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Abstract: This article presents research results into the application of an artificial neural network (ANN)
to determine coal’s sorption parameters, such as the maximal sorption capacity and effective diffusion
coefficient. Determining these parameters is currently time-consuming, and requires specialized and
expensive equipment. The work was conducted with the use of feed-forward back-propagation
networks (FNNs); it was aimed at estimating the values of the aforementioned parameters from
information obtained through technical and densitometric analyses, as well as knowledge of the
petrographic composition of the examined coal samples. Analyses showed significant compatibility
between the values of the analyzed sorption parameters obtained with regressive neural models
and the values of parameters determined with the gravimetric method using a sorption analyzer
(prediction error for the best match was 6.1% and 0.2% for the effective diffusion coefficient and
maximal sorption capacity, respectively). The established determination coefficients (0.982, 0.999)
and the values of standard deviation ratios (below 0.1 in each case) confirmed very high prediction
capacities of the adopted neural models. The research showed the great potential of the proposed
method to describe the sorption properties of coal as a material that is a natural sorbent for methane
and carbon dioxide.

Keywords: coal properties; artificial neural network (ANN); sorption capacity; effective diffusion
coefficient; sorption; methane

1. Introduction

Coal is a natural sorbent for gases such as carbon dioxide and methane. These gases, present
in large amounts in coal mines, are associated with the occurrence of natural hazards. Methane is
particularly noteworthy because of its presence in the strata, and its release as a result of mining and
geological processes. This hazard is related to the geology of the deposit, i.e., to the type of coal and the
presence of cracks or fault zones [1–4]. The basic tool for evaluating the likelihood of the aforementioned
threats in hard-coal seams is analysis of coal’s sorption parameters. In order to determine the properties
of a coal–gas system under laboratory conditions, two parameters are primarily used, sorption capacity
a and effective diffusion coefficient De. They complement in situ studies as far as the identification of
methane and outburst hazards in mines are concerned. Sorption capacity describes the ability of coal
beds to accumulate gas, and the effective diffusion coefficient is decisive for the speed of gas release
from coal beds. Among methods used for gas-sorption measurements, gravimetric methods are of
importance [5]. In these methods, the amount of sorbed gas is directly determined on the basis of
measuring the accumulation of the investigated sorbent’s mass after the sorbate is introduced into the
gas system with constant pressure and temperature. These methods have a number of advantages [6,7];
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however, due to their time-consuming nature connected to reaching the state of sorption equilibrium
by the system, and the high cost of commercially available gravimetric devices, the application of these
methods for ongoing forecasting of gas and rock outburst threats is significantly limited. With this in
mind, we set out to devise a way to estimate the values of sorption capacity and effective diffusion
coefficient, which are seen as the key parameters in the description of coal’s sorption properties,
by using artificial neural networks (ANNs).

In recent years, the use of data-analysis algorithms based on artificial-intelligence methods has
become increasingly popular. Of these algorithms, ANNs are characterized by high effectiveness.
An ANN is a mathematical model of a biological network that mimics the functioning of the human brain
in aspects such as pattern classification, forecasting, and decision making based on past experiences.
ANNs have a range of advantages that make them highly useful in practical applications. The level of
theoretical knowledge required of the user, which is indispensable for effective model construction,
is significantly lower than that in the case of traditional statistical methods. Additionally, ANNs are able
to generalize obtained knowledge, they are resistant to partial damage in training datasets, and they
make it possible to simultaneously process data, which has a positive impact on the speed of action
of cooperating neurons. ANNs are increasingly applied in natural, medical, economic, and technical
sciences, including mining and geology [8–12]. These networks are also used to predict the mining
hazards, including methane hazards, mentioned in current research [13–15].

Neural models are applied with substantial success in regression analysis [16–19], performing
the nonlinear transformation of input data in order to approximate output values. Regression issues
might be addressed using a feed-forward back-propagation network (FFN), a network with radial
basis functions (RBN), or a general-regression neural network (GRNN) [20–22].

In this paper, the GRNN model was used to estimate the values of coal’s sorption parameters,
such as the effective diffusion coefficient and maximal sorption capacity, on the basis of technical and
densitometric analyses, and on the knowledge of the petrographic composition of the coal samples.
Results were verified with the use of sorption analyzer IGA-001 (Hiden Isochema, Warrington, UK).

