and for separate groups according to stress sustainment vs. recovery. The black line and circle
represent the whole sample. ** p<0.001.

doi:10.1371/journal.pone.0146236.g001
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Blood sampling for miRNA profiling
Blood was drawn twice in EDTA-tubes: upon arrival at the MRI facility, following acclimation,
and at the end of the second scanning session, approximately 3-hours after the stress task. The
interval was based on the notion that gene expression takes a few hours to complete, along with
previous evidence regarding rapid expression changes in PBMCs in response to real-life events
[15, 17, 18]. The blood samples were delivered within 1-hour to Shomron's lab in temperature-
controlled chambers.

Study procedure for miRNA extraction and profiling
MiRNAs were extracted from blood samples using Trizol (see below). We first focused on 10%
of the sample (6 individuals), randomly picked for initial miRNA profiling. This RNA was ran
on a TaqMan Low Density array (TLDA, see below). Relevant miRNAs presenting stress-
induced change were selected according to two parameters: all Cts were required to be between
15 and 35, and a fold-change variance> 2 was needed between individuals. The analysis
revealed 6 miRNAs that presented stress-induced change: hsa-let-7b, miR-342-3p, hsa-miR-
20b, hsa-miR-345, hsa-miR-30c, hsa-miR-29c. Out of these, we further examined hsa-miR-
29c, based on the previously found expression in the human prefrontal cortex and its suggested
involvement in CNS disorders [38, 39]. Consequentially, we ran a series of TaqMan real-time
PCR assays to deduce miR-29c expression in all participants (Fig 2A).

Specific methods for microRNA analysis
1. Lymphocytes extraction. Lymphocytes extraction was carried out not later than 1-hour

after blood collection; Every 10 ml whole blood sample was divided into 2 tubes containing
25ml EL buffer (Qiagen), gently mixed and incubated on ice for 20 min. Tubes were centrifuges
for 8-min in 2000rpm at 4°C. Supernatant was removed and 10 milliliters of EL buffer was
added. Tubes were mixed, incubated on ice for 15-min and centrifuges for 8-min in 2000rpm
at 4°C. Supernatant was removed and 1 milliliter of EL buffer was added. Tubes were mixed
and centrifuges for 5-min in 5500rpm at 4°C. Supernatant was removed and 200 microliters of
EL buffer was added. Tubes were mixed and centrifuges for 5-min in 2000 rpm at 4°C. Super-
natant was removed and pellets were kept in -80°C for later use.

2. RNA extraction. RNA was extracted from the lymphocytes pellet using Trizol (Life
Technologies), according to manufacturer's instructions, and kept in -80 degree Celsius. RNA
quality assessed with a gel electrophoresis.

3. miRNAs profiling. 1 μg of total RNA was used to generate cDNA using the TaqMan
Low-Density Arrays (TLDAs), which are quantitative real-time-polymerase chain reaction (RT
—PCR) assays, based on specific stem—loop primers, each is complement to a mature
miRNA. These primers are found in a mixture which generates a multiplex PCR reaction
(megaplex). Profiling and analyzing procedures included the following work: first-strand
cDNA was made with High Capacity cDNA kit (Life technologies). Complementary DNA
(cDNA), RNase-free water and TaqMan Universal PCR Master Mix (No AmpErase UNG; Life
technologies) was then infused into a loading port on Human TLDA card A, centrifuged twice
and sealed according to the manufacturer’s instructions. PCR amplification was done on an
ABI Prism 7900HT Sequence Detection System under the following conditions: 2 min at 50
degree Celsius, 10 min at 95 degree Celsius, 40 cycles of (30 s at 95 degree Celsius and 1 min at
60 degree Celsius). Results were analyzed with SDS software (Applied Biosystems / Life tech-
nologies). miRNA relative levels were calculated based on the comparative threshold cycle (Ct)
method (see RQ calculation below). We used miR-425-5p for normalization, which according
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to our results did not change under stress (see S1 Table). Reactions were run on an Applied
Biosystems 7900HT Fast Real-Time PCR System.

