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Abstract: Lipopolysaccharide (LPS) is the major component of the outer membrane of Gram-negative
bacteria, and its integrity is monitored by various stress response systems. Although the Rcs system
is involved in the envelope stress response and regulates genes controlling numerous bacterial cell
functions of Yersinia enterocolitica, whether it can sense the truncated LPS in Y. enterocolitica remains
unclear. In this study, the deletion of the Y. enterocolitica waaF gene truncated the structure of LPS
and produced a deep rough LPS. The truncated LPS increased the cell surface hydrophobicity and
outer membrane permeability, generating cell envelope stress. The truncated LPS also directly
exposed the smooth outer membrane to the external environment and attenuated the resistance
to adverse conditions, such as impaired survival under polymyxin B and sodium dodecyl sulfate
(SDS) exposure. Further phenotypic experiment and gene expression analysis indicated that the
truncated LPS was correlated with the activation of the Rcs phosphorelay, thereby repressing cell
motility and biofilm formation. Our findings highlight the importance of LPS integrity in maintaining
membrane function and broaden the understanding of Rcs phosphorelay signaling in response to cell
envelope stress, thus opening new avenues to develop effective antimicrobial agents for combating
Y. enterocolitica infections.
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1. Introduction

Yersinia enterocolitica is primarily a zoonotic pathogen frequently associated with human
non-specific gastroenteritis [1–3]. Y. enterocolitica is listed in the annual reports of the European
Food Safety Authority as the third most common enteropathogen, after Campylobacter and Salmonella [4].
In some countries, it is on par with Salmonella as a foodborne pathogen [5]. Y. enterocolitica can flourish
at refrigeration temperatures and survive in different harsh environmental conditions, rendering it an
important pathogen associated with foodborne infections [6]. Y. enterocolitica is widely distributed in
the environment and can be found in soil, water, animals, and various food products [7]. Y. enterocolitica
can invade the intestinal mucosa, multiplying and replicating within a phagocytic vacuole [8].
Y. enterocolitica is exposed to a range of envelope stresses due to both their environment and infectious
nature [9]. Encountered stresses include desiccation, changing osmotic stress, temperature fluctuations,
and exposure to cationic antimicrobial peptides [8,9]. Therefore, Y. enterocolitica transitions through a
variety of environments and must respond to these envelope stresses with appropriate gene expression
regulation to promote survival and growth within host tissues [9,10].
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The Rcs (regulator of capsule synthesis) phosphorelay system, a non-orthodox two-component
regulatory system found in many members of Enterobacterales, is one of the envelope stress response
pathways [11,12]. The Rcs system can sense envelope damage or defects and regulate the transcriptome
to relieve stress, which is particularly important for the survival and virulence of pathogenic
bacteria [13]. The Rcs system is composed of three core proteins, the transmembrane sensor kinase
RcsC, the transmembrane protein RcsD, and the response regulator RcsB [8,11,12]. In addition, an outer
membrane-associated lipoprotein RcsF is required for the perception of many of the signals that have
been shown to activate the Rcs phosphorelay [14]. In the signal transduction of the Rcs phosphorelay,
RcsF senses the envelope stress signals and transmits it to RcsC [15]. With the participation of ATP,
the hybrid sensor RcsC autophosphorylates at the conserved histidine residue His479 on its histidine
kinase (HK) domain. Then, the phosphoryl group is transferred to the aspartate residue Asp875 on
the phosphoryl receiver (PR) domain of RcsC. The phosphoryl group is subsequently transferred
to the histidine residue His842 on the histidine-containing phosphotransmitter (HPT) domain of
RcsD and finally to the aspartate residue Asp56 on the PR domain of RcsB [11,12]. RcsB can form
homodimers or heterodimers with auxiliary proteins, such as RcsA, BglJ, MatA, GadE, and then
bind to the conserved motif in Rcs-regulated genes to activate or inhibit their transcription [14,16–18].
In general, the Rcs system is activated by outer membrane damage, lipopolysaccharide (LPS) synthesis
defects, peptidoglycan perturbation, and lipoprotein mislocalization, which then regulates genes
involved in capsule biosynthesis, motility, biofilm formation, and virulence [12].

LPS is an essential structural molecule in the outermost part of the cell envelope, and it consists of
three parts: lipid A, core polysaccharide, and O-specific polysaccharide (O-antigen) [19,20]. LPS is
a physical barrier that can protect bacteria from the surrounding environment and is recognized by
the immune system as a marker for detecting the invasion of bacterial pathogens responsible for the
development of inflammatory reactions, and in extreme cases, it is resistant to internal toxic shock [21].
In addition to the role of the O-antigen in bioactivity, the structural integrity of LPS has important
implications for bacterial survival and virulence, especially the relatively structurally conserved core
polysaccharide [22,23]. Furthermore, defects in LPS biosynthesis can induce cell envelope stress,
activating the Rcs system [24,25]. It has been reported that LPS defects impaired motility by repressing
flagella gene expression through the Rcs signaling pathway in Escherichia coli, and only mutants with
large LPS truncations showed significant defects in those behaviors [26]. Similarly, in a series of
mutant strains of E. coli K12 that knocked out the core polysaccharide transferase gene in the waa gene
cluster, Ren and colleagues found that only the ∆waaF strain might be sensed by the Rcs phosphorelay,
leading to the production of colanic acid [23]. Although the Rcs system is involved in envelope stress
responses and regulates various physiological behaviors of Y. enterocolitica [8,10], whether it can sense
the truncated LPS in Y. enterocolitica is still unclear.