2. Materials and Methods

Coal used in the research was obtained from 24 coal beds in the Upper Silesian Coal Basin
(Poland). Coal samples were comminuted after being transported to a laboratory. Subsequently, with
the dry-sieving method, 4 grain fractions were distinguished for specific purposes. The 10–20 mm grain
fraction was used for densitometric analyses, and the 0.50–1.00 mm grain fraction for the microscope
petrographic analyses. The 0.125–0.160 mm grain fraction was for sorption measurements, and the
grain fraction below 0.20 mm was used in technical analyses [23].

Granular samples (thick polished sections) for petrographic analyses were prepared in line with
guidelines specified in ISO norm 7404-2 (methods of preparing coal samples) [24]. Analyses were
performed using the AXIOPLAN polarizing microscope (Zeiss, Oberkochen, Germany). The thick
polished sections were analyzed in reflected white light, in oil immersion, with 500×magnification.
Tests were performed at 1500 evenly distributed measurement points across the surface of the analyzed
sample, in line with guidelines specified in ISO norm 7404-3 (method of determining maceral group
composition) [25]. Microscopic research was accompanied by measurements of the average reflexivity
(i.e., the ability to reflect light) of vitrinite (colotelinite), denoted as R0. Measurements were performed
in line with the procedure described in ISO norm 7404-5 (method of microscopically determining the
reflectance of vitrinite) [26].

The basic characteristics of the investigated coal samples were obtained from results of the technical
analyses. The researchers applied the gravimetric method, falling back on procedures specified in ISO
norms 562 and 1171 (determination of volatile matter and ash, respectively) for testing solid fuels and
hard coal [27,28]. Technical-analysis parameters are expressed as the percentage loss of a sample’s
mass in relation to its original mass.
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Densitometric analyses were performed with the helium- and quasiliquid-pycnometry methods
using analyzers AccuPyc 1340 and GeoPyc 1360, respectively, provided by Micromeritics (Atlanta, GA,
USA). Measurement results of the real and apparent density of the coal samples were used as a basis
for determining the porosity of these samples.

Parameters that were determined as a result of the above-mentioned analyses constituted a
source of basic information on the tested coal samples. Such analyses are routinely performed in coal
laboratories and provide information such as the petrographic composition of the samples, moisture
and ash content, and internal structure (porosity). These analyses are performed in a relatively short
amount of time, and their execution does not require high costs. This is important from the point of
view of the methodology proposed in this paper.

Sorption measurements were also conducted, and two parameters were established for each
sample: effective diffusion coefficient De from the Timofiejew equation [29]:

De =
0.308×R2

π2 × t 1
2

, (1)

where

R—equivalent radius: R = 1
2

3

√
2 × d2

1 × d2
2

d1 + d2
;

d1—minimal grain diameter (lower sieve size, cm),
d2—maximal grain diameter (upper sieve size, cm),
t1/2—sorption half-time (s); and

maximal sorption capacity am based on sorption isotherm [30]:

a = am ×
b× p

1 + b× p
, (2)

where

a—amount of sorbed methane under given equilibrium pressure p (m3CH4/Mg),
am—maximal sorption capacity when p→∞ (m3CH4/Mg),
b—constant peculiar of coal–methane system (MPa−1), and
p—free gas pressure (in volume stage, MPa).

Measurements were conducted using the gravimetric method, with the IGA-001 sorption
analyzer (Intelligent Gravimetric Analyzer) manufactured by Hiden Isochema (Warrington, UK).
The measurements involved tracking changes in sample mass caused by gas sorption/desorption in
the function of time [31]. The procedure was performed under constant sorption pressure within the
range of 0–1 MPa and under isothermal conditions, in the temperature range from 25 ◦C (298 K) to
55 ◦C (328 K) [23].

In our research, the following parameters were used [32,33].

Obtained parameters in the course of technical analysis:

• volatile matter content—Vdaf (%),
• ash content—Aa (%),
• moisture content—Wa (%).