4. Quantitative Real-Time PCR. 10 nanograms of RNA were used to generate cDNA
using the TaqMan MicroRNA Reverse Transcription Kit and TaqMan MicroRNA qPCR assay
(Life Technologies using triplicate reactions. We used miR-425-5p for normalization. Reac-
tions ran on StepOnePlus Real-Time PCR System (ABI).

5. Relative Quantification (RQ) Calculation. Normalization was achieved by reducing
the Ct of each miRNA from the average Cts of all miR-425-5p replicates ΔCt = (CtmiRNA—
CtmiR-425-5p). For each miRNA, we reduced the normalized Ct in the first sample (T0 –
before stress) from the normalized Ct in the second sample (T1 –after stress) to create ΔΔCt
values (T1-T0). RQ number is calculated by 2 exponent the remainder from the last step
(2−ΔΔCt). P-value was calculated for the relative levels using the two-sample unequal variance t-
test and values were adjusted for multiple testing by the false discovery rate (FDR) method of
<0.1 [40].

MiR-29 expression in mice subjected to a social defeat stress
To further investigate the link between mir-29 and stressful experience, the expression of miR-
29 family (miR-29a, b and c) was further acquired and analyzed from brain tissue of socially
defeated mice (see S1 File).

Fig 2. Stress-induced change in miR-29c and sustained subjective stress. A. MiR-29c stress-induced fold-change (axis y) for all participants (coded in
axis x); B. ANOVA analysis between groups revealed that increase in miR-29c expression was related to sustained stress.

doi:10.1371/journal.pone.0146236.g002
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fMRI data acquisition and analysis
Brain scanning was performed on a 3T (GE, HDXt) MRI scanner with an 8-channel head coil.
Functional imaging was acquired with gradient echo-planar imaging (EPI) sequence of T2�-
weighted images (TR/TE/flip angle: 3000/35/90; FOV: 20 × 20 cm; matrix size: 96 × 96) in 39
axial slices (thickness: 3 mm; gap: 0 mm) covering the whole cerebrum. fMRI data analysis was
performed with SPM5 (Wellcome Department of Imaging Neuroscience, London, UK). Pre-
processing of the fMRI data included correction for head movements (subjects with movement
above 2 mm were discarded) via realignment of all images to the mean image of the scan using
rigid body transformation with six degrees of freedom, normalization of the images to Mon-
treal Neurological Institute (MNI) space by co-registration to the EPI MNI template via affine
transformation, and spatial smoothing of the data with a 6 mm FWHM. Finally, the first 6
images of each functional resting scan were rejected to allow for T2� equilibration effects.

The vmPFC ROI was determined as follows: We first conducted an activation analysis. For
each participant, the blood—oxygen level-dependent (BOLD) responses were modeled in a
general linear model (GLM) prepared with the two conditions of control and stress tasks. A
second level random effects group analysis (RFX) reveled increased vmPFC activity in the
[stress-control] contrast at p<0.05, small volume corrected cluster utilizing an anatomical
mask of the mPFC that included both sides of the medial frontal, orbital and rectal gyri and the
anterior cingulate cortex, defined from the WFU Pickatlas toolbox for SPM [41]. Next, FC
analysis was conducted for the functionally defined vmPFC cluster as a seed ROI. A mean time
series across voxels in the seed ROI was calculated for each participant using the MarsBaR soft-
ware. GLM analyses were performed between the ROI time series and the time series for each
brain voxel. To reduce the effect of physiological artifacts and nuisance variables, 6 motion
parameters, cerebrospinal fluid, and white matter signals were introduced as covariates in the
design matrix. Next, a second level random effects group analysis (RFX) was conducted. Signif-
icant clusters that altered FC with the vmPFC seed ROI in [stress-control] contrast were identi-
fied at a threshold of p = 0.0005, FDR corrected for multiple comparisons, and anatomically
validated with the WFU Pick Atlas Tool [41]. Beta weights were extracted and averaged across
all voxels within each functional area. Two participants were excluded from this analysis as
outliers due to beta values exceeding ±2.5 Std from group average.

