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In recent years, antibiotic-resistant bacteria caused by antibiotic abuse in the medical
industry have become a new environmental pollutant that endangers public health.
Therefore, it is necessary to establish a detection method for evaluating drug-resistant
bacteria. In this work, we used Escherichia coli as a target model and proposed a method
to evaluate its drug resistance for three antibiotics. Graphene dispersion was used to co-
mix with E. coli cells for the purpose of increasing the current signal. This electrochemical-
based sensor allows the evaluation of the activity of E. coli on the electrode surface. When
antibiotics were present, the electrocatalytic reduction signal was diminished because of
the reduced activity of E. coli. Based on the difference in the electrochemical reduction
signal, we can evaluate the antibiotic resistance of different E. coli strains.
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modification, catalytic reduction current

INTRODUCTION

Antibiotics are secondary metabolites that can interfere with cell growth and development (Simioni
et al., 2017; Wang M. et al., 2019). They are mainly of microbial origin. The biochemist Fleming first
discovered penicillin in 1929. Penicillin played an important role in World War II and was very
effective in controlling bacterial infections (Alsaiari et al., 2021). However, the harm of antibiotics to
the human body should not be underestimated. For example, furacilin enters the human body
through food and may cause cancer with long-term consumption (Hu et al., 2010). Similarly, the
commonly used sulfonamide antibiotic sulfadimethoxine has tumorigenic effects (Zhuang et al.,
2019). According to the classification of chemical structure, antibiotics can be roughly divided into
quinolone antibiotics, sulfonamide antibiotics, chloramphenicol antibiotics, aminoglycoside
antibiotics, beta-lactam antibiotics and tetracycline antibiotics (Sharaha et al., 2017).

Large amounts of antibiotics are often used in the medical industry, and bacteria can develop
resistance under the pressure of antibiotic selection. Antibiotic resistance genes (ARGs) are intrinsic
to the development of drug resistance (Osman et al., 2021). Earlier studies have found that resistant
bacteria are able to transfer the resistance genes they contain to other bacteria through animal excreta
at the genetic level, eventually causing the large-scale presence of resistant bacteria (Hu et al., 2017).

Drug-resistant bacteria (ARB) are some bacteria that are originally sensitive and turn out to be
resistant to drugs (Bengtson et al., 2017; Mulat et al., 2019). However, in low concentrations of
antibiotics, some bacteria that were previously resistant tend to lose their resistance. This is because
sensitive bacteria require fewer nutrients than resistant bacteria and have an advantage when
competing with resistant bacteria, which inhibit the growth of resistant bacteria (Mishra et al., 2018;
Sun et al., 2020). Therefore, reducing the abuse of antibiotics can reduce the risk of drug resistance. In
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general, long-term use of antibiotics tends to lead to the
development of bacterial resistance (Gorlenko et al., 2020;
Karimi-Maleh et al., 2020; Zhao et al., 2020). Bacterial
resistance has become one of the top 10 global health threats,
and its contamination is widespread and persistent. ARGs enter
the human body through the food chain and cause an imbalance
in the normal flora and increase the resistance of pathogenic and
conditionally pathogenic bacteria in the body, posing a serious
threat to the health of the body and disease control (Wang Y.
et al., 2019; Karimi-Maleh et al., 2021a).