In this study, we showed that the deletion of the Y. enterocolitica waaF gene truncated the structure of
LPS and generated a deep rough LPS. The truncated LPS increased the cell surface hydrophobicity and
outer membrane permeability, generating cell envelope stress. This defect in LPS also caused changes
in membrane surface smoothness and increased the sensitivity of Y. enterocolitica to environmental
stress. The phenotypic experiment and gene expression analysis indicated that the truncated LPS was
correlated with the activation of the Rcs phosphorelay, thereby repressing cell motility and biofilm
formation. These findings reveal the importance of LPS integrity in maintaining membrane function
and further deepen the understanding of Rcs phosphorelay in response to cell envelope stress in
Y. enterocolitica.

2. Results

2.1. waaF Gene Knockout in Y. enterocolitica Constructed a Truncated LPS Structure

In order to obtain a truncated LPS, the core polysaccharide transferase gene waaF was knocked
out in the chromosome of wild-type Y. enterocolitica (biotype 1B and serotype O:8). It has been reported
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that core polysaccharides of LPS are synthesized under the corresponding glycosyltransferases and
phosphoribosyltransferases encoded by the waa gene cluster [27,28]. As each glycosyltransferase is
highly substrate specific and temporally sequential, the absence of the waaF gene fails the synthesis of
the encoded heptyl glycosyltransferase II, thus leading to a truncated LPS structure [23]. Theoretically,
the mutated LPS caused by waaF deletion has only lipids and a portion of the inner core polysaccharides
without the outer core polysaccharides and O-antigen, which is called deep rough LPS [22]. In this
study, we found that the colony morphology of the ∆waaF strain had S-R (smooth to rough) variation
caused by the waaF deletion (Figure 1A). This may be due to the absence of the LPS O-antigen structure
in the ∆waaF mutant strain. Furthermore, silver-stained SDS-PAGE showed that most of the sugar
chains were deleted from LPS in the ∆waaF mutant strain (Figure 1B), which directly verified that the
deletion of waaF led to the formation of a truncated LPS structure in Y. enterocolitica.
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Figure 1. Deep rough lipopolysaccharide (LPS) was constructed by a truncated LPS structure by
knocking out the waaF gene in Y. enterocolitica. (A) Colony morphology was transformed from smooth
to rough due to the deletion of the waaF gene; (B) A truncated LPS structure was constructed by
knocking out the waaF gene through silver-stained SDS-PAGE analysis. Representative images from
three independent experiments.

2.2. Truncated LPS-Induced Envelope Stress in ∆waaF Strain

LPS is the central structural and functional unit of the outer membrane of Gram-negative bacteria
and plays a crucial role in maintaining the integrity of the cell envelope [19,20]. Once its structure
is destroyed, the resulting stresses on membranes can be reflected in the structural properties of the
bacterial envelope [24,25]. In this study, we measured the permeability and surface hydrophobicity of
the outer membrane and observed the cell surface structure by using SEM to measure the changes
in membrane properties caused by waaF deletion in Y. enterocolitica. As shown in Figure 2A,
the hydrophobicity value of ∆waaF (32.6%) was significantly higher than that of the wild-type
strain (16.1%), while the hydrophobicity value of ∆waaF-PBADwaaF returned to a level similar to that
of the wild-type strain. Furthermore, the outer membrane permeability of ∆waaF was 1.48 times that
of the wild-type strain, but the outer membrane permeability was restored when the mutant was
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complemented with the wild-type waaF gene (Figure 2B). As a result, the cell surface hydrophobicity
and outer membrane permeability were increased in the ∆waaF mutant strain, indicating that the cell
envelope stress was induced in response to LPS truncation. In addition, SEM results showed that the
outer membrane surface of the ∆waaF strain had no obvious folds, holes, and other serious membrane
damage, while the outer membrane surface of ∆waaF was relatively smooth when compared to the
wild-type strain (Figure 2C).
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Figure 2. Changes in membrane properties in the wild type, ∆waaF, and ∆waaF-PBADwaaF strains
of Y. enterocolitica. (A) Changes in cell surface hydrophobicity; (B) Changes in outer membrane
permeability; (C) Scanning electron microscope images of Y. enterocolitica strains. Among them,
sub-figures (1-1, 2-1, 3-1) are partial magnified (100 times) views of sub-figures (1–3), respectively.
Data are average values and standard deviations of triplicate experiments. An asterisk indicates a
significant difference with ** p < 0.01.