Obtained parameters in the course of petrographic analysis:

• vitrinite content—W (%),
• inertinite content—I (%),
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• liptinite content—L (%),
• mineral matter content—M (%),
• reflexivity—Ro (%),

Parameters obtained in the course of densitometric analysis:

• real density—ρr (g/cm3),
• apparent density—ρp (g/cm3),
• porosity—ε (%).

The research additionally considered the temperature at which the sorption measurements were
conducted (T, ◦C) and the depth of the coal-bed location (H, m). Parameters used in the analyses were
normalized in the range [0, 1].

As a result, each analyzed coal sample was described by means of a 13 dimensional feature vector,
which was applied at the input of a multilayer-perceptron (MLP) neural network with unidirectional
information flow (Figure 1). That network was used for predicting the values of maximal sorption
capacity am and effective diffusion coefficient De.
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Figure 1. Example of multilayer-perceptron (MLP) network for regression analysis (here, n = 13 and
K = 6 or 7 for effective-diffusion-coefficient and maximal-sorption-capacity estimation, respectively).

We had 24 coal samples at our disposal for which sorption measurements under 4 temperature
levels were conducted: 25, 35, 45, and 55 ◦C. In this way, we obtained 96 input vectors of the network
with the corresponding output values that were subsequently used to train, validate, and test neural
models applied in the research. At that point, the time-consuming nature of sorption measurements,
determined primarily by the size of the grains of the investigated coal material, should be indicated.
In the case of actions involving the 0.125–0.160 mm grain fraction, the time needed to establish a
complete sorption isotherm (including necessary time to outgas the sample) at a given temperature
value averaged 72 h, which translates into some 10 months of work for all conducted sorption
measurements, assuming the measurements would be carried out without pause. The schematic
diagram of the performed analyses is presented in Figure 2.
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3. Prediction Model

Choosing the right number of hidden layers plays an essential role in a neural network solving a
given problem [34]. The most common solutions use one or two hidden layers of neurons. On the basis
of previous experiences [11,15] and the analysis of relevant scientific sources, we concluded that the
optimal neural network for conducting the measurements would be an MLP network with one hidden
layer of neurons [35,36]. In this case, it is also important to properly select the number of neurons in
the hidden layer and the optimal neuron activation function.

From the available 96 element dataset, 68 elements were randomly selected for the process of
training the neural network. The remaining elements were arranged in 2 balanced datasets, validation
and test (each consisting of 14 elements). The selection process was repeated 100 times, each time
randomly. The validation set was used to evaluate the functioning of the network, and served as a
detector of symptoms of the network’s overlearning. The test set was used for the final evaluation of
the neural model’s functioning. Analyses were conducted using MATLAB v. 8.5 software (MathWorks,
Natick, MA, USA).

At the input of the network, a 13 dimensional feature vector was used: parameters from technical
(Parameters 1–3), petrographic (Parameters 4–8), and densitometric (Parameters 9–11) analyses,
measurement temperature (Parameter 12), and the depth of the coal-bed location (Parameter 13).
The network’s output was constituted by a single linear neuron, which made it possible for the network
to reach an unlimited output value range. The tests began with the application of 4 neurons in the
hidden layer. That number was established as a geometric mean of the number of inputs and outputs
of the network. Thanks to this rule, it was possible to approximately determine the minimal number of
neurons in the hidden layer.

In order to determine the optimal size of the hidden layer of the model predicting the first of the
considered sorption parameters, i.e., effective diffusion coefficient De, analyses were performed for
various numbers of neurons in the hidden layer. Analyses also considered the impact of the selected
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neuron-activation function on the network effects. Two activation functions, widely used in this type of
neural network, were subjected to tests: logistic and hyperbolic tangent. In order to train the network,
the Levenberg–Marquardt back-propagation algorithm was applied [37]. Results, expressed as average
values obtained for 100 randomly selected learning sets, are shown in Table 1.

The adopted matching criterion for the proposed model is expressed as the average percentage
prediction error returned by the neural model:

C(RE) =

∑n
i=1

(
| fw̌(Xi)− fw(Xi)|

fw(Xi)

)
n

× 100%, (3)

where

fw̌—prediction value,
fw—observed (measured) value,
Xi—test-set element, and
n—number of elements in the test set.