Mediation analysis
Mediation was tested in a standard three variables path model, using SPSS INDIRECT macro
script [42], in which the indirect effect was considered significant if its 95% bootstrap confi-
dence intervals from 1000 iterations did not include zero at p = 0.05.

Results

Stress elicitation
The paradigm yielded substantial stress reactivity at the whole group level, by measures of sub-
jective stress, heart-rate and cortisol response [black line and circle, see also [34]]. A significant
main effect of time was found for subjective stress-ratings (F(3, 180) = 17.562, p<0.001, two-
sided); while post-hoc analyses revealed an increase in ratings in response to stress (R3), as
compared to the two previous measures (R1 and R2, Tukey's honest significant difference
(HSD), p’s<0.001), and a decline to baseline following the second rest period (R4, p<0.001,
Fig 1A). The means and standard-deviations (in parentheses) of R1, R2, R3 and R4 were 3.69
(1.82), 4.21 (1.96), 5.34 (1.9) and 4.08 (2.39), respectively. Notably, the four measures of subjec-
tive stress were within the normality range (values of Skewness and Kurtosis were within the
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range of ±2 standard errors). Heart-rate (beats-per-minute) analysis also revealed a significant
main effect of time (F(3, 129) = 38.88, p<0.001, two-sided), while post-hoc analyses revealed
an increase in heart-rate in response to stress, as compared to pre-stress conditions (Tukey's
HSD, p<0.001), and a decrease to initial levels during the second rest period (p<0.001, Fig
1B). The means and standard-deviations (in parentheses) of the 4 heart-rate measures (in
bpm) were 57.97 (9.36), 65.25 (10.44), 69.39 (9.60), 58.99 (9.82), respectively. For salivary corti-
sol, we found a marginally significant main effect of time (F(3, 171) = 2.46, p = 0.064, two-
sided). Post-hoc analysis revealed a peak in cortisol levels in the final sample (S4), as compared
to post 'rest 1' sample (S1, Tukey's post-hoc analysis; p = 0.057, see Fig 1C). To note, a signifi-
cant correlation was found between the subjective stress rating immediately post-stress (R3)
and the (log transformed) cortisol AUCi (area under the curve increase, r = 0.28, p = 0.035).

The subjective experience—post-stress recovery vs. sustainment
groups
24 participants (39.3%) presented subjective stress sustainment with no reduction in self-
reported stress ratings 20-min after the stress task had ended (Fig 1).

No significant difference was found in subjective stress ratings between the groups in sam-
ples R1-3 (p's = 0.40, 0.54, 0.81, respectively; Fig 1). Additionally, a repeated measures analysis
revealed no between-group differences in both cortisol (p = 0.203) and heart-rate (p = 1.06)
measures (Fig 1B and 1C). The subjective stress sustainment group had slightly, yet insignif-
icantly higher cortisol levels at all time-points, S1-4. Our results of a correlation between sub-
jective stress immediately after the stress task (R3) and cortisol AUCi, on the one hand, yet no
such relation for the sustained stress measure, on the other hand, is in line with previous
research indicating a relationship between psychological and physiological stress measures
only during stress manipulation (Trier Social Stress Test) and not pre- and post- exposure [43].

MiR-29c individual expression
Changes in expression levels of miR-29c for all participants is presented in Fig 2A. The overall
mean (standard-deviation) fold-change was 0.98 (1.08). 27 participants presented a decrease in
miR-29c post-stress expression, while 22 participants presented an increase. Mean (standard-
deviation) fold-change was 0.73 (0.18) for decreases and 1.44 (0.32) for increases in expression.