2.3. Deletion of waaF Gene Increased Susceptibility of Y. enterocolitica to Environmental Stress

LPS is a physical barrier for interactions between bacteria and the environment, providing bacteria
with great resistance to environmental damage and toxic molecules [22,29,30]. To test how defects in
LPS structure caused by the lack of waaF affected the resistance to different environmental stresses,
the cell growth of wild-type, ∆waaF, and ∆waaF-PBADwaaF strains exposed to the cationic antimicrobial
peptide polymyxin B and anionic surfactant SDS was measured in this study. It should be emphasized
here that the lack of waaF does not affect the growth of Y. enterocolitica in the absence of environmental
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stresses (Figure 3A). As shown in Figure 3B, the cell growth of the ∆waaF strain was significantly
inhibited in the presence of 0.4 µg polymyxin B/mL. After 8 h of incubation, the cell density of the
∆waaF strain was decreased by 54% compared to that of the wild-type strain. However, the growth
of the ∆waaF-PBADwaaF strain was close to that of the wild-type strain under polymyxin B stress.
Similarly, after the addition of 0.05% SDS prior to the growth of the bacteria to the logarithmic growth
phase, the growth of the ∆waaF strain was seriously damaged and slowly recovered in the subsequent
cultivation. However, the ∆waaF mutant had the ability to grow under 0.05% SDS stress, but the growth
ability was significantly weaker than that of the wild-type strain. The cell density of the ∆waaF strain
decreased by 86% after 8 h of incubation compared to that of the wild-type strain. However, the growth
of the ∆waaF–PBADwaaF strain with 0.05% SDS recovered closely to that of the wild-type strain
(Figure 3C). These results suggest that LPS truncation caused by waaF deletion increased susceptibility
to environmental stress in Y. enterocolitica.
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Figure 3. Effect of environmental stresses on the wild type, ∆waaF, and ∆waaF-PBADwaaF strains of
Y. enterocolitica. (A) Growth curves of Y. enterocolitica strains without environmental stresses; (B) Growth
curves of Y. enterocolitica strains in the presence of 0.4 µg polymyxin B/mL; (C) Growth curves of
Y. enterocolitica strains in the presence of 0.05% SDS. The starter cultures were incubated in Luria
Broth (LB) medium supplemented with 0.6 g/L L-arabinose at 26 ◦C. Cell growth was measured
every 2 h at 600 nm in a spectrophotometer. Data are average values and standard deviations of
triplicate experiments.

2.4. Disruption of the Rcs Phosphorelay Reversed the Decreased Motility and Biofilm Formation in
∆waaF Strain

In addition to decreased envelope stability and environmental tolerance, the LPS truncation
in Enterobacterales also caused abnormal phenotypic changes, including flagella synthesis,
biofilm formation, virulence, and pathogenicity [26,31–33]. In this study, swimming motility and
biofilm formation were analyzed to investigate the effect of LPS truncation on the phenotypes of
Y. enterocolitica. As shown in Figure 4, the ∆waaF mutant decreased the swim diameter by 53% in
LBNS (LB without salts) agar, but motility was restored when the mutant was complemented with
the wild-type waaF gene. Similarly, the defect of LPS in the ∆waaF strain resulted in a 62% reduction
in biofilm formation, while the ∆waaF-PBADwaaF strain restored biofilm formation after 48 h of
incubation, as evidenced by crystal violet staining when compared to the wild-type strain (Figure 5).
These results indicate that LPS truncation caused by waaF mutation decreased motility and biofilm
formation in Y. enterocolitica.
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experiments. The statistical comparison shows that there is a significant difference between WT
(wild-type) and ∆waaF; there is a significant difference between WT and ∆rcsF/∆rcsC/∆rcsB single
mutant; there is a significant difference between ∆waaF and ∆waaF-∆rcsF/∆waaF-∆rcsC/∆waaF-∆rcsB
double mutant. An asterisk indicates a significant difference with ** p < 0.01.Molecules 2020, 25, x 7 of 16 
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L-arabinose at 26 ◦C. Biofilm formation was analyzed after 48 h of incubation by staining with crystal
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It has been reported that activation of the Rcs phosphorelay triggered by a structural deficiency of
LPS suppressed the colanic acid production of E. coli, but the effects were reversed after the deletion of
any of the Rcs phosphorelay genes [23]. In this study, ∆waaF-∆rcsF, ∆waaF-∆rcsC, and ∆waaF-∆rcsB
double mutants were constructed to determine whether the disruption of Rcs phosphorelay could
reverse the effects caused by waaF deletion in Y. enterocolitica. As a result, the double mutants restored
both swim motility and biofilm formation. The ∆waaF-∆rcsF, ∆waaF-∆rcsC, and ∆waaF-∆rcsB double
mutants increased the swim diameter by 64, 55, and 80%, respectively, compared to the ∆waaF strain
(Figure 4). Similarly, biofilm formation in ∆waaF-∆rcsF, ∆waaF-∆rcsC, and ∆waaF-∆rcsB double mutants
showed 2.5-, 2.4-, and 2.9-fold increases, respectively, compared to the ∆waaF strain after 48 h of
incubation (Figure 5). In addition, the swim diameter and biofilm formation of ∆rcsF, ∆rcsC, and ∆rcsB
single mutants were also performed to distinguish the effects of LPS and Rcs phosphorelay on the
motility and biofilm formation of Y. enterocolitica. The ∆rcsF, ∆rcsC, and ∆rcsB single mutants increased
the swim diameter by 10, 3, and 15%, respectively, compared to the wild-type strain (Figure 4).
The biofilm formation in ∆rcsF, ∆rcsC, and ∆rcsB single mutants was increased by 22, 14, and 38%,
respectively, compared to the wild-type strain (Figure 5). Although the swim diameter and biofilm
formation of ∆waaF-∆rcsF, ∆waaF-∆rcsC, and ∆waaF-∆rcsB double mutants did not recover to the level
of the ∆rcsF, ∆rcsC, and ∆rcsB single mutants, it showed that disruption of the Rcs phosphorelay in the
∆waaF mutant restored motility and biofilm formation to a certain extent in Y. enterocolitica.