Table 1. Selecting neural-network parameters for predicting values of effective diffusion coefficient on
the basis of the average prediction error of a neural model.

Hidden-Layer Size
Logistic

Activation Function
Hyperbolic Tangent
Activation Function

C (RE, %)

4 29.41 32.98
5 26.13 30.95
6 22.86 26.32
7 23.37 24.34
8 23.40 25.90
9 25.39 29.43
10 26.25 31.28

Analysis of Table 1 shows that the optimal results for estimating the value of the effective diffusion
coefficient (the lowest value of the matching criterion) were obtained using a hidden layer with 6
logistic neurons (MLP 13-6-1).

Corresponding research was conducted for the neural network of predicting the value of maximal
sorption capacity am. Results, expressed as the average values for 100 randomly selected learning sets,
are presented in Table 2.

Table 2. Selecting neural-network parameters for predicting values of maximal sorption capacity on
the basis of the average prediction error of a neural model.

Hidden-Layer Size
Logistic

Activation Function
Hyperbolic Tangent
Activation Function

C (RE, %)

4 1.94 1.98
5 1.42 1.41
6 1.34 1.39
7 1.30 0.89
8 1.13 1.09
9 0.97 1.16
10 1.06 1.26
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For estimating the value of the maximal sorption capacity (Table 2), the best results were delivered
by a network with 7 hyperbolic tangent neurons in the hidden layer (MLP 13-7-1).

4. Results and Discussion

On the basis of analyses described in the previous section, we chose a neural model with a
hidden layer of six logistic neurons (MLP 13-6-1) in order to predict the value of the effective diffusion
coefficient. The efficiency of the neural model was examined using a test set of 14 examples that were
not provided during the neural network’s training process. For 100 random samplings of the learning
set, the average prediction error for the parameter values returned by the network, as compared with
the actual values determined by using IGA-001 (Formula (1)), was 22.86% (Table 1). The difference
between the best match of the neural model and the observed values of the investigated parameter
was 6.13%. Values of the effective diffusion coefficient for that match are shown in Table 3.

Table 3. Effective diffusion coefficient measured using IGA-001 as compared with values returned by
the neural network for the best match.

Observed
Value × 10−9

(cm2/s)
1.12 3.04 0.95 2.87 0.61 1.32 3.70 3.56 1.29 0.97 2.63 1.76 0.94 1.59

Predicted
Value × 10−9

(cm2/s)
1.15 3.12 1.08 2.96 0.62 1.28 3.89 3.24 1.20 1.06 2.88 1.83 0.88 1.73

Prediction
Error (%) 2.68 2.63 13.68 3.14 1.64 3.03 5.14 8.99 6.98 9.28 9.51 3.98 6.38 8.81

For the best match, correlations between the values provided by the neural network and the
observed values were determined. The procedure was performed for the training, validation, and test
sets (Figure 3).

As a result of the performed analyses, strong relationships were identified between the theoretical
values of the diffusion coefficient and the measured values for the training, validation, and test sets
(determination coefficients at 0.98–0.99). Results indicated strong predicting abilities of the investigated
neural model. When assessing the regressive model, one should also focus on the value of the
standard deviation for training examples and prediction errors. For a very good regression model, the
value of the quotient of the standard deviation of prediction errors and the standard deviation of the
dependent variable assume values below 0.1. These ratios were independently determined for each of
the three datasets, and their values were 0.051, 0.054, and 0.082 for the training, validation, and test
sets, respectively. The low values of the determined ratios and the high values of the determination
coefficients confirmed very good predicting skills of the neural network described in the research.
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In the case of predicting the other discussed parameter, i.e., maximal sorption capacity,
the researchers applied a neural model with a hidden layer containing 7 hyperbolic tangent neurons
(MLP 13-7-1). For 100 randomly selected learning sets, the average match of parameter values returned
by the neural network with the actual values established by IGA-001 (Formula (2)) was 0.89%.
The difference between the best match and the observed values of the investigated parameter was
0.22%. Values of maximal sorption capacity for that match are presented in Table 4.

Table 4. Maximal sorption capacity measured using IGA-001 as compared with values returned by the
neural network for the best match.