Correspondence between mir-29c expression change and subjective
stress
The division into stress sustainment (n = 18 subjects with molecular data, 36.7%) vs. recovery
(n = 31, 63.3%) was related to the miR-29c fold-change (Fig 2B). An ANOVA analysis revealed
a larger miR-29c expression change in the stress sustainment group (F(1, 47) = 6.5, p = 0.014,
two-sided), with a large effect size (Cohen's d = 0.72). A marginally significant correlation was
found between the miR-29c fold-change and individual changes in stress ratings in R4-R3
(r = 0.27, p = 0.064). No relationship was found between miR-29c expression and cortisol
responsiveness [repeated-measures ANOVA: p = 0.67; and Pearson correlation with AUCi:
p = 0.86].

Our further investigation in mice subjected to a social defeat stress revealed a 1.8 fold
increase in expression of miR-29 family in the PFC of stressed mice compared to controls (see
S1 File).
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Neural correlates of stress induction
Fig 3 presents the areas which altered FC with the vmPFC cluster during stress induction. The
analysis revealed enhanced FC with the bilateral anterior insula (aIns, 1) and right inferior
frontal gyrus (IFG, 2) and decrease in FC with the dorso-lateral PFC (dlPFC, at Brodmann area
8, 3), posterior cingulate cortex (PCC 4) and inferior parietal lobule (IPL, 5) (see table in Fig 3
for peak coordinates and t values).

miR-29c shows dynamic relations with vmPFC functional connections
A positive correlation (r = 0.31, p = 0.042, two-sided, Fig 4A) was found between individual
miR-29c expression changes and the degree of change in vmPFC-aIns FC (during stress com-
pared to control), and a negative correlation between individual miR-29c expression changes
and vmPFC-dlPFC FC (r = -0.36, p = 0.017, two-sided, Fig 4B).

Notably, no correlation was found with regard to vmPFC coupling with the other clusters;
right IFG, left IPL and PCC (p = 0.50, 0.70, 0.52, respectively).

Relationship between vmPFC FC, mir-29c expression and subjective
stress
Our results indicate that increased miR-29c expression is linked with both enhanced vmPFC-
aIns FC during stress (Fig 4A) and subjective stress sustainment (Fig 2). Due to the temporal
trajectory of these neural and behavioral features, we further explored the possibility that
vmPFC-aIns FC during stress has an indirect effect on post-stress subjective reports (R4-R3)
by the engagement of miR-29c expression change. To test this, we performed a mediation anal-
ysis [42], indicating that enhanced vmPFC-aIns FC during stress indeed led to a lasting subjec-
tive stress experience via enhanced miR-29c expression (indirect effect = 39.41�, 95% CI = 1.45
to 116.47, Fig 5). We likewise examined vmPFC-dlPFC FC and found no significant mediating
effect (indirect effect: -44.81, 95% CI = -139.57 to 3.19). Notably, we also tested whether it is
the vmPFC-aIns FC that mediates an indirect path from the level of expressed miR-29c to the
subjective stress experience and found no significant mediating effect (indirect effect: -0.21,
95% CI = -0.86 to 0.13).

Discussion
Our study indicates the feasibility of detecting specific miRNA changes in PBMCs shortly fol-
lowing stress induction in healthy humans, further assessing their relationship with neuronal
and psychological indices. Together our findings point to a potential neuro-molecular marker
for the subjective experience of stress.