2.5. LPS Truncation Caused by waaF Deletion Activated the Rcs Phosphorelay in Y. enterocolitica

Our previous data demonstrated that the Rcs phosphorelay represses flhDC, hmsHFRS, and hmsT
in Y. enterocolitica [10,34]. The flhDC operon encodes the master regulator of flagella biosynthesis [10].
hmsHFRS and hmsT are genes involved in biofilm formation, of which hmsHFRS required for the
biosynthesis of poly-β-1,6-N-acetylglucosamine exopolysaccharide and hmsT encoding diguanylate
cyclase is essential for cyclic dimeric guanosine monophosphate (c-di-GMP) biosynthesis [35]. In this
study, we analyzed the transcription levels of these genes to determine whether LPS truncation
activated the Rcs phosphorelay in Y. enterocolitica. The results revealed that all these genes were
repressed in the ∆waaF mutant strain. As a result, the transcription of flhDC, hmsHFRS, and hmsT in
the ∆waaF strain decreased by 49, 32, and 28%, respectively, while transcription was restored in the
∆waaF-PBADwaaF strain relative to the wild-type strain (Figure 6).Molecules 2020, 25, x 8 of 16 
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However, the expression levels of flhDC, hmsHFRS, and hmsT genes downregulated by LPS
truncation were increased in all double mutant strains. The transcription of flhDC/hmsHFRS/hmsT
in ∆waaF-∆rcsF, ∆waaF-∆rcsC, and ∆waaF-∆rcsB was 1.36-times/1.38-times/1.62-times,
1.19-times/1.30-times/1.52-times, and 1.47-times/1.62-times/1.80-times that of the wild-type
strain, respectively (Figure 6). The deletion of rcsF/rcsC/rcsB also resulted in an increased expression
of these genes. However, there was no significant change between ∆waaF-∆rcsF, ∆waaF-∆rcsC,
and ∆waaF-∆rcsB double mutants and ∆rcsF, ∆rcsC, and ∆rcsB single mutants in the transcription of
flhDC, hmsHFRS, and hmsT (Figure 6). It can be seen that waaF deletion did not affect the expression
levels of these genes in the absence of Rcs phosphorelay in Y. enterocolitica. All these results provide
evidence that LPS truncation caused by waaF deletion decreased Y. enterocolitica motility and biofilm
formation by acting on the Rcs phosphorelay.

3. Discussion

LPS is the major molecular component of the outer membrane of Gram-negative bacteria and serves
as a physical barrier providing the bacteria protection from its surroundings [13,21,29,30]. Among them,
saturated acyl chains and hydrophilic lateral interactions between LPS molecules bridged by divalent
cations make the outer membrane impermeable to both large hydrophilic molecules and hydrophobic
molecules [13,36]. In this study, the deletion of the waaF gene failed the synthesis of the encoded heptyl
glycosyltransferase II in Y. enterocolitica [23], thus leading to a truncated LPS structure (Figure 1B).
Theoretically, the mutant LPS has only lipids and a part of the inner polysaccharide, but no outer core
and O antigen [22], so it appears as a deep rough LPS (Figure 1A). The defects in the LPS structure
may cause damage to the hydrophilic lateral interaction between LPS and ultimately lead to an
increase in membrane permeability in Y. enterocolitica. In addition, the intact LPS showed a gradual
increase in hydrophobicity from the inside out in terms of structural composition [20], which may
explain why the LPS truncation led to increased hydrophobicity in Y. enterocolitica. It is known that
the adhesive capacity closely related to hydrophobicity is important for bacteria to exert their toxic
effects [37]. The hydrophobicity of bacteria usually alters when the cell membrane is compromised [37].
In addition to the LPS synthesis defects, some antimicrobial substances that target cell membrane,
such as cationic antimicrobial peptide polymyxin B and 3,6-O-[N-(2-aminoethyl)-acetamide-yl]-chitosan
(AACS), can also cause changes to the cell surface hydrophobicity [37,38]. In general, the truncated LPS
structure caused by the deletion of waaF resulted in changes in membrane properties, which eventually
led to the generation of envelope stress in Y. enterocolitica.