Observed Value
(m3CH4/MgCSW) 16.89 17.96 14.84 15.74 14.69 13.35 13.99 17.50 15.95 14.07 16.68 16.26 14.41 13.72

Predicted Value
(m3CH4/MgCSW) 16.87 17.86 14.88 15.70 14.65 13.28 13.97 17.54 15.99 14.04 16.70 16.29 14.41 13.72

Prediction Error
(%) 0.12 0.56 0.27 0.25 0.27 0.52 0.14 0.23 0.25 0.21 0.12 0.18 0.00 0.00

For the best match, correlations between values returned by the neural network and the observed
values were determined. The procedure was performed for the training, validation, and test sets
(Figure 4).
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Figure 4. Relationships between maximal sorption capacity am as predicted by the neural network and
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As a result of these analyses, strong relationships between the maximal-sorption-capacity values
determined with the neural network and the measured values for the training, validation, and test
sets were obtained (determination coefficients approximating 1). This indicated the strong predicting
abilities of the investigated neural model. Just as in predicting values of the effective diffusion coefficient,
standard deviation ratios were determined for the training examples and prediction errors for each
of the three datasets in order to evaluate the regression model. The low values of the determined
ratios—0.011, 0.032 and 0.017 for the training, validation, and test set, respectively—with the high
values of the determination coefficients proved that the applied neural network was characterized by
very strong predicting skills.

5. Conclusions

This article described research on using artificial neural networks to estimate the maximal sorption
capacity and the effective diffusion coefficient of methane in coal samples. In the case of the values
of the effective diffusion coefficient, the best estimation results were thanks to an MLP network
with six hidden logistic neurons of the logistic activation function. With regard to maximal sorption
capacity, the best results were returned by an MLP network with seven hyperbolic tangent neurons
in the hidden layer. In each of the investigated cases, theoretical values estimated by the neural
network and results obtained using the IGA-001 proved compatible to a substantial extent. With
the adopted criterion, in the case of the best match, the relative prediction errors for the analyzed
parameters were 6.1% and 0.2% for the effective diffusion coefficient and maximal sorption capacity,
respectively. The high determination coefficients (0.982–0.999) obtained in both cases, along with
the low values of the standard deviation ratios (below 0.1 in each case) that were determined for
the training data and prediction errors, confirmed that the adopted neural models possessed very
good prediction skills. This points to substantial practical-application potential for the proposed
methodology. Given the time-consuming nature of determining the analyzed parameters with a
gravimetric device—conditioned, above all, by the size of grains of the coal material—the proposed
methodology could be an effective alternative to the traditional measurement method. It could thus
be possible to evaluate gas parameters on the basis of other measurements, which would eliminate
the necessity of day-long measurements involving a costly gravimetric device. This would make it
possible to use the proposed method to describe the sorption properties of coal as a natural sorbent for
methane, which could be used for the ongoing forecasting and evaluation of gas and rock outburst
threats in hard-coal mines.
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4. Godyń, K.; Kožušníková, A. Microhardness of Coal from Near-Fault Zones in Coal Seams Threatened with
Gas-Geodynamic Phenomena, Upper Silesian Coal Basin, Poland. Energies 2019, 12, 1756. [CrossRef]

5. Zhang, L.; Ren, T.X.; Aziz, N. A stydy of laboratory testing and calculation methods for coal sorption
isotherms. J. Coal Sci. Eng. 2013, 19, 193–202. [CrossRef]

6. Levine, J.R. Influences of coal composition on coal seam reservoir quality. A review. In Symposium on Coalbed
Methane Research and Development in Australia; Coalseam Gas Research Institute–James Cook University:
Townsville, Australia, 1992; Volume 1.