A possible molecular marker of individual stress response
Of the 6 miRNAs that presented stress-induced changes varying among participants, we focused
on miR-29c, previously shown to be expressed in the human prefrontal cortex and involved in
psychopathologies such as schizophrenia and bipolar disorder [39], and brain disorders such
as Alzheimer's [44], Huntington's [45] and Parkinson's [46] diseases. MiR-29 family members
have been acknowledged as epigenetic components that mediate neuropathological processes
in response to environmental stress factors [47], and as such have been suggested as potential
noninvasive biomarkers for diagnosis and prognosis of neuropsychiatric disorders [38]. We
present rapid responsiveness of miR-29c to stress induction in PBMCs of healthy humans.
Although the change in miR-29c expression is relatively modest, it could exert a meaningful
impact on cell physiology (for example: [48, 49], see S1 Table).
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Fig 3. Stress-induced alterations in vmPFC FC. Areas that altered FC with the vmPFC seed ROI when contrasting stress vs. control, p(FDR corrected) =
0.0005. (1) Bilateral aIns (2) right IFG (3) dlPFC (4) PCC (5) left IPL. T-score scale is shown at the bottom, with red representing increased FC and green
decreased FC. The table presents peak voxels and corresponding T values.

doi:10.1371/journal.pone.0146236.g003
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We further present the novel relationship between the epigenetic level of response and the
subjective experience of stress; enhanced miR-29c expression corresponded with sustained
stress feelings (Fig 2B). The final ratings were obtained following 20-min of 'resting' time, dur-
ing which participants were not engaged in any tasks. Nonetheless, ~40% of our sample showed
persistent high stress ratings, as compared to their immediate post-stress report. This is partic-
ularly intriguing since they were not required to regulate their affective state and didn't know
they would need to reassess their stress state.

Fig 4. Correlations betweenmiR-29c fold-change and vmPFC functional connections. A. miR-29c fold-change was positively correlated to vmPFC FC
with the aIns; B. miR-29c fold-change was negatively correlated to vmPFC FC with the dlPFC.

doi:10.1371/journal.pone.0146236.g004

Fig 5. Mediating role of miR-29c in stress sustainment. The illustrated mediation model depicts a significant indirect path from vmPFC-aIns FC during the
stress task (compared to control, delta beta values) to the change in subjective stress (in R4, 20-min after stress, compared to R3, immediately after stress),
through miR-29c fold-change. Specifically, enhanced vmPFC-aIns FC led to higher reported stress levels through increases in miR-29c expression. Beta
values are shown next to arrows indicating each link in the analysis. *p<0.05, +p = 0.064.

doi:10.1371/journal.pone.0146236.g005
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The importance of microRNA families lay in their common sequence or structure, which
promotes similar functionality [50]. Measuring the expression of miR-29 family (miR-29a, b,
c) in the PFC of mice (see S1 Fig) demonstrated a stress-related increased expression of miR-
29b, and further implies the cross species contribution of miR-29 as a family to stress response.

Neural effectors of the molecular marker of stress responsiveness
Following the finding of correlation between the miR29c and the enduring of perceived stress
we speculated that stress sustainment may have resulted from a failure in spontaneous regula-
tion and thereby the molecular-behavioral association was driven by changes in relevant neural
circuits. Indeed, we found that fold changes in miR-29c were greater on the one hand with
increased vmPFC-aIns connectivity and on the other with decreased vmPFC-dlPFC connectiv-
ity during stress induction. This opposite pattern demonstrates a relationship between neural
and epigenetic changes in humans which might correspond to stress regulation mechanism
(Fig 4). The aIns in particular has been indicated as a core region involved in salience detection,
integration and filtering of relevant emotional information [51], engendering awareness of feel-
ings [52], and somatic representation [53], with evidence of its hyper-responsiveness in anxi-
ety-prone individuals [54]. The aIns involvement in salience processing has been repeatedly
suggested to be modulated via reciprocal connections with anterior ventral region in the PFC
[52, 55–57]. Most important, the mPFC in particular was shown to be co-activated with the
aIns during various manipulated cognitive states [58] and during responses to aversive relative
to neutral stimuli [59]. Of particular interest, with regard to the possible role of this functional
connectivity for adaptive regulating of stress, is the finding of enhanced mPFC-aIns FC follow-
ing repeated exposure to traumatic memory [60] and during self-appraisal relative to semantic
tasks [61], supporting a speculation that increased mPFC-aIns FC connectivity is involved in
stressful self-appraisal process. This idea nicely corresponds with our mediation analysis results
indicating that vmPFC-aIns FC enhancement is linked to sustainment of subjectively estimated
stress (i.e. 20 min following the stress induction) via the neuro-molecular fold change of miR-
29c (Fig 5). Together our findings support the role of both vPFC connectivity and epigenetic
changes in self-related regulatory mechanism of stress feelings.