A new finding of this research is that the deletion of the Y. enterocolitica waaF gene renders the
outer membrane smoother than the wild-type strain. We thought that the slightly uneven surface of
the bacteria observed in the wild type and the ∆waaF-PBADwaaF strains might be due to the intact
structure of LPS. LPS molecules cover more than 70% of the surface area of the outer membrane of the
bacteria [21,22]. One end of its lipid A is anchored to the phospholipids of the outer membrane [39],
while the sugar chain composed of core polysaccharides and O-antigen extends freely outside the
membrane, endowing the outer membrane of the cell with better ductility so that a rough shape similar
to villi is observed through SEM (Figure 2C). However, ∆waaF basically has no polysaccharide chain
protrusions extending outside the phospholipids, and the remaining structure of LPS has lost its good
ductility. The truncated LPS directly exposed the outer membrane to the external environment without
the protection of the intact LPS; therefore, a smooth outer membrane was observed under an SEM
(Figure 2C). In addition, changes in the outer membrane permeability in ∆waaF cells may result in the
swelling of the outer membrane during the fixation and drying (sample processing for SEM analysis),
thus leading to a smooth outer membrane observed through SEM.

Y. enterocolitica is exposed to a range of membrane stresses due to both their environmental
and infectious nature, and resistance to such stress is an important property for microbial survival
and virulence exertion [9,10,13]. The outer membrane of Gram-negative bacteria acts as a protective
barrier at the frontline of interaction between bacteria and the environment [13], and the LPS on
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the outer membrane serves as a physical barrier encountered by toxic molecules and antimicrobials,
preventing the destruction of cell membranes by these molecules [21,22,29,30]. In agreement with
previous reports with Y. enterocolitica and similar findings with E. coli, LPS defects led to the decreased
resistance to SDS and polymyxin B [22,40]. As we mentioned above, the lateral interaction between
LPS prevents macromolecules from penetrating the outer membrane, providing bacteria with great
resistance to toxic molecules [13,36]. Furthermore, in Gram-negative bacteria, the known polymyxin
B resistance mechanisms involve outer membrane modifications and specifically those in the LPS
molecule [41]. In this study, the destruction of the LPS structure and the direct exposure of the outer
membrane to the environment due to the lack of protection of the complete LPS structure both can be
attributed to the increase in the sensitivity of Y. enterocolitica to polymyxin B and SDS. These results
indicate that LPS plays an important role in the survival of Y. enterocolitica in vitro or during the
infection of animal tissues.

The Rcs phosphorelay system is an important signal transduction pathway found in many members
of the Enterobacterales family [11,12]. This system can integrate environmental signals, regulate gene
expression, and alter the physiological behavior of bacteria [42–46]. The outer membrane protein RcsF
can sense most of the envelope stress signals that activate the activity of RcsC, trigger the downstream
signal transmission of the Rcs system, RcsC→RcsD→RcsB, and finally regulate the transcription of the
target gene [11,12,15]. It is reported that E. coli cells can activate colanic acid production through the
Rcs phosphorelay system in response to a truncation of LPS [23]. Konovalova and colleagues proposed
a model to explain how RcsF senses LPS defects [24,25]. In their model, RcsF forms a complex with the
β-barrel and uses its positively charged, surface-exposed N-terminal domain to directly sense the state
of LPS lateral interactions, thereby regulating the activity of the Rcs system [24,25]. When LPS lateral
interactions are perturbed by biosynthesis defect, the RcsF N-terminus will be activated; then, the Rcs
system will be triggered [24,25].

In Y. enterocolitica, the Rcs system was reported to sense cell envelope stress and regulate more than
130 genes involved in antibiotic resistance, bacterial chemotaxis, motility, and biofilm formation [8,10].
However, whether it can sense LPS truncation has not been reported previously. In this study, we found
that the flhDC, hmsHFRS, and hmsT genes regulated by Rcs phosphorelay were repressed by LPS
truncation, but the deletion of rcsF, rcsC, and rcsB, which encode Rcs phosphorelay components in
∆waaF cells, restored the expression levels of flhDC, hmsHFRS, and hmsT as well as cell motility and
biofilm formation in Y. enterocolitica. In fact, increased flhDC, hmsHFRS, and hmsT were also observed
in ∆rcsF, ∆rcsC, and ∆rcsB single mutants. However, there was no significant difference between
∆waaF-∆rcsF, ∆waaF-∆rcsC, and ∆waaF-∆rcsB double mutants and ∆rcsF, ∆rcsC, and ∆rcsB single
mutants in terms of the expression level of all these genes, suggesting that LPS truncation could not
affect the expression of these genes in the inactivation of Rcs phosphorelay in Y. enterocolitica. A similar
effect was also found in the ∆opgGH mutant reported by our previous study [10]. The expression of
flhDC, hmsT, and hmsHFRS was downregulated by 45, 33, and 34%, respectively, due to the opgGH
(encoding enzymes for synthesizing osmoregulated periplasmic glucans) deletion [10]. In this study,
the transcription of flhDC, hmsT, and hmsHFRS was decreased by 49, 28, and 32%, respectively, which is
caused by waaF deletion. Judging from the expression levels of these Rcs-regulated genes, the lack of
waaF and opgGH has little difference in the activation degree of the Rcs system. It should be noted that
LPS truncation did not affect the expression of these genes in the absence of RcsF, indicating that the
RcsF protein is required for the perception of LPS defects caused by waaF deletion in Y. enterocolitica.
All these data provide evidence that the truncated LPS in Y. enterocolitica ∆waaF cells might be sensed
by RcsF and then activate the Rcs system, leading to decreased cell motility and biofilm formation.
In addition, Bengoechea and colleagues found that the LPS O-antigen of Y. enterocolitica is required for
virulence and the absence of O-antigen also affects the expression of other Y. enterocolitica virulence
factors [47]; furthermore, the overexpression of O-antigen causes membrane stress that activates the
CpxAR two-component signal transduction system [48]. Together, these findings suggest that the
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defects of LPS in the outer membrane of Y. enterocolitica either directly or indirectly, for example through
a cellular or envelope stress, could act as a regulatory signal.