The traditional method for detection of bacterial resistance is
the microbial inhibition method. Traditional microbial
suppression methods are mostly based on bacterial isolation
and culture methods, mainly for the detection of bacterial
drug resistance phenotypes (Asghar et al., 2017; Zhou et al.,
2017; Karimi-Maleh et al., 2021b, 2021c). The commonly used
detection methods are mainly paper diffusion method and agar
dilution method. The paper diffusion method is to apply a drug-
sensitive tablet to M–H agar that has been inoculated with the
bacteria to be tested, and then measure the inhibition circle after
incubation. The size of the inhibition circle is closely related to the
resistance of bacteria, and the strength of bacterial resistance to
antibiotics is analyzed according to its size (Sedki et al., 2017).
Polymerase chain reaction (PCR) is a molecular biology
technique that allows rapid amplification of target genes.
Compared with traditional microbial inhibition methods, this
technique has the advantages of being less time-consuming and
easier to perform, and it can also meet the requirements of
simultaneous detection of large quantities of samples (Bagheri
et al., 2019; Phung et al., 2020). However, the PCR technique also
has some shortcomings, such as easy contamination. Even a very
small amount of contamination can still cause false positives (Wu
et al., 2020; Zhang X. et al., 2020; Zhi-bin et al., 2021). Moreover,
this technique is limited by the design of primers. Quantitative
real-time fluorescent PCR (qPCR) is based on normal PCR,
where a fluorescent dye or probe is added to the PCR reaction
system to reflect the amount of PCR product in real time by
changes in fluorescence signal. During the qPCR process, the
entire process is monitored in real time, allowing the
quantification of the amount of starting template (Waseem
et al., 2019). The method is more specific, but expensive and
not suitable for analysis of a large number of samples. Therefore,
it is necessary to develop a rapid way to evaluate bacterial
resistance.

In recent years, there have been recent advances in the
electrochemical ultrasensitive detection of bacteria (Farooq
et al., 2020; Fu et al., 2020; Khan et al., 2020; Zhang L. et al.,
2020). The principle of electrochemical methods for detecting
bacterial drug sensitivity is that bacterial respiration relies mainly
on electron transfer in the respiratory chain, and the coincidental
introduction of redox probes intervenes in the bacterial
respiratory chain. The electrochemical changes generated by
the respiratory chain activity can be detected rapidly and
reliably by electrochemical methods. Ertl et al. (2000, 2003)
used potassium ferricyanide as a redox probe. Escherichia coli
was mixed with a solution of potassium ferricyanide after 15 min
of interaction with antibiotics, and the electrical signal was

measured by the chronoelectric method. The results were in
complete agreement with the conventional paper diffusion
method. This method can provide a report in <25 min.
However, the IC50 values measured by electrochemical method
were 100 times higher than the results obtained by standard
turbidity method, and the electrodes were found to adsorb
antibiotics during the test. Chotinantakul et al. (2014)
improved the test protocol based on Ertl et al. The antibiotics
were removed by centrifugation of E. coli after interaction with
bacteria and resuspended in a test solution containing potassium
ferricyanide, which gave the results of the drug sensitivity test
in 3–6 h.

However, the detection of bacterial resistance using
conventional commercial electrodes has the disadvantage of
insufficient sensitivity. Therefore, improving the performance
of electrodes can be a good way to improve the accuracy of
detection. In this work, we modified the conventional glassy
carbon electrode (GCE) with surface graphene ink, which can
greatly improve the sensing performance of the electrode
(Baghayeri, 2017; Zhang M. et al., 2020; Mohanraj et al., 2020;
Xu et al., 2020). The modified electrode can detect the
electrochemical reduction behavior of E. coli more sensitively.
Likewise, the differences in the altered electrochemical behavior
were amplified due to the influence of different antibiotics after
This technique could potentially be applied for the evaluation of
resistance for E. coli.

MATERIALS AND METHODS

All electrochemical measurements were carried out using a
CHI660E working station. A three-electrode system was
applied for all measurements. Specifically, a glassy carbon
electrode (GCE), a Pt foil and an Ag/AgCl electrode were used
as working electrode, counter electrode and reference electrode,
respectively. Escherichia coli J53 was purchased from Beijing Bio
Bo Wei Biotechnology Co., Ltd. Ofloxacin, penicillin and
cefepime was purchased from Sinopharm Chemical Reagent
Co., Ltd. Graphene dispersion was purchased from Jiangsu
XFNANO Materials Tech Co., Ltd. All other reagents used in
this work were analytical grade and used without further
purification. Phosphate buffer solution (PBS, 0.1 M) was
prepared by mixed stock solutions of 0.1 M disodium
hydrogen phosphate and sodium dihydrogen phosphate until
reach to the desired pH.