7. Saghafi, A.; Faiz, M.; Roberts, D. CO2 storage and gas diffusivity properties of coals from Sydney Basin,
Australia. Int. J. Coal Geol. 2007, 70, 240–254. [CrossRef]

8. Kawabata, D.; Bandibas, J. Landslide susceptibility mapping using geological data, a DEM from ASTER
images and an Artificial Neural Network (ANN). Geomorphology 2009, 113, 97–109. [CrossRef]

9. Lee, W.; Jang, H.; Lee, J. Development and application of the artificial neural network based technical
screening guide system to select production methods in a coalbed methane reservoir. Energy Explor. Exploit.
2014, 32, 791–804. [CrossRef]

10. Skiba, M. The influence of the discrepancies in the observers’ decisions on the process of identification of
maceral groups using artificial neural networks. J. Sustain. Min. 2016, 15, 151–155. [CrossRef]

11. Młynarczuk, M.; Skiba, M. The application of artificial intelligence for the identification of the maceral groups
and mineral components of coal. Comput. Geosci. 2017, 103, 133–141. [CrossRef]

12. Juliani, C. Automated discrimination of fault scarps along an Arctic mid-ocean ridge using neural networks.
Comput. Geosci. 2019, 124, 27–36. [CrossRef]

13. Ruilin, Z.; Lowndes, I.S. The application of a coupled artificial neural network and fault tree analysis model
to predict coal and gas outbursts. Int. J. Coal Geol. 2010, 84, 141–152. [CrossRef]

14. Tadeusiewicz, R. Neural networks in Mining sciences—General overview and some representative examples.
Arch. Min. Sci. 2015, 60, 971–984. [CrossRef]

15. Skiba, M.; Młynarczuk, M. Identification of macerals of the inertinite group using neural classifiers, based on
selected textural features. Arch. Min. Sci. 2018, 63, 827–837. [CrossRef]

16. Çelekli, A.; Hüseyin, B.; Geyik, F. Use of artificial neural networks and genetic algorithms for prediction of
sorption of an azo-metal complex dye onto lentil straw. Bioresour. Technol. 2013, 129, 396–401. [CrossRef]

17. Trivedi, R.; Singh, T.N.; Raina, A.K. Prediction of blast-induced flyrock in Indian limestone mines using
neural networks. J. Rock Mech. Geotech. Eng. 2014, 6, 447–454. [CrossRef]

18. Jiang, C.; Jiang, M.; Xu, Q.; Huang, X. Expectile regression neural network model with applications.
Neurocomputing 2017, 247, 73–86. [CrossRef]

19. Wen, J.; Han, P.F.; Zhou, Z.; Wang, X.S. Lake level dynamics exploration using deep learning, artificial neural
network, and multiple linear regression techniques. Environ. Earth Sci. 2019, 78, 222. [CrossRef]

20. Specht, D.F. A general regression neural network. IEEE Trans. Neural Netw. 1991, 2, 568. [CrossRef]
21. Bianchini, M.; Frasconi, P.; Gori, M. Learning without local minima in radial basis function networks.

IEEE Trans. Neural Netw. 1995, 6, 749. [CrossRef]

http://dx.doi.org/10.15199/62.2018.8.20
http://dx.doi.org/10.1016/S0166-5162(97)00037-2
http://dx.doi.org/10.1515/amsc-2016-0047
http://dx.doi.org/10.3390/en12091756
http://dx.doi.org/10.1007/s12404-013-0214-4
http://dx.doi.org/10.1016/j.coal.2006.03.006
http://dx.doi.org/10.1016/j.geomorph.2009.06.006
http://dx.doi.org/10.1260/0144-5987.32.5.791
http://dx.doi.org/10.1016/j.jsm.2017.03.001
http://dx.doi.org/10.1016/j.cageo.2017.03.011
http://dx.doi.org/10.1016/j.cageo.2018.12.010
http://dx.doi.org/10.1016/j.coal.2010.09.004
http://dx.doi.org/10.1515/amsc-2015-0064
http://dx.doi.org/10.24425/ams.2018.124978
http://dx.doi.org/10.1016/j.biortech.2012.11.085
http://dx.doi.org/10.1016/j.jrmge.2014.07.003
http://dx.doi.org/10.1016/j.neucom.2017.03.040
http://dx.doi.org/10.1007/s12665-019-8210-7
http://dx.doi.org/10.1109/72.97934
http://dx.doi.org/10.1109/72.377979


Materials 2020, 13, 5422 11 of 11

22. Bataineh, M.; Marler, T. Neural network for regression problems with reduced training sets. Neural Netw.
2017, 95, 1–9. [CrossRef] [PubMed]
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