4. Materials and Methods

4.1. Bacterial Strains, Plasmids, and Culture Conditions

The bacterial strains and plasmids used in this study are listed in Table 1. E. coli DH5a,
used as the host bacteria in plasmid construction, was cultured at 37 ◦C in LB medium (5 g/L yeast
extract, 10 g/L tryptone, and 10 g/L NaCl). Y. enterocolitica ATCC23715 (biotype 1B and serotype
O:8) was used as the parent strain for constructing Y. enterocolitica mutants. If not stated otherwise,
Y. enterocolitica strains were grown in LB medium or LB agar plates at 26 ◦C. Ampicillin (100 µg/mL),
chloramphenicol (15µg/mL), and CIN (for screening Y. enterocolitica) composed of cefsulodin (15µg/mL),
irgasan (4 µg/mL), and novobiocin (2.5 µg/mL) were added as required.

Table 1. Bacterial strains and plasmids used in this study.

Strains and Plasmids Relevant Characteristics Sources

Y. enterocolitica
YE WT, Serotype O:8, Biotype 1B, pYV- [34]

YE-W ∆waaF This study
YE-W+ ∆waaF, PBADwaaF; Ampr This study

YE-F ∆rcsF [10]
YE-C ∆rcsC [10]
YE-B ∆rcsB [34]

YE-WF ∆waaF, ∆rcsF This study
YE-WC ∆waaF, ∆rcsC This study
YE-WB ∆waaF, ∆rcsB This study

E. coli

S17-1 λpir recA1, thi, pro, hsdR-M+,
RP4:2-Tc::Mu-Kan::Tn7, λpir [34]

DH5a
F-, ϕ80lacZ∆M15, ∆(lacZYA-argF)U169,
deoR, recA1, endA1, hsdR17(rk−, mk+),
phoA, supE44, λ-, thi-1, gyrA96, relA1

[34]

Plasmids

pDS132
conditional replication vector; R6K origin,

mobRK4 transfer origin,
sucrose-inducible-sacB; Cmr

[34]

pDS132-∆waaF upstream and downstream fragments of
waaF gene were cloned into pDS132; Cmr This study

pDS132-∆rcsF upstream and downstream fragments of
rcsF gene were cloned into pDS132; Cmr [10]

pDS132-∆rcsC upstream and downstream fragments of
rcsC gene were cloned into pDS132; Cmr [10]

pDS132-∆rcsB upstream and downstream fragments of
rcsB gene were cloned into pDS132; Cmr [34]

pBAD24 AraC, promoter PBAD; Ampr [34]
pBAD24-waaF AraC, PBAD-waaF; Ampr This study

Amp, ampicillin; Cm, chloramphenicol; r, resistance.

4.2. Plasmids and Strains Construction

To construct pDS132-∆waaF, fragments upstream and downstream to the waaF gene were amplified
from the Y. enterocolitica genome using primers waaF-up-F/waaF-up-R and waaF-down-F/waaF-down-R
(Table 2). The upstream and downstream fragments were fused and amplified by fusion PCR
with primers waaF-up-F/waaF-down-R (Table 2). The resultant long fragment was digested with
SphI and SacI and ligated into pDS132 digested with the same enzymes to yield pDS132-∆waaF.
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Plasmid pDS132-∆waaF was introduced into the donor strain E. coli S17-1 λpir by electroporation
and then transferred into wild-type Y. enterocolitica ATCC23715 by conjugation. The strategy for
constructing the ∆waaF mutant was based on the two-step homologous recombination with plasmid
pDS132 containing the sacB counter-selectable marker and a chloramphenicol resistant marker as
described previously [10]. Similarly, plasmids pDS132-∆rcsF, pDS132-∆rcsC, and pDS132-∆rcsB were
used to construct the ∆waaF-∆rcsF, ∆waaF-∆rcsC, and ∆waaF-∆rcsB double mutants, respectively.

Table 2. Primers used for strain and plasmid construction in this study.