The additional finding of decreased vmPFC-dlPFC FC related to increased miR-29c expres-
sion may reflect the neuro-epigenetic regulation of both the sustained emotional response and
the parallel disturbance of cognitive processing. A similar reduction in vmPFC-dlPFC FC was
previously shown in the context of enhanced cognitive load; argued to be related to increased
need to allocate attentional/cognitive processes, possibly to eliminate potential emotional pro-
cessing interference [62]. Of particular interest is the proposed role of the dlPFC in conscious/
explicit emotional evaluation [63, 64], and its link to cognitive appraisal of anticipatory anxiety
[65]. Studies point to the up-regulation of miR-29c in schizophrenia and bipolar disorder, both
involved in affective and executive control deficits [39]. Moreover, post-mortem studies on
patients with schizophrenia report altered miR-29c expression in the dlPFC [66, 67]. Yet, in
the current context of acute-stress the relation between enhanced mir29c and dlPFC function
is linked to reduced FC with the vmPFC; possibly suggesting a relationship between miR-29c
expression and the failure in its recruitment for emotion regulation via a more cognitive
process.

Our results provide a neuromolecular account for inter-individual differences in post-stress
recovery. It is yet unclear how miR-29c mediates this brain-behavior relationship, though one
possible mechanism is through the miR-29 family's abundant expression in astorcytes [68].
Astrocytes are considered key players in synaptic plasticity regulation in different brain areas
[69]. Dynamic astrocytic-neuronal interactions have important functional consequences due
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to modifications in extracellular ionic homeostasis, neurotransmission, gliotransmission, and
ultimately neuronal function at the cellular and system level [70]. Further animal studies
should explore the exact path of such neuromolecular interaction in stress regulation.

Limitations
With regard to the temporal effect of miR-29c, we assume that stress-induced expression
changes may occur minutes after induction, thus impacting one’s subjective experience. Previ-
ous evidence indeed points to rapid turnover as a common property of neuronal miRNAs [71].
Secondly, we assume that the relationship between miR-29c expression and neural connectivity
is due to parallel expression patterns between peripheral blood and relevant brain regions.
However, this should be determined empirically. We encourage further research extending
from surrogate PBMC to brain regions of interest. We rely solely on miRNAs identified to—
date; the platform we use interrogates 384 predefined miRNAs (from 'miRbase' database). An
alternative approach could be to use 'Deep Sequencing' technology that allows the identifica-
tion of both known and novel miRNAs that may be expressed in our setting. From the neuro-
imaging perspective, our interpretation of regulation processes might be based on reverse
inference, thus we encourage further research investigating whether different stress regulation
techniques might have an effect on miR-29c expression along with the perceived subjective
stress.

In summary
Our combined results point to miR-29c as a mediator of psychological stress, prompted by
enhancement of vmPFC-aIns FC, simultaneously linked to decreased vmPFC-dlPFC FC and
the assumed diminishment of evaluative-cognitive capacity needed to cease the emotional
response. These findings, along with the presumed localization of miR-29c in astrocytes, lead
to an intriguing notion: miR-29c may serve as a biomarker in the blood for plastic stress-
induced alterations in functionally-distinct neural circuits, reflecting affective-cognitive regula-
tion processes. Identifying components of epigenetic control related to regulatory brain func-
tion may provide the foundation for a new era in stress research and the future development of
individually tailored early treatments for anxiety-related pathologies.
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