Escherichia coli J53 was grown over night in a Luria Bertani
(LB) medium (100 ml) at 37°C with shaking. The cells of E. coli
were collected after centrifugation and washed by PBS. The
colony forming units (CFU) were then counted. Then, the
E. coli was diluted by graphene dispersion to reach a desired
CFU by stirring.

Electrode surface modification was conducted by drop coating
of desired concentration of graphene-E. coli dispersion on the
GCE surface and kept in a humid chamber for 1 h before analysis.
Then, the electrode was inserted into a PBS and conducted a
voltammetric scan. The E. colimodified GCE was prepared using
a similar method but with out the mixing of graphene dispersion.
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For antibiotic resistance tests, 5 μL of ofloxacin, penicillin and
cefepime solution was drop coated at graphene-E. coli modified
GCE. Then, the electrode was kept in a humid chamber. The
viability test was carried out at 1 h interval.

RESULTS AND DISCUSSION

Since bacterial cells have their own oxidoreductase system,
which has been shown to be involved in electron transfer
(Couto et al., 2018), we first investigated the direct
electrochemical behavior of E. coli. First, we performed
cyclic voltammetry (CV) tests only × 107 CFU E coli with
directly coated on the GCE surface (Figure 1). Comparing to
bare GCE, we could see a clear reduction peak at around
−0.4 V, which indicates that the electroactivity of bacterial cells
undergoes surface electrode reaction. However, the reduction
current of this reduction peak is not particularly pronounced
and is only 3.2 μA. In contrast, the intensity of the reduction
current of E. coli is significantly higher after co-mixing with
graphene. There are two reasons for this increase. The first one
is that the excellent electrical properties of graphene itself
improve the electron transfer rate (Pourmadadi et al., 2019).
The second is that the lamellar structure of graphene greatly
enhances the electrochemically active area (Gupta et al., 2019).
It enables more cells to participate in the electrochemical
reaction after wrapping E. coli. Therefore, with the
assistance of graphene, it became possible to evaluate the

antibiotic resistance of E. coli cells from its electrochemical
behavior.

After determining the electrochemical behavior of E. coli,
we used the electrochemical reduction peak as a probe for cell
viability evaluation. To make the detection more sensitive, we
further investigated the electrodes with differential pulse
voltammetry (DPV). Figure 2 shows the DPV curves of
graphene/GCE and graphene-E. coli/GCE. It can be seen
that graphene/GCE shows only a flat curve, but the curve of
graphene-E. coli/GCE has a clear reduction peak. At the same

FIGURE 1 | CVs of bare GCE, E. coli/GCE and graphene-E. coli/GCE in
PBS (pH � 7).

FIGURE 2 | DPV curves of graphene/GCE and graphene-E. coli/GCE in
PBS (pH � 7).

FIGURE 3 | Reduction peak current of graphene-E. coli/GCE at different
pH conditions (n � 3).
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time, the reduction peak on DPV has some shift against CV, which
is due to the amplitude added by DPV (Vilas-Boas et al., 2019).
We can see that the DPV test has a better signal-to-noise ratio
than the CV. This reduction reaction is catalyzed by some
macromolecules in E. coli cells. The substances involved may
be cell surface c-type cytochromes and bacterial outer
membrane reductases, dehydrogenases and flavoproteins
(Vinod et al., 2002).

The pH of the buffer solution can significant effect on
electrochemistry. Electrochemically active substances have
different electrochemical behaviors at different pH
conditions. In the same time, the activity of E. coli is
different in different pH environments. Therefore, it is
necessary for us to optimize the pH conditions. Figure 3
shows the difference of reduction currents between pH 5–10.
It can be seen that the intensity of the currents gradually
increases as the acidic conditions move toward the neutral
conditions. The current peaks reached the maximum at 7.5.
As the pH environment gradually becomes alkaline, the
current value of the reduction peak starts to decrease. We
finally chose the optimal pH environment as 7.5.