Primer Sequences (5′→3′)

waaF-up-F ATCGCATGCTGCCACAAGCTGATTCACAGA
waaF-up-R ACCGTTTATCAATTCCTTGCAGCAAGTTATT

waaF-down-F AATAACTTGCTGCAAGGAATTGATAAACGGTTGCATGTATTGATCGTTAAAA
waaF-down-R ATTCAGAGCTCCTGCGCAATAGCATAATCGCC

p-waaF-F ATGCGTCGACATGAAAATACTGGTAATCG
p-waaF-R CCCAAGCTTTTAATCGCCCTCTTTCACA
rcsF-up-F ACTGCATGCAAATCATTGGAAGAACTGCAAC

rcsF-down-R ACTGCGAGCTCCTTTGCGGTAGGCTGGGCGTG
rcsC-up-F ACTGCATGCCTCAATGGCGACGATCGGGTTA

rcsC-down-R ACTGCGAGCTCCAGATTTAGCCATAATAGTAC
rcsB-up-F ACTGCATGCAGAAGTGCGTTCTATAATCACA

rcsB-down-R ACTGCGAGCTCATCTGGATGAGAATGCAGATC

Restriction sites are underlined.

To construct pBAD24-waaF, the waaF fragment was amplified from the Y. enterocolitica genome
using primers p-waaF-F/p-waaF-R (Table 2), digested with SalI and HindIII, and inserted into pBAD24
digested with the same enzymes. The pBAD24-waaF plasmid was used to transform the ∆waaF mutant
by electroporation to yield the ∆waaF-PBADwaaF complemented strain. Ampicillin (100 µg/mL) and
L-arabinose (0.6 g/L) were added to maintain plasmid pBAD24-waaF and induce waaF expression,
respectively, in the ∆waaF-PBADwaaF strain. All primers used in this study are listed in Table 2.

4.3. Observation of Colony Morphology

The wild-type, ∆waaF mutant, and ∆waaF-PBADwaaF strains stored at −80 ◦C were streaked on
LB agar plates. After the strain was cultured at 26 ◦C for 48 h, the morphology of the bacterial colony
was observed and photographed with a digital camera.

4.4. LPS Isolation and Silver Stained SDS-PAGE

LPS from the wild type, ∆waaF mutant, and ∆waaF-PBADwaaF strains were isolated using an
LPS extraction kit (iNtRON Biotechnology, Gyeonggi-do, Korea) according to the manufacturer’s
instructions. The LPS samples were separated by SDS-PAGE using 8–20% gradient gels (Solarbio,
Beijing, China). LPS was stained using the PAGE gel silver staining kit (Solarbio, Beijing, China)
according to the manufacturer’s instructions. Gels were visualized under the white light of GelDoc-It2

(UVP, Upland, CA, USA).

4.5. Hydrophobicity Test

Cell surface hydrophobicity was determined by microbial adhesion to hydrocarbons with slight
modifications [49]. Hexadecane was chosen as the non-polar solvent to reflect bacterial surface
hydrophobicity. Briefly, logarithmic phase bacteria were harvested by centrifugation at 5000× g for
10 min, washed three times, and resuspended in phosphate buffered solution (PBS) (pH = 7.4), and the
bacterial concentration was adjusted to OD600 = 0.5 (A0). The two-phase system was thoroughly
mixed by vortexing for 2 min after 300 µL of hexadecane was added to 1.2 mL bacterial suspension.
The aqueous phase was removed after 30 min of incubation at 37 ◦C to measure the absorbance at
600 nm (A1). The hydrophobic rate was calculated using the following formula: hydrophobic rate



Molecules 2020, 25, 5718 12 of 16

(%) =
(A0−A1)

A0
× 100, where A0 is the initial absorption value at 600 nm and A1 is the absorption value

at 600 nm of bacteria treated with hexadecane.

4.6. NPN Uptake Assays

The outer membrane permeability of Y. enterocolitica strains was determined using the
N-phenyl-1-naphthylamine (NPN) method, as described previously [37]. NPN is a hydrophobic
fluorescent probe that can penetrate into the outer membrane of bacteria. This kind of probe emits a
strong fluorescent signal in a hydrophobic environment (i.e., cell envelope), but a weak fluorescent
signal in an aqueous environment. Therefore, the fluorescence intensity of NPN can be used to reflect
the outer membrane permeability of bacteria. The procedure for NPN determination was as follows:
bacteria were harvested in log phase of growth by centrifugation at 5000× g for 10 min, rinsed three
times, and resuspended in PBS buffer (pH = 7.4) to OD600 = 0.5. An aliquot of 1.98 mL of bacterial
suspension was fully mixed with 20 µL NPN (1 mM) and then incubated for 30 s; then, the fluorescence
value was measured immediately using a fluorescence spectrophotometer (RF-5301PC, Shimadzu,
Japan). Excitation and emission wavelengths for NPN were set at 350 and 429 nm, respectively, with slit
widths of 5 nm.

4.7. Stress Survival Assays

Growth curves of Y. enterocolitica strains with environmental stresses were performed as described
previously [22]. Strains were grown overnight at 26 ◦C and then diluted in 20 mL LB medium to
an OD600 of ~0.05. To study the effects of sodium dodecyl sulfate (SDS) on the strains, cells were
incubated for 2 h and 0.05% SDS was added. For the polymyxin B stress assays, a specific concentration
of polymyxin B was added to the LB medium to obtain final concentrations of 0.4 µg polymyxin B/mL.
Samples were taken every 2 h after inoculation, which were stored under 26 ◦C, 180 rpm culture
conditions, and OD600 was determined by a spectrometer. Growth curves were plotted according to
the determined OD600 and sampling time.

4.8. Motility Assays

Swimming motility assays were performed on LBNS plates containing 0.35% agar as described
previously [10]. The overnight activated bacteria were transferred and cultured in the logarithmic
phase, and the bacterial concentration was adjusted to OD600 = 1.0. Then, 1 µL bacterial suspensions
were inoculated into the center of the swimming plate and incubated at 26 ◦C. The diameters of the
swimming rings were measured using a Vernier caliper after 48 h of incubation.

4.9. Biofilm Assays

Crystalline violet staining was used to measure biofilm formation as described previously [10].
Logarithmic phase bacteria cultured in LNNS liquid medium were added to a 96-well plate so that
each well contained 200 µL suspensions (initial OD600 about 0.05). The suspensions were incubated at
26 ◦C for 48 h and were replaced with fresh medium every 24 h. After the bacterial growth medium
was removed, the biofilm was washed twice with PBS and fixed with methanol. Crystal violet staining
solution (0.1%) and 33% acetic acid were used to stain the biofilm and release the dye absorbed in the
biofilm, respectively, which was then measured at 595 nm.

4.10. Electron Microscopy of Cell Morphology

Scanning electron microscopy (SEM) was used to visualize the damage to the outer membrane
as described previously [50]. Bacteria grown to the mid-log phase in LB medium were harvested by
centrifugation at 5000× g for 10 min, washed three times, and resuspended in PBS buffer solution
(pH = 7.4). The suspension was premixed with an equal volume of 2.5% glutaraldehyde for 4 h at 4 ◦C
and subsequently dehydrated with 25, 50, 70, 80, 95, and 100% ethanol. The dehydrated samples were
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air-dried immediately, followed by smearing on SEM stubs and gold covering. The micrographs of the
envelope were obtained using a SEM (Hitachi SU8010, Tokyo, Japan).

4.11. RNA Isolation and Quantitative Real-Time PCR (RT-qPCR)

Total RNA was extracted from the logarithmic phase bacteria in LNNS medium using the TransZol
Up Plus RNA Kit (TransGen, Beijing, China). The RT-qPCR kit (TransGen, Beijing, China) used in
this experiment reverse-transcribed RNA into cDNA in the presence of random primers, and cDNA
amplification was completed in one step in the same reaction system. RT-qPCR was carried out using
SYBR Green and the specific primers listed in Table 3 in a Light Cycler 480 II (Roche, Basel, Switzerland)
as described previously [8,10]. Reactions were performed in triplicate, and the 16S rRNA gene was
used as a reference for normalization. Relative transcription levels of the target genes were analyzed
by the 2−∆∆Ct method as described previously [51].

Table 3. Primers used in the RT-qPCR assay.

Primer Sequences (5′→3′) Amplicon Size (bp)

q-flhDC-F CCTCAGCGATGTTTCGTCTC
176q-flhDC-R CTGCAAGTCATCCACACGAG

q-hmsHFRS-F GATGATGTACCGCCTCCAGA
96q-hmsHFRS-R GTGAATAGTTTCCCGCGCAT

q-hmsT-F TATAATCGCCGTGGGTTGGA
144q-hmsT-R CACTAAGGCTTGGTCTCCCA

16S rRNA-F GCACGTAATGGTGGGAACTC
18316S rRNA-R CTCCAATCCGGACTACGACA

4.12. Statistical Analysis

All experiments were conducted in triplicate, and the results are expressed as mean± SD. One-way
analysis of variance was performed in SPSS for Windows 20.0 (SPSS Inc., Chicago, IL, USA).

5. Conclusions

This study mainly focused on the effect of LPS integrity in maintaining membrane function
and the response regulation of the Rcs phosphorelay system to the truncated LPS in Y. enterocolitica.
The deletion of the Y. enterocolitica waaF gene truncated the structure of LPS and produced deep rough
LPS. This truncated LPS resulted in changes in cell surface hydrophobicity and outer membrane
permeability, which in turn induced the generation of cell envelope stress. LPS truncation also led to
a change in the smoothness of the membrane surface and increased susceptibility to environmental
stress. The truncated LPS decreased Y. enterocolitica motility and biofilm formation, and this effect
was reversed by disruption of the Rcs phosphorelay. Gene expression analysis indicated that Rcs
phosphorelay responds to cell envelope stress induced by truncated LPS in Y. enterocolitica. This study
reveals the importance of LPS integrity in maintaining membrane function, broadens the understanding
of the Rcs phosphorelay system in response to envelope stress, and provides a theoretical basis for the
development of bacterial control, prevention, and treatment.
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