The reduction current of DPV will also increase due to the
increase in the number of cells. Figure 4 shows the assay with
graphene-E. coli/GCE for 1 × 105 CFU, 5 × 105 CFU, 1 ×
106 CFU, 5 × 106 CFU, 1 × 107 CFU, and 5 × 107 CFU. It
can be seen that the reduction current increases as the number
of cells increases. This may be due to the fact that more cells are
involved in the electrochemical reaction. However, too many
cells also lead to a decrease in the current, which is due to the
fact that E. coli itself does not have a good conductivity. Too
many cells form a thicker film, which hinders the transfer of
electrons. These results are in accordance with works
published recent years regards to the electrochemistry of

E. coli cells (Setterington and Alocilja, 2011; Dos Santos
et al., 2013). To reveal the maximum variability, we chose
1 × 107 CFU as the optimal condition.

Since antibiotics can kill E. coli. The inactive E. coli is unable to
perform effective electrochemical catalytic reaction. Therefore,

FIGURE 4 | Reduction peak current of graphene-E. coli/GCE at PBS
with 1 × 105 CFU (A), 5 × 105 CFU (B), 1 × 106 CFU (C), 5 × 106 CFU (D), 1 ×
107 CFU (E), and 5 × 107 CFU (F) (n � 3).

FIGURE 5 | DPV curves of graphene-E. coli/GCE before and after
addition of ofloxacin, penicillin and cefepime at PBS.

FIGURE 6 | Reduction peak currents of graphene-E. coli/GCE at PBS
after addition of ofloxacin, penicillin and cefepime (n � 3).
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the difference in reduction current can be used to detect the
number of surviving E. coli on the electrode surface. However,
E. coli possessing antibiotic resistance can survive in the presence
of antibiotics and therefore the behavior of electrochemical
reduction will receive only a small effect. In this work, we
tested the susceptibility of E. coli to ofloxacin, penicillin and
cefepime. Figure 5 shows the electrochemical behavior of
graphene-E. coli/GCE 1 h after the addition of ofloxacin,
penicillin and cefepime. It can be seen that there is a
corresponding decrease in the reduction current in each curve
compared to the electrochemical behavior without the addition of
antibiotics. It represents a decrease in the number of cells able to
participate in the electrochemically catalyzed reduction due to the
destruction of E. coli by antibiotics and therefore a decrease in the
current.

We monitored the bacterial inhibition of the three antibiotics.
Figure 6 shows the electrochemical reduction currents at
different times after the addition of antibiotics to graphene-E.
coli/GCE. It can be seen that the electrochemical reduction
current increases with time, indicating that the antibiotic
continues to have an effect on E. coli. Ofloxacin after about
3 h The reduction current has no longer changes after 3 h after the
addition of ofloxacin. The same was true for penicillin and
cefepime, which took about 4 h. We can observe a gradual loss
of activity of E. coli during this process. However, if E. coli has
antibiotic resistance, it can maintain the original intensity of the
reduction current. Therefore, this technique could potentially be
used to identify drug-resistant strains of E. coli.

CONCLUSION

In this work, we coated E. coli cells with a graphene dispersion,
which was then immobilized on the electrode surface. This
approach allows the evaluation of the activity of E. coli on the
electrode surface. The electrocatalytic reduction current is the
indicator in this evaluation. The current is proportional to the
activity of the cells on the surface of the electrode according to the
electrode. The antibiotic has an effect on the cells that result in the
decreasing of the electrocatalytic reduction signal. Therefore, this
strategy can be used to evaluate the resistance of cells to
antibiotics. After optimization of the parameters, we
successfully evaluated the resistance of E. coli to ofloxacin,
penicillin and cefepime.
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